
PVMF Return Codes
OHA 2.05, rev. 1

Sep 1, 2009

© 2010 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

PVMF Return Codes
OHA 2.05, rev. 1

Table of Contents
1. Introduction ... 5
2. General Return Codes .. 5

2.1. PVMFNotSet ... 5
2.2. PVMFPending ... 5
2.3. PVMFSuccess .. 5

3. Error Codes ... 5
3.1. PVMFErrAccessDenied .. 5
3.2. PVMFErrAlreadyExists ... 5
3.3. PVMFErrArgument ... 6
3.4. PVMFErrBadHandle ... 6
3.5. PVMFErrBusy ... 6
3.6. PVMFErrCallbackClockStopped .. 6
3.7. PVMFErrCallbackHasBecomeInvalid ... 6
3.8. PVMFErrCancelled ... 6
3.9. PVMFErrContentTooLarge ... 6
3.10. PVMFErrCorrupt ... 6
3.11. PVMFErrDrmClockError .. 6
3.12. PVMFErrDrmClockRollback .. 6
3.13. PVMFErrDrmDeviceDataAccess ... 6
3.14. PVMFErrDrmDeviceDataMismatch ... 6
3.15. PVMFErrDrmDeviceIDUnavailable ... 7
3.16. PVMFErrDrmCryptoError .. 7
3.17. PVMFErrDrmDomainNotAMember ... 7
3.18. PVMFErrDrmDomainRequired .. 7
3.19. PVMFErrDrmDomainRenewRequired ... 7
3.20. PVMFErrDrmInsufficientRights ... 7
3.21. PVMFErrDrmLicenseExpired .. 7
3.22. PVMFErrDrmLicenseNotFound ... 7
3.23. PVMFErrDrmLicenseNotFoundPreviewAvailable 7
3.24. PVMFErrDrmLicenseNotYetValid ... 7
3.25. PVMFErrDrmLicenseStoreAccess .. 7
3.26. PVMFErrDrmLicenseStoreCorrupt .. 7
3.27. PVMFErrDrmLicenseStoreInvalid ... 7
3.28. PVMFErrDrmNetworkError .. 8
3.29. PVMFErrDrmOperationFailed ... 8
3.30. PVMFErrDrmOutputProtectionLevel ... 8
3.31. PVMFErrDrmServerError .. 8
3.32. PVMFErrFirst .. 8
3.33. PVMFErrHTTPAuthenticationRequired .. 8
3.34. PVMFErrInvalidState .. 8

 - Page 2 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

3.35. PVMFErrLast .. 8
3.36. PVMFErrMaxReached ... 8
3.37. PVMFErrNoMemory ... 8
3.38. PVMFErrNoResources ... 8
3.39. PVMFErrNotReady ... 9
3.40. PVMFErrNotSupported ... 9
3.41. PVMFErrOverflow ... 9
3.42. PVMFErrPortProcessing .. 9
3.43. PVMFErrProcessing ... 9
3.44. PVMFErrResource ... 9
3.45. PVMFErrResourceConfiguration .. 9
3.46. PVMFErrTimeout .. 9
3.47. PVMFErrUnderflow ... 9
3.48. PVMFFailure ... 9
3.49. PVMFLowDiskSpace .. 10
3.50. PVMFErrContentInvalidForProgressivePlayback 10

4. Informational codes .. 10
4.1. PVMFInfoBufferCreated ... 10
4.2. PVMFInfoBufferingComplete .. 10
4.3. PVMFInfoBufferingStart .. 10
4.4. PVMFInfoBufferingStatus ... 10
4.5. PVMFInfoChangePlaybackPositionNotSupported 11
4.6. PVMFInfoClipCorrupted .. 11
4.7. PVMFInfoContentLength .. 11
4.8. PVMFInfoContentTruncated ... 11
4.9. PVMFInfoContentType ... 12
4.10. PVMFInfoDataDiscarded .. 13
4.11. PVMFInfoDataReady ... 13
4.12. PVMFInfoDurationAvailable ... 13
4.13. PVMFInfoEndOfData .. 14
4.14. PVMFInfoErrorHandlingComplete .. 14
4.15. PVMFInfoErrorHandlingStart .. 14
4.16. PVMFInfoFirst .. 14
4.17. PVMFInfoLast .. 14
4.18. PVMFInfoLicenseAcquisitionStarted .. 14
4.19. PVMFInfoMetadataAvailable ... 14
4.20. PVMFInfoOverflow ... 14
4.21. PVMFInfoPlayListClipTransition ... 15
4.22. PVMFInfoPoorlyInterleavedContent ... 15
4.23. PVMFInfoPortConnected .. 15
4.24. PVMFInfoPortCreated .. 15
4.25. PVMFInfoPortDeleted ... 15

 - Page 3 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

4.26. PVMFInfoPortDisconnected ... 15
4.27. PVMFInfoPositionStatus ... 16
4.28. PVMFInfoProcessingFailure ... 17
4.29. PVMFInfoRemoteSourceNotification .. 17
4.30. PVMFInfoReportObserverRecieved ... 17
4.31. PVMFInfoSessionDisconnect ... 17
4.32. PVMFInfoSourceFormatNotSupported .. 17
4.33. PVMFInfoStartOfData ... 17
4.34. PVMFInfoStateChanged ... 17
4.35. PVMFInfoTrackDisable ... 17
4.36. PVMFInfoUnderflow ... 18
4.37. PVMFInfoUnexpectedData ... 18
4.38. PVMFInfoVideoTrackFallingBehind .. 18
4.39. PVMFInfoSourceOverflow ... 18
4.40. PVMFInfoSourceFormatUpdated .. 18

5. Appendix .. 18
5.1. PVPlayer engine error and extension codes with their likely causes 18

 - Page 4 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

1. Introduction

All PV software development kits (SDKs) use the return codes defined in PV multimedia
framework (PVMF) architecture for synchronous as well as asynchronous return status for its
entire application programming interface (API). The codes for asynchronous informational events
or error events are also from with in the set of codes defined in the header
pvmi\pvmf\include\pvmf_return_codes.h. The error code has been given negative
values and informational code has positive values. There are a few “placeholder” codes defined,
which are not currently being used for any general, error or informational status. To understand
which informational or error codes are valid and expected for a particular API please refer to the
specific API documentation.

2. General Return Codes

2.1. PVMFNotSet
This is a “placeholder” code and no API is expected to return this code in normal circumstances.
This value can be initialize any return_value variable of type PVMFStatus.

2.2. PVMFPending
This code represents that completion of the particular API is “pending”. In an asynchronous
framework, there might be some other callback functions defined which should be called when
completion of a “pending” API happens.
Please note that its value is 0, but 0 should not be treated as failure.

2.3. PVMFSuccess
This code is for general success.

3. Error Codes

All error codes are defined to have negative values with in the range of –1 to –100 (both
included). The macro IsPVMFErrCode can be used to check if a particular code is with in this
range.

3.1. PVMFErrAccessDenied
This error is reported when a resource is accessed without full authorization. A typical example is
when rights management does not allow a playback to happen.

3.2. PVMFErrAlreadyExists
This error happens when a resource already exists and another one cannot be created. For
example creating or registering some plug-in with specific attributes which is already created or
registered.

 - Page 5 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

3.3. PVMFErrArgument
This error is reported if invalid arguments are passed to an API. Please note that validation of
argument might not be possible as late as actual processing with “wrong” argument fails.

3.4. PVMFErrBadHandle
This error happens when some invalid resource handle is specified.

3.5. PVMFErrBusy
This error happens when underlying resource is busy and the new request cannot be handled.

3.6. PVMFErrCallbackClockStopped
This error is specific to PVMFMediaClock and means that media clock has stopped.

3.7. PVMFErrCallbackHasBecomeInvalid
This error is specific to PVMFMediaClock and it means that media clock callback has become
invalid due to change in direction of NPT clock.

3.8. PVMFErrCancelled
This error code is returned when some old request is cancelled. In that sense this error is actually
an expected value and should not be treated as a fatal error.

3.9. PVMFErrContentTooLarge
This error happens when the download content length is larger than the maximum requested
size.

3.10. PVMFErrCorrupt
This error occurs due to data corruption being detected. A typical example is when an invalid
media stream is encountered in datapath.

3.11. PVMFErrDrmClockError
This error occurs when the DRM clock is not available or cannot be read.

3.12. PVMFErrDrmClockRollback
This error occurs when the DRM clock rollback is detected.

3.13. PVMFErrDrmDeviceDataAccess
This error occurs when access to the DRM device data fails.

3.14. PVMFErrDrmDeviceDataMismatch
This error occurs when DRM data is not matched to the device in use.

 - Page 6 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

3.15. PVMFErrDrmDeviceIDUnavailable
This error occurs when DRM device ID cannot be determined.

3.16. PVMFErrDrmCryptoError
This error occurs when DRM cryptography operation failed.

3.17. PVMFErrDrmDomainNotAMember
This error occurs when a license server reports that the device is not part of the domain.

3.18. PVMFErrDrmDomainRequired
This error occurs when a license server requests registration to a domain.

3.19. PVMFErrDrmDomainRenewRequired
This error occurs when a license server requests renewal of a domain registration.

3.20. PVMFErrDrmInsufficientRights
This error occurs when the requested operation has insufficient DRM rights.

3.21. PVMFErrDrmLicenseExpired
This error occurs when DRM license has expired due to end time or usage count restriction.

3.22. PVMFErrDrmLicenseNotFound
This error occurs due to the lack of a valid license for the content.

3.23. PVMFErrDrmLicenseNotFoundPreviewAvailable
This error happens when a valid license for the content is required but not available, however a
preview is available without license. The current playback has to be stopped and playback is to
be restarted in preview mode. Please refer to the PVPlayer developer's guide for more details.

3.24. PVMFErrDrmLicenseNotYetValid
This error occurs when the DRM license has a start time restriction and current time is too early.

3.25. PVMFErrDrmLicenseStoreAccess
This error occurs when access to the DRM license store fails.

3.26. PVMFErrDrmLicenseStoreCorrupt
This error occurs when the DRM license store is corrupted.

3.27. PVMFErrDrmLicenseStoreInvalid
This error occurs when the DRM license store is not valid for the device in use.

 - Page 7 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

3.28. PVMFErrDrmNetworkError
This error occurs when DRM network error occurred in server communication.

3.29. PVMFErrDrmOperationFailed
This is a generic DRM operational error not otherwise specified in the list.

3.30. PVMFErrDrmOutputProtectionLevel
This error occurs when DRM rights require higher output protection level than supported by the
device.

3.31. PVMFErrDrmServerError
This error occurs when the underlying DRM server fails to respond.

3.32. PVMFErrFirst
This is placeholder and is not an actual error code and not expected to be returned by any API. It
is defined as boundary of error codes

3.33. PVMFErrHTTPAuthenticationRequired
This error happened when there is a requirement of user-id and password input from SDK user
for HTTP basic/digest authentication.

3.34. PVMFErrInvalidState
This error happens when some request is done to a resource, which is not in the expected
“state” to handle that requests. The possible states and state transition of a resource are
predefined. A typical example is calling PVPlayer Start without calling PVPlayer Prepare resulting
in invalid state.

3.35. PVMFErrLast
This is a “placeholder” code and no api is expected to return this code in normal circumstances.

3.36. PVMFErrMaxReached
This error happens when maximum number of objects in use is reached. A typical example is,
when after reaching the limit specified by user, more media items couldn’t be added in the
database.

3.37. PVMFErrNoMemory
This error happen when any operation failed due to non-availability of memory.

3.38. PVMFErrNoResources
This error is returned if the resource required in processing of a request is not being available.
A typical example is, a socket node connection not available for streaming.

 - Page 8 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

3.39. PVMFErrNotReady
This error happens when a particular resource is not ready (due to some omission) to accept a
request. A typical example is failure of PVPlayer Prepare failure if no data-sink has been added.

3.40. PVMFErrNotSupported
This error is reported when some particular request (API, feature, format etc) is not supported in
current SDK or in the current configuration of SDK.

3.41. PVMFErrOverflow
This error is reported for case when some sort of overflow has happened for example buffer to
hold media data is not big enough. Please note that this error code is different from info code
PVMFInfoOverflow that is not treated as fatal error.

3.42. PVMFErrPortProcessing
This error is reported by nodes when they encounter any general error in port processing. This
error is not exposed to SDK user.

3.43. PVMFErrProcessing
This error code is used to declare a general data processing error, like data flow could not
happen.

3.44. PVMFErrResource
This error code is used for any general error happening in underlying resource. Error message
should be checked for more specific info.

3.45. PVMFErrResourceConfiguration
This error happens when some request try to do an invalid configuration of a resource. A typical
scenario is, when datapath could not be created using specified data source and sinks.

3.46. PVMFErrTimeout
This error is reported when any request has timed out. In most of the case there are ways
provided by PV SDK to set or modify the time-out duration for a particular API. Please refer API
specifications for more details.

3.47. PVMFErrUnderflow
This error happens if insufficient data is available for processing. A typical example is, the audio
decoder starving due to non-availability of sufficient data.

3.48. PVMFFailure
This return code is for general failure. Please refer API documentation for possible cause of
failures. Please note that its value is also (-1)

 - Page 9 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

3.49. PVMFLowDiskSpace
This is an error code returned for low disk space. It is different from PVMFErrNoMemory as this
error refers specifically to physical memory space for storage like in download or MTP song
transfer session.

3.50. PVMFErrContentInvalidForProgressivePlayback
This is an error code returned when the video container is not valid for progressive playback.

4. Informational codes

All informational codes are defined to have positive values with in the range of 10 to 100 (both
included). The macro IsPVMFInfoCode can be used to check if a particular code is with in this
range.

4.1. PVMFInfoBufferCreated
This is a notification that a data buffer has been created. This is an internal event.

4.2. PVMFInfoBufferingComplete
This event indicates the end of the buffering events. For RTSP streaming, it means that the
internal data buffer has reached its upper threshold.
For PS/PDL, this event means that the data till the end of the content length has been
downloaded. In this case, the total length of the content downloaded accompanies the event.

if(aEvent.GetEventType()==PVMFInfoBufferingComplete)
{
 PVExclusivePtr eventData;
 aEvent.GetEventData(eventData);
 uint32 contentSize = (uint32)(eventData);
}

4.3. PVMFInfoBufferingStart
Notification that buffering of data has started. In case of streaming, or pseudo-streaming
scenarios, this event will also follow the PVMFInfoUnderFlow event. This event indicates that the
source nodes, after achieving an underflow, have begun receiving more data.

4.4. PVMFInfoBufferingStatus
This notification is used to tell the data buffering level status.

For RTSP streaming, an internal buffer of X secs is maintained. When an underflow happens, a
PVMFInfoUnderflow event Is sent. Then, the first byte of data arriving would signal a
PVMFInfoBufferingStart event. Hereafter, further data filling up this buffer would generate the

 - Page 10 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

PVMFInfoBufferingStatus events. The associated data shows the percentage of the X secs filled
up in the buffer. In this case, the event is sent up once every 200 msecs.

For PS/PDL scenarios, this event indicates the percentage of data already downloaded
compared to the total size of the content. If the content length is not known, it merely indicates the
number of bytes of data currently downloaded. In this case, the event is sent only for integer
increments of percentage. As a future enhancement, this event will also be send periodically.

As noted above, for PS/PDL scenarios, the percentage value can be either time-based or byte-
based. By default, byte-based percentages are sent. See section 9.2.1 of
pvplayer_developers_guide for more details.

if(aEvent.GetEventType()==PVMFInfoBufferingStatus)
{
 int32* percent=(int32 *)aEvent.GetLocalBuffer();
}

4.5. PVMFInfoChangePlaybackPositionNotSupported
This is a notification that change position request not supported. This event can be used to
indicate that a requested change in playback position by the user of the SDK is not supported. An
example where this can be expected is when a user tries to reposition a live RTSP streaming
session. This event is currently not being supported.

4.6. PVMFInfoClipCorrupted
This event is sent when the player engine skips a clip presented to it in it's datasource. This event
contains the clip index of the clip that got rejected.

if (aEvent.GetEventType() == PVMFInfoClipCorrupted)
{

uint32 *clipId = aEvent.GetLocalBuffer();
}

4.7. PVMFInfoContentLength
This event notifies the user of the length of the content being downloaded in the case of PS or
PDL. This event is sent during the Init() call being processed by the pvPlayer.

if (aEvent.GetEventType()==PVMFInfoContentLength)
{
 PVExclusivePtr eventData;
 aEvent.GetEventData(eventData);
 uint32 contentSize = (uint32)(eventData);
 fprintf(file," PVMFInfoContentLength = %d\n", contentSize);
}

4.8. PVMFInfoContentTruncated
This event is to indicate that the data sent by the server is truncated. It can happen when (I) the
content length is not known and the downloaded data is greater than the maximum file size set,

 - Page 11 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

(ii) the content length is known and the downloaded data is smaller than the content length
(happens in the case of server disconnect). The event data provides the amount of data actually
downloaded until the point of truncation.

if (aEvent.GetEventType()==PVMFInfoContentTruncated)
{
 PVExclusivePtr eventData;
 aEvent.GetEventData(eventData);
 uint32 downloadSize = (uint32)(eventData);
 fprintf(file,"PVMFInfoContentTruncated!downloadsize=
%d\n",downloadSize);
 PVMFErrorInfoMessageInterface *msg=NULL;

 if(aEvent.GetEventExtensionInterface()&&
aEvent.GetEventExtensionInterface()->queryInterface
(PVMFErrorInfoMessageInterfaceUUID,(PVInterface*&)msg))
 {
 //extract the event code and event UUID.
 int32 eventcode;
 PVUuid eventUuid;
 msg->GetCodeUUID(eventcode,eventUuid);
 if(eventUuid == PVPlayerErrorInfoEventTypesUUID)
 {
 PVMFErrorInfoMessageInterface*sourceNodeInfoIF=
 msg->GetNextMessage();
 if(sourceNodeInfoIF != NULL)
 {
 PVUuid infoUUID;
 int32 srcInfoCode;
 sourceNodeInfoIF->GetCodeUUID(srcInfoCode, infoUUID);
 if (infoUUID==PVMFPROTOCOLENGINENODEInfoEventTypesUUID
 && srcInfoCode==
 PVMFPROTOCOLENGINENODEInfo_TruncatedContentByServerDisconnect)

 {
 fprintf(file," PVMFInfoContentTruncated!
TruncatedContentByServerDisconnect! \n");
 }
 }
 }
 }
}

4.9. PVMFInfoContentType
This event notifies the user the type of content being downloaded in the case of PS or PDL. This
provides the user of the SDK an opportunity to make a decision whether or not to continue the
playback. This event is sent during the Init() call being processed by the pvPlayer SDK.

if (aEvent.GetEventType()==PVMFInfoContentType)

 - Page 12 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

{
 PVExclusivePtr eventData;
 aEvent.GetEventData(eventData);
 char *constentType = (char *)(eventData);
 fprintf(file," PVMFInfoContentType = %s\n", constentType);
}

4.10. PVMFInfoDataDiscarded
This event indicates that certain media messages have been discarded during synchronization. A
common scenario when this event can be expected is in the case of an Audio-Video playback
session, where the platform is not capable of decoding and rendering both audio and video
messages in time. In such a case, video frames are discarded to allow a smoother playback of
audio. This event is currently not being sent.

4.11. PVMFInfoDataReady
This event indicates that enough data has been buffered for a playback session to start or
resume. For http streaming cases, the user of the SDK is expected to signal a Start, only when
this event is received for the first time, meaning enough media data has been buffered to start
playback smoothly. This event is also generated when the player SDK buffers enough data after
auto-pause, and then is about to resume playback. But, under such scenarios, the user of the
SDK is expected to ignore the event (i.e., a Start or Resume is not expected).

4.12. PVMFInfoDurationAvailable
Notification that duration is available with source node.
This event is sent to the user of the SDK to indicate that the duration of the content being
requested to play is available in PVMFDurationInfoMessageInterfaceUUID event code space.
There is no need to query for the duration explicitly. The value sent is in milliseconds like this
sample code.

if(aEvent.GetType() == PVMFInfoDurationAvailable)
{

PVUuid infomsguuid = PVMFDurationInfoMessageInterfaceUUID;
PVMFDurationInfoMessageInterface* eventMsg = NULL;

 PVInterface* infoExtInterface =
aEvent.GetEventExtensionInterface();

 if (infoExtInterface &&
infoExtInterface->queryInterface(infomsguuid,

(PVInterface*&)eventMsg))
 {
 PVUuid eventuuid;
 int32 infoCode;

eventMsg->GetCodeUUID(infoCode, eventuuid);

if (eventuuid == infomsguuid)
 {
 uint32 SourceDurationInMS = eventMsg->GetDuration();

uint32 clipId = (uint32*) aEvent.GetLocalBuffer();
 }

 - Page 13 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

}
}

4.13. PVMFInfoEndOfData
Notification that end of data stream has been reached. This event indicates that a particular node
has received its last message for the particular session of the playback. Internally, the source
nodes, decoder nodes, and sink nodes, all send this event. However, to the user of the SDK, only
the event originated from the sink nodes is visible, because this is a true indicator of the end of
the current playback session.

4.14. PVMFInfoErrorHandlingComplete
Notification that error handling has completed. Once the pvPlayer SDK goes into an error-
handling mode, it does not allow any more commands to be queued. If attempted, the command
will “leave” with an error of “invalid state”. So, the user of the SDK is expected to check the state
of the engine before queuing any command, and if it is in an “Error state”, the user needs to wait
for the PVMFInfoErrorHandlingComplete event before attempting to queue any further command.

4.15. PVMFInfoErrorHandlingStart
This is an informational event circulated internal to the pvPlayer SDK. This event indicates that
one of the underlying components has erred out, and a cleanup will commence soon. This event
is not sent to the user of the SDK because a PVMF error event will be sent, indicating the actual
cause of the error. In future, this event may be sent to the user of the SDK.

4.16. PVMFInfoFirst
This is placeholder and is not an actual inof code and not expected to be returned by any API. It
is defined as boundary of info codes.

4.17. PVMFInfoLast
This is a “placeholder” code and no api is expected to return this code in normal circumstances.

4.18. PVMFInfoLicenseAcquisitionStarted
A notification to indicate the License acquisition has started in case of CPM plug-ins. It depends
on the author of the CPM plug-in to use this event or not.

4.19. PVMFInfoMetadataAvailable
Notification that metadata is available with source node.

4.20. PVMFInfoOverflow
This is a notification that an overflow occurred (not fatal error). It just informs that one of the ports
trying to be processed is full. This would usually pop up when the receiving node is slower in
consuming data when compared to the sending node.

 - Page 14 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

4.21. PVMFInfoPlayListClipTransition
This event notifies the user of the pvPlayer SDK that a clip transition has occurred while playing a
playlist.

if(PVMFInfoPlayListClipTransition == aEvent.GetEventType())
{
 PVExclusivePtr aPtr;
 aEvent.GetEventData(aPtr);
 PVMFRTSPClientEngineNodePlaylistInfoType *myType =
 (PVMFRTSPClientEngineNodePlaylistI
nfoType*)(aPtr);
 fprintf(iTestMsgOutputFile,"###PVMFInfoPlayListClipTransition:\n
 <%s, %d, %d.%03d>;npt=%d.%03d;mediaName=%s;userData=%s\n",
 myType->iPlaylistUrlPtr
 , myType->iPlaylistIndex
 , myType->iPlaylistOffsetSec
 , myType->iPlaylistOffsetMillsec
 , myType->iPlaylistNPTSec
 , myType->iPlaylistNPTMillsec
 , myType->iPlaylistMediaNamePtr
 , myType->iPlaylistUserDataPtr);
}

4.22. PVMFInfoPoorlyInterleavedContent
This is a notification that the content is poorly interleaved.

For Progressive Streaming scenarios, there is only X number of bytes buffered at any point of
time. If the content being streamed is so interleaved that the location of a media sample of one
track differs by more than X bytes compared to the location of the media sample of another track
for the same timestamp, this informational event is sent to the user of the SDK. It is not a
favorable way of streaming such content because for every sample being retrieved, the entire
buffer has to be flushed out and refilled. This would result in a very poor user experience. It is
advisable that upon receiving such an event, the playback session is stopped.

4.23. PVMFInfoPortConnected
This is a notification that a port was connected. This is an internal event.

4.24. PVMFInfoPortCreated
This is a notification that a port was created. This is an internal event.

4.25. PVMFInfoPortDeleted
This is a notification that a port was deleted. This is an internal event.

4.26. PVMFInfoPortDisconnected
This is a notification that a port was disconnected. This is an internal event.

 - Page 15 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

4.27. PVMFInfoPositionStatus
PVPlayer engine sends the current playback position periodically as an unsolicited informational
event with PVMFInfoPositionStatus event code and player specific event code of
PVPlayerInfoPlaybackPositionStatus in PVPlayerErrorInfoEventTypesUUID event code space.
The position value is stored in the local data buffer of the informational event. The application is
responsible for “listening” for this event in the informational event callback handler if it wants to
obtain the current playback position by this method.

The position units and the time length of the reporting period can be queried and modified via the
capability-and-configuration extension interface of PVPlayer engine.(please refer player guide for
more details) The default settings are milliseconds for playback position units and 1000
milliseconds for the reporting period.

Support for non-time position units (like percentage) would change based on the underlying
nodes and source media being used. Therefore, if support for non-time position units becomes
unavailable, PVPlayer engine will automatically change to the default of milliseconds.
A sample code handling this event would look like

if (aEvent.GetEventType()==PVMFInfoPositionStatus)
{
 PVInterface* iface=(PVInterface*)
(aEvent.GetEventExtensionInterface());
 if(iface==NULL)
 {
 return;
 }
 PVUuid infomsguuid=PVMFErrorInfoMessageInterfaceUUID;
 PVMFErrorInfoMessageInterface* infomsgiface=NULL;
 if (iface->queryInterface(infomsguuid,
(PVInterface*&)infomsgiface)==true)
 {
 int32 infocode;
 PVUuid infouuid;
 infomsgiface->GetCodeUUID(infocode, infouuid);
 if ((infouuid==PVPlayerErrorInfoEventTypesUUID) &&
 (infocode==PVPlayerInfoPlaybackPositionStatus))
 {
 uint8* localbuf=aEvent.GetLocalBuffer();
 uint32 pbpos=0;
 oscl_memcpy(&pbpos, &(localbuf[4]), 4);
 fprintf(iTestMsgOutputFile, "Playback status(time) %d
ms\n", pbpos);
 }
 }
}

 - Page 16 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

4.28. PVMFInfoProcessingFailure
This is a notification that a processing failure occurred (not fatal error). A usual scenario when this
event is observed is in the case of processing a buffer by the decoder. Example: bitstream
corruption.

4.29. PVMFInfoRemoteSourceNotification
This is a notification from a remote source. This event is an indicator of a notification sent by a
remote source, as in a server in the case of streaming.
An example would be receiving the PVMFMP4FFParserInfoNotPseudostreamableFile info-code
in a PVMFFileFormatEventTypesUUID event code space. Another example would be receiving a
redirect code from a HTTP server.

4.30. PVMFInfoReportObserverRecieved
Notification that node has processed a command with ReportObserver marker info. This is also
an internal event.

4.31. PVMFInfoSessionDisconnect
For PS/PDL scenarios, this event is sent that indicates that a server disconnect occurred after
content download is complete. In case of PS, if server disconnect happens during download, we
will do a retry instead of treating it as download complete. For PDL, in case of server disconnect
during the download, and if content-length is not available, this event will be treated as download
completion.

4.32. PVMFInfoSourceFormatNotSupported
This notification event is sent when the source format is not supported, typically sent during
protocol rollover.

4.33. PVMFInfoStartOfData
Notification that new media stream has been started. This informational event is circulated
internally in the pvPlayer SDK. The event is propagated to the player engine to indicate that the
first media message has arrived the sink node for the particular playback segment. The playback
clock is started only when this event is received from all the tracks/datapaths involved in the
playback.

4.34. PVMFInfoStateChanged
This event notifies a change in the state of a component. This is an internal event.

4.35. PVMFInfoTrackDisable
Notification that paticular track is disable. This one is on a per track basis.
For uncompressed audio/video formats, during the process of selecting tracks available in
content, if the decoder doesn't support the track, a PVMFInfoTrackDisable event is sent. The
event, if necessary, will be sent once per track.

 - Page 17 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

4.36. PVMFInfoUnderflow
This is a notification that an underflow occurred (not fatal error). An event sent to the user of the
SDK to inform that there is not enough data to be processed. This is usually observed in case of
streaming, pseudo-streaming, or any other scenarios where the data required to be processed
can fall short of expectation. The user of the SDK can make use of this event to notify the end
user that the playback session has temporarily paused, and that it will resume soon. A common
usecase is to show a “buffering” notification under such a scenario.

4.37. PVMFInfoUnexpectedData
Notification that unexpected data has been obtained, especially for download, when client
receives from server more data than requested in content-length header. This event is NOT sent
if the PVMFInfoSessionDisconnect event has already been sent.

4.38. PVMFInfoVideoTrackFallingBehind
PVPlayer engine sends this event when messages of the video track are continuously discarded
for a fixed number of frames. Currently, the number of frames is fixed to 120. As a future
enhancement, the user of the PVPlayer SDK may be given an option to explicitly provide this
value. This event can be used to indicate why audio continuous to play and video appears to
freeze.

4.39. PVMFInfoSourceOverflow
This informational event is sent when the source node runs out of memory for incoming RTP
packets.

4.40. PVMFInfoSourceFormatUpdated
This informational event is sent for local playback clips when the pvPlayer SDK determines the
format of the content. The content is “recognized” using the PVMFRecognizer framework. The
format type as determined by the engine is present in the event's localbuffer. The event's
localbuffersize gives the length of the string including the null-terminator. The following is a
snippet of how the event can be processed.

 if (aEvent.GetEventType() == PVMFInfoSourceFormatUpdated)
 {
 fprintf(file,” Length(including null-terminator) = %d\n”,aEvent.GetLocalBufferSize());
 const char* localBuf = (const char*)aEvent.GetLocalBuffer();
 fprintf(file," Format = %s\n", localBuf);
 }

5. Appendix
5.1. PVPlayer engine error and extension codes with their

likely causes
The table in this appendix lists error codes used by the PVPlayer engine and associated
extension codes along with a likely cause.

 - Page 18 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

Error code Error Extension codes Likely cause
PVMFErrCorrupt PVPlayerErrSourceMediaDat

a
Invalid media data detected in the source
node (e.g. invalid sample in file)

PVPlayerErrSinkMediaData Invalid media data detected in sink node (e.g.
invalid decoded data for video display)

PVPlayerErrDatapathMediaD
ata

Invalid media data detected in one of the
datapath node (e.g. invalid bitstream in the
decoder node)

PVMFErrOverflow PVPlayerErrSourceMediaDat
a

Memory buffer overflowed in the source node
(e.g. buffer to hold media data is not big
enough)

PVPlayerErrSinkMediaData Memory buffer overflowed in the sink node
(e.g. buffer to hold media data is not big
enough)

PVPlayerErrDatapathMediaD
ata

Memory buffer overflowed in one of the
datapath node (e.g. buffer to hold media data
is not big enough)

PVMFErrResource PVPlayerErrSourceMediaDat
a

Error detected in an underlying resource used
by the source node (e.g. file parser error)

PVPlayerErrSourceInit Error while initializing the source (e.g. file
parsing error, file corrupt). Check error
message for more specific info if available

PVPlayerErrSinkFatal Error detected in an underlying resource used
by the sink node (e.g. video render device
encountered unrecoverable error)

PVPlayerErrDatapathFatal Error detected in an underlying resource used
by a datapath node (e.g. audio decoder
encountered unrecoverable error)

PVMFErrProcessing PVPlayerErrSourceMediaDat
a

Error occurred in source node while
processing media data (e.g. could not send
on output port)

PVPlayerErrSinkMediaData Error occurred in sink node while processing
media data (e.g. could not receive on input
port)

PVPlayerErrDatapathMediaD
ata

Error occurred in datapath node while
processing media data (e.g. could not send
on output port)

PVMFErrUnderflow PVPlayerErrSourceMediaUn
available

Media data ran out unexpectedly in the
source node (e.g. reached end of file)

PVPlayerErrSinkMediaData Media data ran out unexpectedly in the sink
node (e.g. audio device underflows and then
errors out)

PVPlayerErrDatapathMediaD
ata

Media data ran out unexpectedly in the one of
the datapath node

 - Page 19 of 20 -

PVMF Return Codes
OHA 2.05, rev. 1

Error code Error Extension codes Likely cause
PVMFErrNoResource
s

PVPlayerErrSourceFatal Underlying resource needed by source node
not available (e.g. socket connection not
available for streaming)

PVPlayerErrSinkFatal Underlying resource needed by sink node not
available (e.g. audio device not available)

PVPlayerErrDatapathFatal Underlying resource needed by datapath
node not available (e.g. DSP video memory
not available)

PVMFErrResourceCo
nfiguration

PVPlayerErrSourceFatal Underlying resource used by source node has
a configuration error

PVPlayerErrSinkFatal Underlying resource used by sink node has a
configuration error (e.g. audio device cannot
handle the specified sampling rate)

PVPlayerErrDatapathFatal Underlying resource used by datapath node
has a configuration error (e.g. video decoder
cannot handle the specified dimension)

PVMFErrTimeout PVPlayerErrSourceFatal Timeout occurred in the source node or
underlying resource (e.g. socket connection
timeout in streaming)

PVPlayerErrSinkFatal Timeout occurred in the sink node or
underlying resource (e.g. audio device timed
out)

PVPlayerErrDatapathFatal Timeout occurred in the datapath node or
underlying resource (e.g. hardware audio
decoder timed out)

PVMFErrNoMemory PVPlayerErrSourceFatal Required amount of memory not available in
the source node

PVPlayerErrSinkFatal Required amount of memory not available in
the sink node

PVPlayerErrDatapathFatal Required amount of memory not available in
the one of the datapath or one of the nodes in
the datapath.

PVMFErrLicenseReq
uired

PVPlayerErrSourceInit Authorization license needed to initialize the
specified source

PVMFErrAccessDeni
ed

PVPlayerErrSourceInit Rights management does not allow playback
of the specified source

PVMFFailure General failure code. Components are not
behaving as expected.

 - Page 20 of 20 -

	1. Introduction
	2. General Return Codes
	2.1. PVMFNotSet
	2.2. PVMFPending
	2.3. PVMFSuccess

	3. Error Codes
	3.1. PVMFErrAccessDenied
	3.2. PVMFErrAlreadyExists
	3.3. PVMFErrArgument
	3.4. PVMFErrBadHandle
	3.5. PVMFErrBusy
	3.6. PVMFErrCallbackClockStopped
	3.7. PVMFErrCallbackHasBecomeInvalid
	3.8. PVMFErrCancelled
	3.9. PVMFErrContentTooLarge
	3.10. PVMFErrCorrupt
	3.11. PVMFErrDrmClockError
	3.12. PVMFErrDrmClockRollback
	3.13. PVMFErrDrmDeviceDataAccess
	3.14. PVMFErrDrmDeviceDataMismatch
	3.15. PVMFErrDrmDeviceIDUnavailable
	3.16. PVMFErrDrmCryptoError
	3.17. PVMFErrDrmDomainNotAMember
	3.18. PVMFErrDrmDomainRequired
	3.19. PVMFErrDrmDomainRenewRequired
	3.20. PVMFErrDrmInsufficientRights
	3.21. PVMFErrDrmLicenseExpired
	3.22. PVMFErrDrmLicenseNotFound
	3.23. PVMFErrDrmLicenseNotFoundPreviewAvailable
	3.24. PVMFErrDrmLicenseNotYetValid
	3.25. PVMFErrDrmLicenseStoreAccess
	3.26. PVMFErrDrmLicenseStoreCorrupt
	3.27. PVMFErrDrmLicenseStoreInvalid
	3.28. PVMFErrDrmNetworkError
	3.29. PVMFErrDrmOperationFailed
	3.30. PVMFErrDrmOutputProtectionLevel
	3.31. PVMFErrDrmServerError
	3.32. PVMFErrFirst
	3.33. PVMFErrHTTPAuthenticationRequired
	3.34. PVMFErrInvalidState
	3.35. PVMFErrLast
	3.36. PVMFErrMaxReached
	3.37. PVMFErrNoMemory
	3.38. PVMFErrNoResources
	3.39. PVMFErrNotReady
	3.40. PVMFErrNotSupported
	3.41. PVMFErrOverflow
	3.42. PVMFErrPortProcessing
	3.43. PVMFErrProcessing
	3.44. PVMFErrResource
	3.45. PVMFErrResourceConfiguration
	3.46. PVMFErrTimeout
	3.47. PVMFErrUnderflow
	3.48. PVMFFailure
	3.49. PVMFLowDiskSpace
	3.50. PVMFErrContentInvalidForProgressivePlayback

	4. Informational codes
	4.1. PVMFInfoBufferCreated
	4.2. PVMFInfoBufferingComplete
	4.3. PVMFInfoBufferingStart
	4.4. PVMFInfoBufferingStatus
	4.5. PVMFInfoChangePlaybackPositionNotSupported
	4.6. PVMFInfoClipCorrupted
	4.7. PVMFInfoContentLength
	4.8. PVMFInfoContentTruncated
	4.9. PVMFInfoContentType
	4.10. PVMFInfoDataDiscarded
	4.11. PVMFInfoDataReady
	4.12. PVMFInfoDurationAvailable
	4.13. PVMFInfoEndOfData
	4.14. PVMFInfoErrorHandlingComplete
	4.15. PVMFInfoErrorHandlingStart
	4.16. PVMFInfoFirst
	4.17. PVMFInfoLast
	4.18. PVMFInfoLicenseAcquisitionStarted
	4.19. PVMFInfoMetadataAvailable
	4.20. PVMFInfoOverflow
	4.21. PVMFInfoPlayListClipTransition
	4.22. PVMFInfoPoorlyInterleavedContent
	4.23. PVMFInfoPortConnected
	4.24. PVMFInfoPortCreated
	4.25. PVMFInfoPortDeleted
	4.26. PVMFInfoPortDisconnected
	4.27. PVMFInfoPositionStatus
	4.28. PVMFInfoProcessingFailure
	4.29. PVMFInfoRemoteSourceNotification
	4.30. PVMFInfoReportObserverRecieved
	4.31. PVMFInfoSessionDisconnect
	4.32. PVMFInfoSourceFormatNotSupported
	4.33. PVMFInfoStartOfData
	4.34. PVMFInfoStateChanged
	4.35. PVMFInfoTrackDisable
	4.36. PVMFInfoUnderflow
	4.37. PVMFInfoUnexpectedData
	4.38. PVMFInfoVideoTrackFallingBehind
	4.39. PVMFInfoSourceOverflow
	4.40. PVMFInfoSourceFormatUpdated

	5. Appendix
	5.1. PVPlayer engine error and extension codes with their likely causes

