summaryrefslogtreecommitdiff
path: root/cv/src/cvimgwarp.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'cv/src/cvimgwarp.cpp')
-rw-r--r--cv/src/cvimgwarp.cpp2272
1 files changed, 2272 insertions, 0 deletions
diff --git a/cv/src/cvimgwarp.cpp b/cv/src/cvimgwarp.cpp
new file mode 100644
index 0000000..65c0d8f
--- /dev/null
+++ b/cv/src/cvimgwarp.cpp
@@ -0,0 +1,2272 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// Intel License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+/* ////////////////////////////////////////////////////////////////////
+//
+// Geometrical transforms on images and matrices: rotation, zoom etc.
+//
+// */
+
+#include "_cv.h"
+
+
+/************** interpolation constants and tables ***************/
+
+#define ICV_WARP_MUL_ONE_8U(x) ((x) << ICV_WARP_SHIFT)
+#define ICV_WARP_DESCALE_8U(x) CV_DESCALE((x), ICV_WARP_SHIFT*2)
+#define ICV_WARP_CLIP_X(x) ((unsigned)(x) < (unsigned)ssize.width ? \
+ (x) : (x) < 0 ? 0 : ssize.width - 1)
+#define ICV_WARP_CLIP_Y(y) ((unsigned)(y) < (unsigned)ssize.height ? \
+ (y) : (y) < 0 ? 0 : ssize.height - 1)
+
+float icvLinearCoeffs[(ICV_LINEAR_TAB_SIZE+1)*2];
+
+void icvInitLinearCoeffTab()
+{
+ static int inittab = 0;
+ if( !inittab )
+ {
+ for( int i = 0; i <= ICV_LINEAR_TAB_SIZE; i++ )
+ {
+ float x = (float)i/ICV_LINEAR_TAB_SIZE;
+ icvLinearCoeffs[i*2] = x;
+ icvLinearCoeffs[i*2+1] = 1.f - x;
+ }
+
+ inittab = 1;
+ }
+}
+
+
+float icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE+1)*2];
+
+void icvInitCubicCoeffTab()
+{
+ static int inittab = 0;
+ if( !inittab )
+ {
+#if 0
+ // classical Mitchell-Netravali filter
+ const double B = 1./3;
+ const double C = 1./3;
+ const double p0 = (6 - 2*B)/6.;
+ const double p2 = (-18 + 12*B + 6*C)/6.;
+ const double p3 = (12 - 9*B - 6*C)/6.;
+ const double q0 = (8*B + 24*C)/6.;
+ const double q1 = (-12*B - 48*C)/6.;
+ const double q2 = (6*B + 30*C)/6.;
+ const double q3 = (-B - 6*C)/6.;
+
+ #define ICV_CUBIC_1(x) (((x)*p3 + p2)*(x)*(x) + p0)
+ #define ICV_CUBIC_2(x) ((((x)*q3 + q2)*(x) + q1)*(x) + q0)
+#else
+ // alternative "sharp" filter
+ const double A = -0.75;
+ #define ICV_CUBIC_1(x) (((A + 2)*(x) - (A + 3))*(x)*(x) + 1)
+ #define ICV_CUBIC_2(x) (((A*(x) - 5*A)*(x) + 8*A)*(x) - 4*A)
+#endif
+ for( int i = 0; i <= ICV_CUBIC_TAB_SIZE; i++ )
+ {
+ float x = (float)i/ICV_CUBIC_TAB_SIZE;
+ icvCubicCoeffs[i*2] = (float)ICV_CUBIC_1(x);
+ x += 1.f;
+ icvCubicCoeffs[i*2+1] = (float)ICV_CUBIC_2(x);
+ }
+
+ inittab = 1;
+ }
+}
+
+
+/****************************************************************************************\
+* Resize *
+\****************************************************************************************/
+
+static CvStatus CV_STDCALL
+icvResize_NN_8u_C1R( const uchar* src, int srcstep, CvSize ssize,
+ uchar* dst, int dststep, CvSize dsize, int pix_size )
+{
+ int* x_ofs = (int*)cvStackAlloc( dsize.width * sizeof(x_ofs[0]) );
+ int pix_size4 = pix_size / sizeof(int);
+ int x, y, t;
+
+ for( x = 0; x < dsize.width; x++ )
+ {
+ t = (ssize.width*x*2 + MIN(ssize.width, dsize.width) - 1)/(dsize.width*2);
+ t -= t >= ssize.width;
+ x_ofs[x] = t*pix_size;
+ }
+
+ for( y = 0; y < dsize.height; y++, dst += dststep )
+ {
+ const uchar* tsrc;
+ t = (ssize.height*y*2 + MIN(ssize.height, dsize.height) - 1)/(dsize.height*2);
+ t -= t >= ssize.height;
+ tsrc = src + srcstep*t;
+
+ switch( pix_size )
+ {
+ case 1:
+ for( x = 0; x <= dsize.width - 2; x += 2 )
+ {
+ uchar t0 = tsrc[x_ofs[x]];
+ uchar t1 = tsrc[x_ofs[x+1]];
+
+ dst[x] = t0;
+ dst[x+1] = t1;
+ }
+
+ for( ; x < dsize.width; x++ )
+ dst[x] = tsrc[x_ofs[x]];
+ break;
+ case 2:
+ for( x = 0; x < dsize.width; x++ )
+ *(ushort*)(dst + x*2) = *(ushort*)(tsrc + x_ofs[x]);
+ break;
+ case 3:
+ for( x = 0; x < dsize.width; x++ )
+ {
+ const uchar* _tsrc = tsrc + x_ofs[x];
+ dst[x*3] = _tsrc[0]; dst[x*3+1] = _tsrc[1]; dst[x*3+2] = _tsrc[2];
+ }
+ break;
+ case 4:
+ for( x = 0; x < dsize.width; x++ )
+ *(int*)(dst + x*4) = *(int*)(tsrc + x_ofs[x]);
+ break;
+ case 6:
+ for( x = 0; x < dsize.width; x++ )
+ {
+ const ushort* _tsrc = (const ushort*)(tsrc + x_ofs[x]);
+ ushort* _tdst = (ushort*)(dst + x*6);
+ _tdst[0] = _tsrc[0]; _tdst[1] = _tsrc[1]; _tdst[2] = _tsrc[2];
+ }
+ break;
+ default:
+ for( x = 0; x < dsize.width; x++ )
+ CV_MEMCPY_INT( dst + x*pix_size, tsrc + x_ofs[x], pix_size4 );
+ }
+ }
+
+ return CV_OK;
+}
+
+
+typedef struct CvResizeAlpha
+{
+ int idx;
+ union
+ {
+ float alpha;
+ int ialpha;
+ };
+}
+CvResizeAlpha;
+
+
+#define ICV_DEF_RESIZE_BILINEAR_FUNC( flavor, arrtype, worktype, alpha_field, \
+ mul_one_macro, descale_macro ) \
+static CvStatus CV_STDCALL \
+icvResize_Bilinear_##flavor##_CnR( const arrtype* src, int srcstep, CvSize ssize,\
+ arrtype* dst, int dststep, CvSize dsize, \
+ int cn, int xmax, \
+ const CvResizeAlpha* xofs, \
+ const CvResizeAlpha* yofs, \
+ worktype* buf0, worktype* buf1 ) \
+{ \
+ int prev_sy0 = -1, prev_sy1 = -1; \
+ int k, dx, dy; \
+ \
+ srcstep /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ dsize.width *= cn; \
+ xmax *= cn; \
+ \
+ for( dy = 0; dy < dsize.height; dy++, dst += dststep ) \
+ { \
+ worktype fy = yofs[dy].alpha_field, *swap_t; \
+ int sy0 = yofs[dy].idx, sy1 = sy0 + (fy > 0 && sy0 < ssize.height-1); \
+ \
+ if( sy0 == prev_sy0 && sy1 == prev_sy1 ) \
+ k = 2; \
+ else if( sy0 == prev_sy1 ) \
+ { \
+ CV_SWAP( buf0, buf1, swap_t ); \
+ k = 1; \
+ } \
+ else \
+ k = 0; \
+ \
+ for( ; k < 2; k++ ) \
+ { \
+ worktype* _buf = k == 0 ? buf0 : buf1; \
+ const arrtype* _src; \
+ int sy = k == 0 ? sy0 : sy1; \
+ if( k == 1 && sy1 == sy0 ) \
+ { \
+ memcpy( buf1, buf0, dsize.width*sizeof(buf0[0]) ); \
+ continue; \
+ } \
+ \
+ _src = src + sy*srcstep; \
+ for( dx = 0; dx < xmax; dx++ ) \
+ { \
+ int sx = xofs[dx].idx; \
+ worktype fx = xofs[dx].alpha_field; \
+ worktype t = _src[sx]; \
+ _buf[dx] = mul_one_macro(t) + fx*(_src[sx+cn] - t); \
+ } \
+ \
+ for( ; dx < dsize.width; dx++ ) \
+ _buf[dx] = mul_one_macro(_src[xofs[dx].idx]); \
+ } \
+ \
+ prev_sy0 = sy0; \
+ prev_sy1 = sy1; \
+ \
+ if( sy0 == sy1 ) \
+ for( dx = 0; dx < dsize.width; dx++ ) \
+ dst[dx] = (arrtype)descale_macro( mul_one_macro(buf0[dx])); \
+ else \
+ for( dx = 0; dx < dsize.width; dx++ ) \
+ dst[dx] = (arrtype)descale_macro( mul_one_macro(buf0[dx]) + \
+ fy*(buf1[dx] - buf0[dx])); \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+typedef struct CvDecimateAlpha
+{
+ int si, di;
+ float alpha;
+}
+CvDecimateAlpha;
+
+
+#define ICV_DEF_RESIZE_AREA_FAST_FUNC( flavor, arrtype, worktype, cast_macro ) \
+static CvStatus CV_STDCALL \
+icvResize_AreaFast_##flavor##_CnR( const arrtype* src, int srcstep, CvSize ssize,\
+ arrtype* dst, int dststep, CvSize dsize, int cn, \
+ const int* ofs, const int* xofs ) \
+{ \
+ int dy, dx, k = 0; \
+ int scale_x = ssize.width/dsize.width; \
+ int scale_y = ssize.height/dsize.height; \
+ int area = scale_x*scale_y; \
+ float scale = 1.f/(scale_x*scale_y); \
+ \
+ srcstep /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ dsize.width *= cn; \
+ \
+ for( dy = 0; dy < dsize.height; dy++, dst += dststep ) \
+ for( dx = 0; dx < dsize.width; dx++ ) \
+ { \
+ const arrtype* _src = src + dy*scale_y*srcstep + xofs[dx]; \
+ worktype sum = 0; \
+ \
+ for( k = 0; k <= area - 4; k += 4 ) \
+ sum += _src[ofs[k]] + _src[ofs[k+1]] + \
+ _src[ofs[k+2]] + _src[ofs[k+3]]; \
+ \
+ for( ; k < area; k++ ) \
+ sum += _src[ofs[k]]; \
+ \
+ dst[dx] = (arrtype)cast_macro( sum*scale ); \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+#define ICV_DEF_RESIZE_AREA_FUNC( flavor, arrtype, load_macro, cast_macro ) \
+static CvStatus CV_STDCALL \
+icvResize_Area_##flavor##_CnR( const arrtype* src, int srcstep, CvSize ssize, \
+ arrtype* dst, int dststep, CvSize dsize, \
+ int cn, const CvDecimateAlpha* xofs, \
+ int xofs_count, float* buf, float* sum ) \
+{ \
+ int k, sy, dx, cur_dy = 0; \
+ float scale_y = (float)ssize.height/dsize.height; \
+ \
+ srcstep /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ dsize.width *= cn; \
+ \
+ for( sy = 0; sy < ssize.height; sy++, src += srcstep ) \
+ { \
+ if( cn == 1 ) \
+ for( k = 0; k < xofs_count; k++ ) \
+ { \
+ int dxn = xofs[k].di; \
+ float alpha = xofs[k].alpha; \
+ buf[dxn] = buf[dxn] + load_macro(src[xofs[k].si])*alpha; \
+ } \
+ else if( cn == 2 ) \
+ for( k = 0; k < xofs_count; k++ ) \
+ { \
+ int sxn = xofs[k].si; \
+ int dxn = xofs[k].di; \
+ float alpha = xofs[k].alpha; \
+ float t0 = buf[dxn] + load_macro(src[sxn])*alpha; \
+ float t1 = buf[dxn+1] + load_macro(src[sxn+1])*alpha; \
+ buf[dxn] = t0; buf[dxn+1] = t1; \
+ } \
+ else if( cn == 3 ) \
+ for( k = 0; k < xofs_count; k++ ) \
+ { \
+ int sxn = xofs[k].si; \
+ int dxn = xofs[k].di; \
+ float alpha = xofs[k].alpha; \
+ float t0 = buf[dxn] + load_macro(src[sxn])*alpha; \
+ float t1 = buf[dxn+1] + load_macro(src[sxn+1])*alpha; \
+ float t2 = buf[dxn+2] + load_macro(src[sxn+2])*alpha; \
+ buf[dxn] = t0; buf[dxn+1] = t1; buf[dxn+2] = t2; \
+ } \
+ else \
+ for( k = 0; k < xofs_count; k++ ) \
+ { \
+ int sxn = xofs[k].si; \
+ int dxn = xofs[k].di; \
+ float alpha = xofs[k].alpha; \
+ float t0 = buf[dxn] + load_macro(src[sxn])*alpha; \
+ float t1 = buf[dxn+1] + load_macro(src[sxn+1])*alpha; \
+ buf[dxn] = t0; buf[dxn+1] = t1; \
+ t0 = buf[dxn+2] + load_macro(src[sxn+2])*alpha; \
+ t1 = buf[dxn+3] + load_macro(src[sxn+3])*alpha; \
+ buf[dxn+2] = t0; buf[dxn+3] = t1; \
+ } \
+ \
+ if( (cur_dy + 1)*scale_y <= sy + 1 || sy == ssize.height - 1 ) \
+ { \
+ float beta = sy + 1 - (cur_dy+1)*scale_y, beta1; \
+ beta = MAX( beta, 0 ); \
+ beta1 = 1 - beta; \
+ if( fabs(beta) < 1e-3 ) \
+ for( dx = 0; dx < dsize.width; dx++ ) \
+ { \
+ dst[dx] = (arrtype)cast_macro(sum[dx] + buf[dx]); \
+ sum[dx] = buf[dx] = 0; \
+ } \
+ else \
+ for( dx = 0; dx < dsize.width; dx++ ) \
+ { \
+ dst[dx] = (arrtype)cast_macro(sum[dx] + buf[dx]*beta1); \
+ sum[dx] = buf[dx]*beta; \
+ buf[dx] = 0; \
+ } \
+ dst += dststep; \
+ cur_dy++; \
+ } \
+ else \
+ for( dx = 0; dx < dsize.width; dx += 2 ) \
+ { \
+ float t0 = sum[dx] + buf[dx]; \
+ float t1 = sum[dx+1] + buf[dx+1]; \
+ sum[dx] = t0; sum[dx+1] = t1; \
+ buf[dx] = buf[dx+1] = 0; \
+ } \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+#define ICV_DEF_RESIZE_BICUBIC_FUNC( flavor, arrtype, worktype, load_macro, \
+ cast_macro1, cast_macro2 ) \
+static CvStatus CV_STDCALL \
+icvResize_Bicubic_##flavor##_CnR( const arrtype* src, int srcstep, CvSize ssize,\
+ arrtype* dst, int dststep, CvSize dsize, \
+ int cn, int xmin, int xmax, \
+ const CvResizeAlpha* xofs, float** buf ) \
+{ \
+ float scale_y = (float)ssize.height/dsize.height; \
+ int dx, dy, sx, sy, sy2, ify; \
+ int prev_sy2 = -2; \
+ \
+ xmin *= cn; xmax *= cn; \
+ dsize.width *= cn; \
+ ssize.width *= cn; \
+ srcstep /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ \
+ for( dy = 0; dy < dsize.height; dy++, dst += dststep ) \
+ { \
+ float w0, w1, w2, w3; \
+ float fy, x, sum; \
+ float *row, *row0, *row1, *row2, *row3; \
+ int k1, k = 4; \
+ \
+ fy = dy*scale_y; \
+ sy = cvFloor(fy); \
+ fy -= sy; \
+ ify = cvRound(fy*ICV_CUBIC_TAB_SIZE); \
+ sy2 = sy + 2; \
+ \
+ if( sy2 > prev_sy2 ) \
+ { \
+ int delta = prev_sy2 - sy + 2; \
+ for( k = 0; k < delta; k++ ) \
+ CV_SWAP( buf[k], buf[k+4-delta], row ); \
+ } \
+ \
+ for( sy += k - 1; k < 4; k++, sy++ ) \
+ { \
+ const arrtype* _src = src + sy*srcstep; \
+ \
+ row = buf[k]; \
+ if( sy < 0 ) \
+ continue; \
+ if( sy >= ssize.height ) \
+ { \
+ assert( k > 0 ); \
+ memcpy( row, buf[k-1], dsize.width*sizeof(row[0]) ); \
+ continue; \
+ } \
+ \
+ for( dx = 0; dx < xmin; dx++ ) \
+ { \
+ int ifx = xofs[dx].ialpha, sx0 = xofs[dx].idx; \
+ sx = sx0 + cn*2; \
+ while( sx >= ssize.width ) \
+ sx -= cn; \
+ x = load_macro(_src[sx]); \
+ sum = x*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE - ifx)*2 + 1]; \
+ if( (unsigned)(sx = sx0 + cn) < (unsigned)ssize.width ) \
+ x = load_macro(_src[sx]); \
+ sum += x*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE - ifx)*2]; \
+ if( (unsigned)(sx = sx0) < (unsigned)ssize.width ) \
+ x = load_macro(_src[sx]); \
+ sum += x*icvCubicCoeffs[ifx*2]; \
+ if( (unsigned)(sx = sx0 - cn) < (unsigned)ssize.width ) \
+ x = load_macro(_src[sx]); \
+ row[dx] = sum + x*icvCubicCoeffs[ifx*2 + 1]; \
+ } \
+ \
+ for( ; dx < xmax; dx++ ) \
+ { \
+ int ifx = xofs[dx].ialpha; \
+ int sx0 = xofs[dx].idx; \
+ row[dx] = _src[sx0 - cn]*icvCubicCoeffs[ifx*2 + 1] + \
+ _src[sx0]*icvCubicCoeffs[ifx*2] + \
+ _src[sx0 + cn]*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2] + \
+ _src[sx0 + cn*2]*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2+1];\
+ } \
+ \
+ for( ; dx < dsize.width; dx++ ) \
+ { \
+ int ifx = xofs[dx].ialpha, sx0 = xofs[dx].idx; \
+ x = load_macro(_src[sx0 - cn]); \
+ sum = x*icvCubicCoeffs[ifx*2 + 1]; \
+ if( (unsigned)(sx = sx0) < (unsigned)ssize.width ) \
+ x = load_macro(_src[sx]); \
+ sum += x*icvCubicCoeffs[ifx*2]; \
+ if( (unsigned)(sx = sx0 + cn) < (unsigned)ssize.width ) \
+ x = load_macro(_src[sx]); \
+ sum += x*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE - ifx)*2]; \
+ if( (unsigned)(sx = sx0 + cn*2) < (unsigned)ssize.width ) \
+ x = load_macro(_src[sx]); \
+ row[dx] = sum + x*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2+1]; \
+ } \
+ \
+ if( sy == 0 ) \
+ for( k1 = 0; k1 < k; k1++ ) \
+ memcpy( buf[k1], row, dsize.width*sizeof(row[0])); \
+ } \
+ \
+ prev_sy2 = sy2; \
+ \
+ row0 = buf[0]; row1 = buf[1]; \
+ row2 = buf[2]; row3 = buf[3]; \
+ \
+ w0 = icvCubicCoeffs[ify*2+1]; \
+ w1 = icvCubicCoeffs[ify*2]; \
+ w2 = icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE - ify)*2]; \
+ w3 = icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE - ify)*2 + 1]; \
+ \
+ for( dx = 0; dx < dsize.width; dx++ ) \
+ { \
+ worktype val = cast_macro1( row0[dx]*w0 + row1[dx]*w1 + \
+ row2[dx]*w2 + row3[dx]*w3 ); \
+ dst[dx] = cast_macro2(val); \
+ } \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+ICV_DEF_RESIZE_BILINEAR_FUNC( 8u, uchar, int, ialpha,
+ ICV_WARP_MUL_ONE_8U, ICV_WARP_DESCALE_8U )
+ICV_DEF_RESIZE_BILINEAR_FUNC( 16u, ushort, float, alpha, CV_NOP, cvRound )
+ICV_DEF_RESIZE_BILINEAR_FUNC( 32f, float, float, alpha, CV_NOP, CV_NOP )
+
+ICV_DEF_RESIZE_BICUBIC_FUNC( 8u, uchar, int, CV_8TO32F, cvRound, CV_CAST_8U )
+ICV_DEF_RESIZE_BICUBIC_FUNC( 16u, ushort, int, CV_NOP, cvRound, CV_CAST_16U )
+ICV_DEF_RESIZE_BICUBIC_FUNC( 32f, float, float, CV_NOP, CV_NOP, CV_NOP )
+
+ICV_DEF_RESIZE_AREA_FAST_FUNC( 8u, uchar, int, cvRound )
+ICV_DEF_RESIZE_AREA_FAST_FUNC( 16u, ushort, int, cvRound )
+ICV_DEF_RESIZE_AREA_FAST_FUNC( 32f, float, float, CV_NOP )
+
+ICV_DEF_RESIZE_AREA_FUNC( 8u, uchar, CV_8TO32F, cvRound )
+ICV_DEF_RESIZE_AREA_FUNC( 16u, ushort, CV_NOP, cvRound )
+ICV_DEF_RESIZE_AREA_FUNC( 32f, float, CV_NOP, CV_NOP )
+
+
+static void icvInitResizeTab( CvFuncTable* bilin_tab,
+ CvFuncTable* bicube_tab,
+ CvFuncTable* areafast_tab,
+ CvFuncTable* area_tab )
+{
+ bilin_tab->fn_2d[CV_8U] = (void*)icvResize_Bilinear_8u_CnR;
+ bilin_tab->fn_2d[CV_16U] = (void*)icvResize_Bilinear_16u_CnR;
+ bilin_tab->fn_2d[CV_32F] = (void*)icvResize_Bilinear_32f_CnR;
+
+ bicube_tab->fn_2d[CV_8U] = (void*)icvResize_Bicubic_8u_CnR;
+ bicube_tab->fn_2d[CV_16U] = (void*)icvResize_Bicubic_16u_CnR;
+ bicube_tab->fn_2d[CV_32F] = (void*)icvResize_Bicubic_32f_CnR;
+
+ areafast_tab->fn_2d[CV_8U] = (void*)icvResize_AreaFast_8u_CnR;
+ areafast_tab->fn_2d[CV_16U] = (void*)icvResize_AreaFast_16u_CnR;
+ areafast_tab->fn_2d[CV_32F] = (void*)icvResize_AreaFast_32f_CnR;
+
+ area_tab->fn_2d[CV_8U] = (void*)icvResize_Area_8u_CnR;
+ area_tab->fn_2d[CV_16U] = (void*)icvResize_Area_16u_CnR;
+ area_tab->fn_2d[CV_32F] = (void*)icvResize_Area_32f_CnR;
+}
+
+
+typedef CvStatus (CV_STDCALL * CvResizeBilinearFunc)
+ ( const void* src, int srcstep, CvSize ssize,
+ void* dst, int dststep, CvSize dsize,
+ int cn, int xmax, const CvResizeAlpha* xofs,
+ const CvResizeAlpha* yofs, float* buf0, float* buf1 );
+
+typedef CvStatus (CV_STDCALL * CvResizeBicubicFunc)
+ ( const void* src, int srcstep, CvSize ssize,
+ void* dst, int dststep, CvSize dsize,
+ int cn, int xmin, int xmax,
+ const CvResizeAlpha* xofs, float** buf );
+
+typedef CvStatus (CV_STDCALL * CvResizeAreaFastFunc)
+ ( const void* src, int srcstep, CvSize ssize,
+ void* dst, int dststep, CvSize dsize,
+ int cn, const int* ofs, const int *xofs );
+
+typedef CvStatus (CV_STDCALL * CvResizeAreaFunc)
+ ( const void* src, int srcstep, CvSize ssize,
+ void* dst, int dststep, CvSize dsize,
+ int cn, const CvDecimateAlpha* xofs,
+ int xofs_count, float* buf, float* sum );
+
+
+////////////////////////////////// IPP resize functions //////////////////////////////////
+
+icvResize_8u_C1R_t icvResize_8u_C1R_p = 0;
+icvResize_8u_C3R_t icvResize_8u_C3R_p = 0;
+icvResize_8u_C4R_t icvResize_8u_C4R_p = 0;
+icvResize_16u_C1R_t icvResize_16u_C1R_p = 0;
+icvResize_16u_C3R_t icvResize_16u_C3R_p = 0;
+icvResize_16u_C4R_t icvResize_16u_C4R_p = 0;
+icvResize_32f_C1R_t icvResize_32f_C1R_p = 0;
+icvResize_32f_C3R_t icvResize_32f_C3R_p = 0;
+icvResize_32f_C4R_t icvResize_32f_C4R_p = 0;
+
+typedef CvStatus (CV_STDCALL * CvResizeIPPFunc)
+( const void* src, CvSize srcsize, int srcstep, CvRect srcroi,
+ void* dst, int dststep, CvSize dstroi,
+ double xfactor, double yfactor, int interpolation );
+
+//////////////////////////////////////////////////////////////////////////////////////////
+
+CV_IMPL void
+cvResize( const CvArr* srcarr, CvArr* dstarr, int method )
+{
+ static CvFuncTable bilin_tab, bicube_tab, areafast_tab, area_tab;
+ static int inittab = 0;
+ void* temp_buf = 0;
+
+ CV_FUNCNAME( "cvResize" );
+
+ __BEGIN__;
+
+ CvMat srcstub, *src = (CvMat*)srcarr;
+ CvMat dststub, *dst = (CvMat*)dstarr;
+ CvSize ssize, dsize;
+ float scale_x, scale_y;
+ int k, sx, sy, dx, dy;
+ int type, depth, cn;
+
+ CV_CALL( src = cvGetMat( srcarr, &srcstub ));
+ CV_CALL( dst = cvGetMat( dstarr, &dststub ));
+
+ if( CV_ARE_SIZES_EQ( src, dst ))
+ {
+ CV_CALL( cvCopy( src, dst ));
+ EXIT;
+ }
+
+ if( !CV_ARE_TYPES_EQ( src, dst ))
+ CV_ERROR( CV_StsUnmatchedFormats, "" );
+
+ if( !inittab )
+ {
+ icvInitResizeTab( &bilin_tab, &bicube_tab, &areafast_tab, &area_tab );
+ inittab = 1;
+ }
+
+ ssize = cvGetMatSize( src );
+ dsize = cvGetMatSize( dst );
+ type = CV_MAT_TYPE(src->type);
+ depth = CV_MAT_DEPTH(type);
+ cn = CV_MAT_CN(type);
+ scale_x = (float)ssize.width/dsize.width;
+ scale_y = (float)ssize.height/dsize.height;
+
+ if( method == CV_INTER_CUBIC &&
+ (MIN(ssize.width, dsize.width) <= 4 ||
+ MIN(ssize.height, dsize.height) <= 4) )
+ method = CV_INTER_LINEAR;
+
+ if( icvResize_8u_C1R_p &&
+ MIN(ssize.width, dsize.width) > 4 &&
+ MIN(ssize.height, dsize.height) > 4 )
+ {
+ CvResizeIPPFunc ipp_func =
+ type == CV_8UC1 ? icvResize_8u_C1R_p :
+ type == CV_8UC3 ? icvResize_8u_C3R_p :
+ type == CV_8UC4 ? icvResize_8u_C4R_p :
+ type == CV_16UC1 ? icvResize_16u_C1R_p :
+ type == CV_16UC3 ? icvResize_16u_C3R_p :
+ type == CV_16UC4 ? icvResize_16u_C4R_p :
+ type == CV_32FC1 ? icvResize_32f_C1R_p :
+ type == CV_32FC3 ? icvResize_32f_C3R_p :
+ type == CV_32FC4 ? icvResize_32f_C4R_p : 0;
+ if( ipp_func && (CV_INTER_NN < method && method < CV_INTER_AREA))
+ {
+ int srcstep = src->step ? src->step : CV_STUB_STEP;
+ int dststep = dst->step ? dst->step : CV_STUB_STEP;
+ IPPI_CALL( ipp_func( src->data.ptr, ssize, srcstep,
+ cvRect(0,0,ssize.width,ssize.height),
+ dst->data.ptr, dststep, dsize,
+ (double)dsize.width/ssize.width,
+ (double)dsize.height/ssize.height, 1 << method ));
+ EXIT;
+ }
+ }
+
+ if( method == CV_INTER_NN )
+ {
+ IPPI_CALL( icvResize_NN_8u_C1R( src->data.ptr, src->step, ssize,
+ dst->data.ptr, dst->step, dsize,
+ CV_ELEM_SIZE(src->type)));
+ }
+ else if( method == CV_INTER_LINEAR || method == CV_INTER_AREA )
+ {
+ if( method == CV_INTER_AREA &&
+ ssize.width >= dsize.width && ssize.height >= dsize.height )
+ {
+ // "area" method for (scale_x > 1 & scale_y > 1)
+ int iscale_x = cvRound(scale_x);
+ int iscale_y = cvRound(scale_y);
+
+ if( fabs(scale_x - iscale_x) < DBL_EPSILON &&
+ fabs(scale_y - iscale_y) < DBL_EPSILON )
+ {
+ int area = iscale_x*iscale_y;
+ int srcstep = src->step / CV_ELEM_SIZE(depth);
+ int* ofs = (int*)cvStackAlloc( (area + dsize.width*cn)*sizeof(int) );
+ int* xofs = ofs + area;
+ CvResizeAreaFastFunc func = (CvResizeAreaFastFunc)areafast_tab.fn_2d[depth];
+
+ if( !func )
+ CV_ERROR( CV_StsUnsupportedFormat, "" );
+
+ for( sy = 0, k = 0; sy < iscale_y; sy++ )
+ for( sx = 0; sx < iscale_x; sx++ )
+ ofs[k++] = sy*srcstep + sx*cn;
+
+ for( dx = 0; dx < dsize.width; dx++ )
+ {
+ sx = dx*iscale_x*cn;
+ for( k = 0; k < cn; k++ )
+ xofs[dx*cn + k] = sx + k;
+ }
+
+ IPPI_CALL( func( src->data.ptr, src->step, ssize, dst->data.ptr,
+ dst->step, dsize, cn, ofs, xofs ));
+ }
+ else
+ {
+ int buf_len = dsize.width*cn + 4, buf_size, xofs_count = 0;
+ float scale = 1.f/(scale_x*scale_y);
+ float *buf, *sum;
+ CvDecimateAlpha* xofs;
+ CvResizeAreaFunc func = (CvResizeAreaFunc)area_tab.fn_2d[depth];
+
+ if( !func || cn > 4 )
+ CV_ERROR( CV_StsUnsupportedFormat, "" );
+
+ buf_size = buf_len*2*sizeof(float) + ssize.width*2*sizeof(CvDecimateAlpha);
+ if( buf_size < CV_MAX_LOCAL_SIZE )
+ buf = (float*)cvStackAlloc(buf_size);
+ else
+ CV_CALL( temp_buf = buf = (float*)cvAlloc(buf_size));
+ sum = buf + buf_len;
+ xofs = (CvDecimateAlpha*)(sum + buf_len);
+
+ for( dx = 0, k = 0; dx < dsize.width; dx++ )
+ {
+ float fsx1 = dx*scale_x, fsx2 = fsx1 + scale_x;
+ int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);
+
+ assert( (unsigned)sx1 < (unsigned)ssize.width );
+
+ if( sx1 > fsx1 )
+ {
+ assert( k < ssize.width*2 );
+ xofs[k].di = dx*cn;
+ xofs[k].si = (sx1-1)*cn;
+ xofs[k++].alpha = (sx1 - fsx1)*scale;
+ }
+
+ for( sx = sx1; sx < sx2; sx++ )
+ {
+ assert( k < ssize.width*2 );
+ xofs[k].di = dx*cn;
+ xofs[k].si = sx*cn;
+ xofs[k++].alpha = scale;
+ }
+
+ if( fsx2 - sx2 > 1e-3 )
+ {
+ assert( k < ssize.width*2 );
+ assert((unsigned)sx2 < (unsigned)ssize.width );
+ xofs[k].di = dx*cn;
+ xofs[k].si = sx2*cn;
+ xofs[k++].alpha = (fsx2 - sx2)*scale;
+ }
+ }
+
+ xofs_count = k;
+ memset( sum, 0, buf_len*sizeof(float) );
+ memset( buf, 0, buf_len*sizeof(float) );
+
+ IPPI_CALL( func( src->data.ptr, src->step, ssize, dst->data.ptr,
+ dst->step, dsize, cn, xofs, xofs_count, buf, sum ));
+ }
+ }
+ else // true "area" method for the cases (scale_x > 1 & scale_y < 1) and
+ // (scale_x < 1 & scale_y > 1) is not implemented.
+ // instead, it is emulated via some variant of bilinear interpolation.
+ {
+ float inv_scale_x = (float)dsize.width/ssize.width;
+ float inv_scale_y = (float)dsize.height/ssize.height;
+ int xmax = dsize.width, width = dsize.width*cn, buf_size;
+ float *buf0, *buf1;
+ CvResizeAlpha *xofs, *yofs;
+ int area_mode = method == CV_INTER_AREA;
+ float fx, fy;
+ CvResizeBilinearFunc func = (CvResizeBilinearFunc)bilin_tab.fn_2d[depth];
+
+ if( !func )
+ CV_ERROR( CV_StsUnsupportedFormat, "" );
+
+ buf_size = width*2*sizeof(float) + (width + dsize.height)*sizeof(CvResizeAlpha);
+ if( buf_size < CV_MAX_LOCAL_SIZE )
+ buf0 = (float*)cvStackAlloc(buf_size);
+ else
+ CV_CALL( temp_buf = buf0 = (float*)cvAlloc(buf_size));
+ buf1 = buf0 + width;
+ xofs = (CvResizeAlpha*)(buf1 + width);
+ yofs = xofs + width;
+
+ for( dx = 0; dx < dsize.width; dx++ )
+ {
+ if( !area_mode )
+ {
+ fx = (float)((dx+0.5)*scale_x - 0.5);
+ sx = cvFloor(fx);
+ fx -= sx;
+ }
+ else
+ {
+ sx = cvFloor(dx*scale_x);
+ fx = (dx+1) - (sx+1)*inv_scale_x;
+ fx = fx <= 0 ? 0.f : fx - cvFloor(fx);
+ }
+
+ if( sx < 0 )
+ fx = 0, sx = 0;
+
+ if( sx >= ssize.width-1 )
+ {
+ fx = 0, sx = ssize.width-1;
+ if( xmax >= dsize.width )
+ xmax = dx;
+ }
+
+ if( depth != CV_8U )
+ for( k = 0, sx *= cn; k < cn; k++ )
+ xofs[dx*cn + k].idx = sx + k, xofs[dx*cn + k].alpha = fx;
+ else
+ for( k = 0, sx *= cn; k < cn; k++ )
+ xofs[dx*cn + k].idx = sx + k,
+ xofs[dx*cn + k].ialpha = CV_FLT_TO_FIX(fx, ICV_WARP_SHIFT);
+ }
+
+ for( dy = 0; dy < dsize.height; dy++ )
+ {
+ if( !area_mode )
+ {
+ fy = (float)((dy+0.5)*scale_y - 0.5);
+ sy = cvFloor(fy);
+ fy -= sy;
+ if( sy < 0 )
+ sy = 0, fy = 0;
+ }
+ else
+ {
+ sy = cvFloor(dy*scale_y);
+ fy = (dy+1) - (sy+1)*inv_scale_y;
+ fy = fy <= 0 ? 0.f : fy - cvFloor(fy);
+ }
+
+ yofs[dy].idx = sy;
+ if( depth != CV_8U )
+ yofs[dy].alpha = fy;
+ else
+ yofs[dy].ialpha = CV_FLT_TO_FIX(fy, ICV_WARP_SHIFT);
+ }
+
+ IPPI_CALL( func( src->data.ptr, src->step, ssize, dst->data.ptr,
+ dst->step, dsize, cn, xmax, xofs, yofs, buf0, buf1 ));
+ }
+ }
+ else if( method == CV_INTER_CUBIC )
+ {
+ int width = dsize.width*cn, buf_size;
+ int xmin = dsize.width, xmax = -1;
+ CvResizeAlpha* xofs;
+ float* buf[4];
+ CvResizeBicubicFunc func = (CvResizeBicubicFunc)bicube_tab.fn_2d[depth];
+
+ if( !func )
+ CV_ERROR( CV_StsUnsupportedFormat, "" );
+
+ buf_size = width*(4*sizeof(float) + sizeof(xofs[0]));
+ if( buf_size < CV_MAX_LOCAL_SIZE )
+ buf[0] = (float*)cvStackAlloc(buf_size);
+ else
+ CV_CALL( temp_buf = buf[0] = (float*)cvAlloc(buf_size));
+
+ for( k = 1; k < 4; k++ )
+ buf[k] = buf[k-1] + width;
+ xofs = (CvResizeAlpha*)(buf[3] + width);
+
+ icvInitCubicCoeffTab();
+
+ for( dx = 0; dx < dsize.width; dx++ )
+ {
+ float fx = dx*scale_x;
+ sx = cvFloor(fx);
+ fx -= sx;
+ int ifx = cvRound(fx*ICV_CUBIC_TAB_SIZE);
+ if( sx-1 >= 0 && xmin > dx )
+ xmin = dx;
+ if( sx+2 < ssize.width )
+ xmax = dx + 1;
+
+ // at least one of 4 points should be within the image - to
+ // be able to set other points to the same value. see the loops
+ // for( dx = 0; dx < xmin; dx++ ) ... and for( ; dx < width; dx++ ) ...
+ if( sx < -2 )
+ sx = -2;
+ else if( sx > ssize.width )
+ sx = ssize.width;
+
+ for( k = 0; k < cn; k++ )
+ {
+ xofs[dx*cn + k].idx = sx*cn + k;
+ xofs[dx*cn + k].ialpha = ifx;
+ }
+ }
+
+ IPPI_CALL( func( src->data.ptr, src->step, ssize, dst->data.ptr,
+ dst->step, dsize, cn, xmin, xmax, xofs, buf ));
+ }
+ else
+ CV_ERROR( CV_StsBadFlag, "Unknown/unsupported interpolation method" );
+
+ __END__;
+
+ cvFree( &temp_buf );
+}
+
+
+/****************************************************************************************\
+* WarpAffine *
+\****************************************************************************************/
+
+#define ICV_DEF_WARP_AFFINE_BILINEAR_FUNC( flavor, arrtype, worktype, \
+ scale_alpha_macro, mul_one_macro, descale_macro, cast_macro ) \
+static CvStatus CV_STDCALL \
+icvWarpAffine_Bilinear_##flavor##_CnR( \
+ const arrtype* src, int step, CvSize ssize, \
+ arrtype* dst, int dststep, CvSize dsize, \
+ const double* matrix, int cn, \
+ const arrtype* fillval, const int* ofs ) \
+{ \
+ int x, y, k; \
+ double A12 = matrix[1], b1 = matrix[2]; \
+ double A22 = matrix[4], b2 = matrix[5]; \
+ \
+ step /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ \
+ for( y = 0; y < dsize.height; y++, dst += dststep ) \
+ { \
+ int xs = CV_FLT_TO_FIX( A12*y + b1, ICV_WARP_SHIFT ); \
+ int ys = CV_FLT_TO_FIX( A22*y + b2, ICV_WARP_SHIFT ); \
+ \
+ for( x = 0; x < dsize.width; x++ ) \
+ { \
+ int ixs = xs + ofs[x*2]; \
+ int iys = ys + ofs[x*2+1]; \
+ worktype a = scale_alpha_macro( ixs & ICV_WARP_MASK ); \
+ worktype b = scale_alpha_macro( iys & ICV_WARP_MASK ); \
+ worktype p0, p1; \
+ ixs >>= ICV_WARP_SHIFT; \
+ iys >>= ICV_WARP_SHIFT; \
+ \
+ if( (unsigned)ixs < (unsigned)(ssize.width - 1) && \
+ (unsigned)iys < (unsigned)(ssize.height - 1) ) \
+ { \
+ const arrtype* ptr = src + step*iys + ixs*cn; \
+ \
+ for( k = 0; k < cn; k++ ) \
+ { \
+ p0 = mul_one_macro(ptr[k]) + \
+ a * (ptr[k+cn] - ptr[k]); \
+ p1 = mul_one_macro(ptr[k+step]) + \
+ a * (ptr[k+cn+step] - ptr[k+step]); \
+ p0 = descale_macro(mul_one_macro(p0) + b*(p1 - p0)); \
+ dst[x*cn+k] = (arrtype)cast_macro(p0); \
+ } \
+ } \
+ else if( (unsigned)(ixs+1) < (unsigned)(ssize.width+1) && \
+ (unsigned)(iys+1) < (unsigned)(ssize.height+1)) \
+ { \
+ int x0 = ICV_WARP_CLIP_X( ixs ); \
+ int y0 = ICV_WARP_CLIP_Y( iys ); \
+ int x1 = ICV_WARP_CLIP_X( ixs + 1 ); \
+ int y1 = ICV_WARP_CLIP_Y( iys + 1 ); \
+ const arrtype* ptr0, *ptr1, *ptr2, *ptr3; \
+ \
+ ptr0 = src + y0*step + x0*cn; \
+ ptr1 = src + y0*step + x1*cn; \
+ ptr2 = src + y1*step + x0*cn; \
+ ptr3 = src + y1*step + x1*cn; \
+ \
+ for( k = 0; k < cn; k++ ) \
+ { \
+ p0 = mul_one_macro(ptr0[k]) + a * (ptr1[k] - ptr0[k]); \
+ p1 = mul_one_macro(ptr2[k]) + a * (ptr3[k] - ptr2[k]); \
+ p0 = descale_macro( mul_one_macro(p0) + b*(p1 - p0) ); \
+ dst[x*cn+k] = (arrtype)cast_macro(p0); \
+ } \
+ } \
+ else if( fillval ) \
+ for( k = 0; k < cn; k++ ) \
+ dst[x*cn+k] = fillval[k]; \
+ } \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+#define ICV_WARP_SCALE_ALPHA(x) ((x)*(1./(ICV_WARP_MASK+1)))
+
+ICV_DEF_WARP_AFFINE_BILINEAR_FUNC( 8u, uchar, int, CV_NOP, ICV_WARP_MUL_ONE_8U,
+ ICV_WARP_DESCALE_8U, CV_NOP )
+//ICV_DEF_WARP_AFFINE_BILINEAR_FUNC( 8u, uchar, double, ICV_WARP_SCALE_ALPHA, CV_NOP,
+// CV_NOP, ICV_WARP_CAST_8U )
+ICV_DEF_WARP_AFFINE_BILINEAR_FUNC( 16u, ushort, double, ICV_WARP_SCALE_ALPHA, CV_NOP,
+ CV_NOP, cvRound )
+ICV_DEF_WARP_AFFINE_BILINEAR_FUNC( 32f, float, double, ICV_WARP_SCALE_ALPHA, CV_NOP,
+ CV_NOP, CV_NOP )
+
+
+typedef CvStatus (CV_STDCALL * CvWarpAffineFunc)(
+ const void* src, int srcstep, CvSize ssize,
+ void* dst, int dststep, CvSize dsize,
+ const double* matrix, int cn,
+ const void* fillval, const int* ofs );
+
+static void icvInitWarpAffineTab( CvFuncTable* bilin_tab )
+{
+ bilin_tab->fn_2d[CV_8U] = (void*)icvWarpAffine_Bilinear_8u_CnR;
+ bilin_tab->fn_2d[CV_16U] = (void*)icvWarpAffine_Bilinear_16u_CnR;
+ bilin_tab->fn_2d[CV_32F] = (void*)icvWarpAffine_Bilinear_32f_CnR;
+}
+
+
+/////////////////////////////// IPP warpaffine functions /////////////////////////////////
+
+icvWarpAffineBack_8u_C1R_t icvWarpAffineBack_8u_C1R_p = 0;
+icvWarpAffineBack_8u_C3R_t icvWarpAffineBack_8u_C3R_p = 0;
+icvWarpAffineBack_8u_C4R_t icvWarpAffineBack_8u_C4R_p = 0;
+icvWarpAffineBack_32f_C1R_t icvWarpAffineBack_32f_C1R_p = 0;
+icvWarpAffineBack_32f_C3R_t icvWarpAffineBack_32f_C3R_p = 0;
+icvWarpAffineBack_32f_C4R_t icvWarpAffineBack_32f_C4R_p = 0;
+
+typedef CvStatus (CV_STDCALL * CvWarpAffineBackIPPFunc)
+( const void* src, CvSize srcsize, int srcstep, CvRect srcroi,
+ void* dst, int dststep, CvRect dstroi,
+ const double* coeffs, int interpolation );
+
+//////////////////////////////////////////////////////////////////////////////////////////
+
+CV_IMPL void
+cvWarpAffine( const CvArr* srcarr, CvArr* dstarr, const CvMat* matrix,
+ int flags, CvScalar fillval )
+{
+ static CvFuncTable bilin_tab;
+ static int inittab = 0;
+
+ CV_FUNCNAME( "cvWarpAffine" );
+
+ __BEGIN__;
+
+ CvMat srcstub, *src = (CvMat*)srcarr;
+ CvMat dststub, *dst = (CvMat*)dstarr;
+ int k, type, depth, cn, *ofs = 0;
+ double src_matrix[6], dst_matrix[6];
+ double fillbuf[4];
+ int method = flags & 3;
+ CvMat srcAb = cvMat( 2, 3, CV_64F, src_matrix ),
+ dstAb = cvMat( 2, 3, CV_64F, dst_matrix ),
+ A, b, invA, invAb;
+ CvWarpAffineFunc func;
+ CvSize ssize, dsize;
+
+ if( !inittab )
+ {
+ icvInitWarpAffineTab( &bilin_tab );
+ inittab = 1;
+ }
+
+ CV_CALL( src = cvGetMat( srcarr, &srcstub ));
+ CV_CALL( dst = cvGetMat( dstarr, &dststub ));
+
+ if( !CV_ARE_TYPES_EQ( src, dst ))
+ CV_ERROR( CV_StsUnmatchedFormats, "" );
+
+ if( !CV_IS_MAT(matrix) || CV_MAT_CN(matrix->type) != 1 ||
+ CV_MAT_DEPTH(matrix->type) < CV_32F || matrix->rows != 2 || matrix->cols != 3 )
+ CV_ERROR( CV_StsBadArg,
+ "Transformation matrix should be 2x3 floating-point single-channel matrix" );
+
+ if( flags & CV_WARP_INVERSE_MAP )
+ cvConvertScale( matrix, &dstAb );
+ else
+ {
+ // [R|t] -> [R^-1 | -(R^-1)*t]
+ cvConvertScale( matrix, &srcAb );
+ cvGetCols( &srcAb, &A, 0, 2 );
+ cvGetCol( &srcAb, &b, 2 );
+ cvGetCols( &dstAb, &invA, 0, 2 );
+ cvGetCol( &dstAb, &invAb, 2 );
+ cvInvert( &A, &invA, CV_SVD );
+ cvGEMM( &invA, &b, -1, 0, 0, &invAb );
+ }
+
+ type = CV_MAT_TYPE(src->type);
+ depth = CV_MAT_DEPTH(type);
+ cn = CV_MAT_CN(type);
+ if( cn > 4 )
+ CV_ERROR( CV_BadNumChannels, "" );
+
+ ssize = cvGetMatSize(src);
+ dsize = cvGetMatSize(dst);
+
+ if( icvWarpAffineBack_8u_C1R_p && MIN( ssize.width, dsize.width ) >= 4 &&
+ MIN( ssize.height, dsize.height ) >= 4 )
+ {
+ CvWarpAffineBackIPPFunc ipp_func =
+ type == CV_8UC1 ? icvWarpAffineBack_8u_C1R_p :
+ type == CV_8UC3 ? icvWarpAffineBack_8u_C3R_p :
+ type == CV_8UC4 ? icvWarpAffineBack_8u_C4R_p :
+ type == CV_32FC1 ? icvWarpAffineBack_32f_C1R_p :
+ type == CV_32FC3 ? icvWarpAffineBack_32f_C3R_p :
+ type == CV_32FC4 ? icvWarpAffineBack_32f_C4R_p : 0;
+
+ if( ipp_func && CV_INTER_NN <= method && method <= CV_INTER_AREA )
+ {
+ int srcstep = src->step ? src->step : CV_STUB_STEP;
+ int dststep = dst->step ? dst->step : CV_STUB_STEP;
+ CvRect srcroi = {0, 0, ssize.width, ssize.height};
+ CvRect dstroi = {0, 0, dsize.width, dsize.height};
+
+ // this is not the most efficient way to fill outliers
+ if( flags & CV_WARP_FILL_OUTLIERS )
+ cvSet( dst, fillval );
+
+ if( ipp_func( src->data.ptr, ssize, srcstep, srcroi,
+ dst->data.ptr, dststep, dstroi,
+ dstAb.data.db, 1 << method ) >= 0 )
+ EXIT;
+ }
+ }
+
+ cvScalarToRawData( &fillval, fillbuf, CV_MAT_TYPE(src->type), 0 );
+ ofs = (int*)cvStackAlloc( dst->cols*2*sizeof(ofs[0]) );
+ for( k = 0; k < dst->cols; k++ )
+ {
+ ofs[2*k] = CV_FLT_TO_FIX( dst_matrix[0]*k, ICV_WARP_SHIFT );
+ ofs[2*k+1] = CV_FLT_TO_FIX( dst_matrix[3]*k, ICV_WARP_SHIFT );
+ }
+
+ /*if( method == CV_INTER_LINEAR )*/
+ {
+ func = (CvWarpAffineFunc)bilin_tab.fn_2d[depth];
+ if( !func )
+ CV_ERROR( CV_StsUnsupportedFormat, "" );
+
+ IPPI_CALL( func( src->data.ptr, src->step, ssize, dst->data.ptr,
+ dst->step, dsize, dst_matrix, cn,
+ flags & CV_WARP_FILL_OUTLIERS ? fillbuf : 0, ofs ));
+ }
+
+ __END__;
+}
+
+
+CV_IMPL CvMat*
+cv2DRotationMatrix( CvPoint2D32f center, double angle,
+ double scale, CvMat* matrix )
+{
+ CV_FUNCNAME( "cvGetRotationMatrix" );
+
+ __BEGIN__;
+
+ double m[2][3];
+ CvMat M = cvMat( 2, 3, CV_64FC1, m );
+ double alpha, beta;
+
+ if( !matrix )
+ CV_ERROR( CV_StsNullPtr, "" );
+
+ angle *= CV_PI/180;
+ alpha = cos(angle)*scale;
+ beta = sin(angle)*scale;
+
+ m[0][0] = alpha;
+ m[0][1] = beta;
+ m[0][2] = (1-alpha)*center.x - beta*center.y;
+ m[1][0] = -beta;
+ m[1][1] = alpha;
+ m[1][2] = beta*center.x + (1-alpha)*center.y;
+
+ cvConvert( &M, matrix );
+
+ __END__;
+
+ return matrix;
+}
+
+
+/****************************************************************************************\
+* WarpPerspective *
+\****************************************************************************************/
+
+#define ICV_DEF_WARP_PERSPECTIVE_BILINEAR_FUNC( flavor, arrtype, load_macro, cast_macro )\
+static CvStatus CV_STDCALL \
+icvWarpPerspective_Bilinear_##flavor##_CnR( \
+ const arrtype* src, int step, CvSize ssize, \
+ arrtype* dst, int dststep, CvSize dsize, \
+ const double* matrix, int cn, \
+ const arrtype* fillval ) \
+{ \
+ int x, y, k; \
+ float A11 = (float)matrix[0], A12 = (float)matrix[1], A13 = (float)matrix[2];\
+ float A21 = (float)matrix[3], A22 = (float)matrix[4], A23 = (float)matrix[5];\
+ float A31 = (float)matrix[6], A32 = (float)matrix[7], A33 = (float)matrix[8];\
+ \
+ step /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ \
+ for( y = 0; y < dsize.height; y++, dst += dststep ) \
+ { \
+ float xs0 = A12*y + A13; \
+ float ys0 = A22*y + A23; \
+ float ws = A32*y + A33; \
+ \
+ for( x = 0; x < dsize.width; x++, xs0 += A11, ys0 += A21, ws += A31 )\
+ { \
+ float inv_ws = 1.f/ws; \
+ float xs = xs0*inv_ws; \
+ float ys = ys0*inv_ws; \
+ int ixs = cvFloor(xs); \
+ int iys = cvFloor(ys); \
+ float a = xs - ixs; \
+ float b = ys - iys; \
+ float p0, p1; \
+ \
+ if( (unsigned)ixs < (unsigned)(ssize.width - 1) && \
+ (unsigned)iys < (unsigned)(ssize.height - 1) ) \
+ { \
+ const arrtype* ptr = src + step*iys + ixs*cn; \
+ \
+ for( k = 0; k < cn; k++ ) \
+ { \
+ p0 = load_macro(ptr[k]) + \
+ a * (load_macro(ptr[k+cn]) - load_macro(ptr[k])); \
+ p1 = load_macro(ptr[k+step]) + \
+ a * (load_macro(ptr[k+cn+step]) - \
+ load_macro(ptr[k+step])); \
+ dst[x*cn+k] = (arrtype)cast_macro(p0 + b*(p1 - p0)); \
+ } \
+ } \
+ else if( (unsigned)(ixs+1) < (unsigned)(ssize.width+1) && \
+ (unsigned)(iys+1) < (unsigned)(ssize.height+1)) \
+ { \
+ int x0 = ICV_WARP_CLIP_X( ixs ); \
+ int y0 = ICV_WARP_CLIP_Y( iys ); \
+ int x1 = ICV_WARP_CLIP_X( ixs + 1 ); \
+ int y1 = ICV_WARP_CLIP_Y( iys + 1 ); \
+ const arrtype* ptr0, *ptr1, *ptr2, *ptr3; \
+ \
+ ptr0 = src + y0*step + x0*cn; \
+ ptr1 = src + y0*step + x1*cn; \
+ ptr2 = src + y1*step + x0*cn; \
+ ptr3 = src + y1*step + x1*cn; \
+ \
+ for( k = 0; k < cn; k++ ) \
+ { \
+ p0 = load_macro(ptr0[k]) + \
+ a * (load_macro(ptr1[k]) - load_macro(ptr0[k])); \
+ p1 = load_macro(ptr2[k]) + \
+ a * (load_macro(ptr3[k]) - load_macro(ptr2[k])); \
+ dst[x*cn+k] = (arrtype)cast_macro(p0 + b*(p1 - p0)); \
+ } \
+ } \
+ else if( fillval ) \
+ for( k = 0; k < cn; k++ ) \
+ dst[x*cn+k] = fillval[k]; \
+ } \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+#define ICV_WARP_SCALE_ALPHA(x) ((x)*(1./(ICV_WARP_MASK+1)))
+
+ICV_DEF_WARP_PERSPECTIVE_BILINEAR_FUNC( 8u, uchar, CV_8TO32F, cvRound )
+ICV_DEF_WARP_PERSPECTIVE_BILINEAR_FUNC( 16u, ushort, CV_NOP, cvRound )
+ICV_DEF_WARP_PERSPECTIVE_BILINEAR_FUNC( 32f, float, CV_NOP, CV_NOP )
+
+typedef CvStatus (CV_STDCALL * CvWarpPerspectiveFunc)(
+ const void* src, int srcstep, CvSize ssize,
+ void* dst, int dststep, CvSize dsize,
+ const double* matrix, int cn, const void* fillval );
+
+static void icvInitWarpPerspectiveTab( CvFuncTable* bilin_tab )
+{
+ bilin_tab->fn_2d[CV_8U] = (void*)icvWarpPerspective_Bilinear_8u_CnR;
+ bilin_tab->fn_2d[CV_16U] = (void*)icvWarpPerspective_Bilinear_16u_CnR;
+ bilin_tab->fn_2d[CV_32F] = (void*)icvWarpPerspective_Bilinear_32f_CnR;
+}
+
+
+/////////////////////////// IPP warpperspective functions ////////////////////////////////
+
+icvWarpPerspectiveBack_8u_C1R_t icvWarpPerspectiveBack_8u_C1R_p = 0;
+icvWarpPerspectiveBack_8u_C3R_t icvWarpPerspectiveBack_8u_C3R_p = 0;
+icvWarpPerspectiveBack_8u_C4R_t icvWarpPerspectiveBack_8u_C4R_p = 0;
+icvWarpPerspectiveBack_32f_C1R_t icvWarpPerspectiveBack_32f_C1R_p = 0;
+icvWarpPerspectiveBack_32f_C3R_t icvWarpPerspectiveBack_32f_C3R_p = 0;
+icvWarpPerspectiveBack_32f_C4R_t icvWarpPerspectiveBack_32f_C4R_p = 0;
+
+icvWarpPerspective_8u_C1R_t icvWarpPerspective_8u_C1R_p = 0;
+icvWarpPerspective_8u_C3R_t icvWarpPerspective_8u_C3R_p = 0;
+icvWarpPerspective_8u_C4R_t icvWarpPerspective_8u_C4R_p = 0;
+icvWarpPerspective_32f_C1R_t icvWarpPerspective_32f_C1R_p = 0;
+icvWarpPerspective_32f_C3R_t icvWarpPerspective_32f_C3R_p = 0;
+icvWarpPerspective_32f_C4R_t icvWarpPerspective_32f_C4R_p = 0;
+
+typedef CvStatus (CV_STDCALL * CvWarpPerspectiveBackIPPFunc)
+( const void* src, CvSize srcsize, int srcstep, CvRect srcroi,
+ void* dst, int dststep, CvRect dstroi,
+ const double* coeffs, int interpolation );
+
+//////////////////////////////////////////////////////////////////////////////////////////
+
+CV_IMPL void
+cvWarpPerspective( const CvArr* srcarr, CvArr* dstarr,
+ const CvMat* matrix, int flags, CvScalar fillval )
+{
+ static CvFuncTable bilin_tab;
+ static int inittab = 0;
+
+ CV_FUNCNAME( "cvWarpPerspective" );
+
+ __BEGIN__;
+
+ CvMat srcstub, *src = (CvMat*)srcarr;
+ CvMat dststub, *dst = (CvMat*)dstarr;
+ int type, depth, cn;
+ int method = flags & 3;
+ double src_matrix[9], dst_matrix[9];
+ double fillbuf[4];
+ CvMat A = cvMat( 3, 3, CV_64F, src_matrix ),
+ invA = cvMat( 3, 3, CV_64F, dst_matrix );
+ CvWarpPerspectiveFunc func;
+ CvSize ssize, dsize;
+
+ if( method == CV_INTER_NN || method == CV_INTER_AREA )
+ method = CV_INTER_LINEAR;
+
+ if( !inittab )
+ {
+ icvInitWarpPerspectiveTab( &bilin_tab );
+ inittab = 1;
+ }
+
+ CV_CALL( src = cvGetMat( srcarr, &srcstub ));
+ CV_CALL( dst = cvGetMat( dstarr, &dststub ));
+
+ if( !CV_ARE_TYPES_EQ( src, dst ))
+ CV_ERROR( CV_StsUnmatchedFormats, "" );
+
+ if( !CV_IS_MAT(matrix) || CV_MAT_CN(matrix->type) != 1 ||
+ CV_MAT_DEPTH(matrix->type) < CV_32F || matrix->rows != 3 || matrix->cols != 3 )
+ CV_ERROR( CV_StsBadArg,
+ "Transformation matrix should be 3x3 floating-point single-channel matrix" );
+
+ if( flags & CV_WARP_INVERSE_MAP )
+ cvConvertScale( matrix, &invA );
+ else
+ {
+ cvConvertScale( matrix, &A );
+ cvInvert( &A, &invA, CV_SVD );
+ }
+
+ type = CV_MAT_TYPE(src->type);
+ depth = CV_MAT_DEPTH(type);
+ cn = CV_MAT_CN(type);
+ if( cn > 4 )
+ CV_ERROR( CV_BadNumChannels, "" );
+
+ ssize = cvGetMatSize(src);
+ dsize = cvGetMatSize(dst);
+
+ if( icvWarpPerspectiveBack_8u_C1R_p )
+ {
+ CvWarpPerspectiveBackIPPFunc ipp_func =
+ type == CV_8UC1 ? icvWarpPerspectiveBack_8u_C1R_p :
+ type == CV_8UC3 ? icvWarpPerspectiveBack_8u_C3R_p :
+ type == CV_8UC4 ? icvWarpPerspectiveBack_8u_C4R_p :
+ type == CV_32FC1 ? icvWarpPerspectiveBack_32f_C1R_p :
+ type == CV_32FC3 ? icvWarpPerspectiveBack_32f_C3R_p :
+ type == CV_32FC4 ? icvWarpPerspectiveBack_32f_C4R_p : 0;
+
+ if( ipp_func && CV_INTER_NN <= method && method <= CV_INTER_AREA &&
+ MIN(ssize.width,ssize.height) >= 4 && MIN(dsize.width,dsize.height) >= 4 )
+ {
+ int srcstep = src->step ? src->step : CV_STUB_STEP;
+ int dststep = dst->step ? dst->step : CV_STUB_STEP;
+ CvStatus status;
+ CvRect srcroi = {0, 0, ssize.width, ssize.height};
+ CvRect dstroi = {0, 0, dsize.width, dsize.height};
+
+ // this is not the most efficient way to fill outliers
+ if( flags & CV_WARP_FILL_OUTLIERS )
+ cvSet( dst, fillval );
+
+ status = ipp_func( src->data.ptr, ssize, srcstep, srcroi,
+ dst->data.ptr, dststep, dstroi,
+ invA.data.db, 1 << method );
+ if( status >= 0 )
+ EXIT;
+
+ ipp_func = type == CV_8UC1 ? icvWarpPerspective_8u_C1R_p :
+ type == CV_8UC3 ? icvWarpPerspective_8u_C3R_p :
+ type == CV_8UC4 ? icvWarpPerspective_8u_C4R_p :
+ type == CV_32FC1 ? icvWarpPerspective_32f_C1R_p :
+ type == CV_32FC3 ? icvWarpPerspective_32f_C3R_p :
+ type == CV_32FC4 ? icvWarpPerspective_32f_C4R_p : 0;
+
+ if( ipp_func )
+ {
+ if( flags & CV_WARP_INVERSE_MAP )
+ cvInvert( &invA, &A, CV_SVD );
+
+ status = ipp_func( src->data.ptr, ssize, srcstep, srcroi,
+ dst->data.ptr, dststep, dstroi,
+ A.data.db, 1 << method );
+ if( status >= 0 )
+ EXIT;
+ }
+ }
+ }
+
+ cvScalarToRawData( &fillval, fillbuf, CV_MAT_TYPE(src->type), 0 );
+
+ /*if( method == CV_INTER_LINEAR )*/
+ {
+ func = (CvWarpPerspectiveFunc)bilin_tab.fn_2d[depth];
+ if( !func )
+ CV_ERROR( CV_StsUnsupportedFormat, "" );
+
+ IPPI_CALL( func( src->data.ptr, src->step, ssize, dst->data.ptr,
+ dst->step, dsize, dst_matrix, cn,
+ flags & CV_WARP_FILL_OUTLIERS ? fillbuf : 0 ));
+ }
+
+ __END__;
+}
+
+
+/* Calculates coefficients of perspective transformation
+ * which maps (xi,yi) to (ui,vi), (i=1,2,3,4):
+ *
+ * c00*xi + c01*yi + c02
+ * ui = ---------------------
+ * c20*xi + c21*yi + c22
+ *
+ * c10*xi + c11*yi + c12
+ * vi = ---------------------
+ * c20*xi + c21*yi + c22
+ *
+ * Coefficients are calculated by solving linear system:
+ * / x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\
+ * | x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1|
+ * | x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2|
+ * | x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|,
+ * | 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0|
+ * | 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1|
+ * | 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2|
+ * \ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/
+ *
+ * where:
+ * cij - matrix coefficients, c22 = 1
+ */
+CV_IMPL CvMat*
+cvGetPerspectiveTransform( const CvPoint2D32f* src,
+ const CvPoint2D32f* dst,
+ CvMat* matrix )
+{
+ CV_FUNCNAME( "cvGetPerspectiveTransform" );
+
+ __BEGIN__;
+
+ double a[8][8];
+ double b[8], x[9];
+
+ CvMat A = cvMat( 8, 8, CV_64FC1, a );
+ CvMat B = cvMat( 8, 1, CV_64FC1, b );
+ CvMat X = cvMat( 8, 1, CV_64FC1, x );
+
+ int i;
+
+ if( !src || !dst || !matrix )
+ CV_ERROR( CV_StsNullPtr, "" );
+
+ for( i = 0; i < 4; ++i )
+ {
+ a[i][0] = a[i+4][3] = src[i].x;
+ a[i][1] = a[i+4][4] = src[i].y;
+ a[i][2] = a[i+4][5] = 1;
+ a[i][3] = a[i][4] = a[i][5] =
+ a[i+4][0] = a[i+4][1] = a[i+4][2] = 0;
+ a[i][6] = -src[i].x*dst[i].x;
+ a[i][7] = -src[i].y*dst[i].x;
+ a[i+4][6] = -src[i].x*dst[i].y;
+ a[i+4][7] = -src[i].y*dst[i].y;
+ b[i] = dst[i].x;
+ b[i+4] = dst[i].y;
+ }
+
+ cvSolve( &A, &B, &X, CV_SVD );
+ x[8] = 1;
+
+ X = cvMat( 3, 3, CV_64FC1, x );
+ cvConvert( &X, matrix );
+
+ __END__;
+
+ return matrix;
+}
+
+/* Calculates coefficients of affine transformation
+ * which maps (xi,yi) to (ui,vi), (i=1,2,3):
+ *
+ * ui = c00*xi + c01*yi + c02
+ *
+ * vi = c10*xi + c11*yi + c12
+ *
+ * Coefficients are calculated by solving linear system:
+ * / x0 y0 1 0 0 0 \ /c00\ /u0\
+ * | x1 y1 1 0 0 0 | |c01| |u1|
+ * | x2 y2 1 0 0 0 | |c02| |u2|
+ * | 0 0 0 x0 y0 1 | |c10| |v0|
+ * | 0 0 0 x1 y1 1 | |c11| |v1|
+ * \ 0 0 0 x2 y2 1 / |c12| |v2|
+ *
+ * where:
+ * cij - matrix coefficients
+ */
+CV_IMPL CvMat*
+cvGetAffineTransform( const CvPoint2D32f * src, const CvPoint2D32f * dst, CvMat * map_matrix )
+{
+ CV_FUNCNAME( "cvGetAffineTransform" );
+
+ __BEGIN__;
+
+ CvMat mA, mX, mB;
+ double A[6*6];
+ double B[6];
+ double x[6];
+ int i;
+
+ cvInitMatHeader(&mA, 6, 6, CV_64F, A);
+ cvInitMatHeader(&mB, 6, 1, CV_64F, B);
+ cvInitMatHeader(&mX, 6, 1, CV_64F, x);
+
+ if( !src || !dst || !map_matrix )
+ CV_ERROR( CV_StsNullPtr, "" );
+
+ for( i = 0; i < 3; i++ )
+ {
+ int j = i*12;
+ int k = i*12+6;
+ A[j] = A[k+3] = src[i].x;
+ A[j+1] = A[k+4] = src[i].y;
+ A[j+2] = A[k+5] = 1;
+ A[j+3] = A[j+4] = A[j+5] = 0;
+ A[k] = A[k+1] = A[k+2] = 0;
+ B[i*2] = dst[i].x;
+ B[i*2+1] = dst[i].y;
+ }
+ cvSolve(&mA, &mB, &mX);
+
+ mX = cvMat( 2, 3, CV_64FC1, x );
+ cvConvert( &mX, map_matrix );
+
+ __END__;
+ return map_matrix;
+}
+
+/****************************************************************************************\
+* Generic Geometric Transformation: Remap *
+\****************************************************************************************/
+
+#define ICV_DEF_REMAP_BILINEAR_FUNC( flavor, arrtype, load_macro, cast_macro ) \
+static CvStatus CV_STDCALL \
+icvRemap_Bilinear_##flavor##_CnR( const arrtype* src, int srcstep, CvSize ssize,\
+ arrtype* dst, int dststep, CvSize dsize, \
+ const float* mapx, int mxstep, \
+ const float* mapy, int mystep, \
+ int cn, const arrtype* fillval ) \
+{ \
+ int i, j, k; \
+ ssize.width--; \
+ ssize.height--; \
+ \
+ srcstep /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ mxstep /= sizeof(mapx[0]); \
+ mystep /= sizeof(mapy[0]); \
+ \
+ for( i = 0; i < dsize.height; i++, dst += dststep, \
+ mapx += mxstep, mapy += mystep ) \
+ { \
+ for( j = 0; j < dsize.width; j++ ) \
+ { \
+ float _x = mapx[j], _y = mapy[j]; \
+ int ix = cvFloor(_x), iy = cvFloor(_y); \
+ \
+ if( (unsigned)ix < (unsigned)ssize.width && \
+ (unsigned)iy < (unsigned)ssize.height ) \
+ { \
+ const arrtype* s = src + iy*srcstep + ix*cn; \
+ _x -= ix; _y -= iy; \
+ for( k = 0; k < cn; k++, s++ ) \
+ { \
+ float t0 = load_macro(s[0]), t1 = load_macro(s[srcstep]); \
+ t0 += _x*(load_macro(s[cn]) - t0); \
+ t1 += _x*(load_macro(s[srcstep + cn]) - t1); \
+ dst[j*cn + k] = (arrtype)cast_macro(t0 + _y*(t1 - t0)); \
+ } \
+ } \
+ else if( fillval ) \
+ for( k = 0; k < cn; k++ ) \
+ dst[j*cn + k] = fillval[k]; \
+ } \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+#define ICV_DEF_REMAP_BICUBIC_FUNC( flavor, arrtype, worktype, \
+ load_macro, cast_macro1, cast_macro2 ) \
+static CvStatus CV_STDCALL \
+icvRemap_Bicubic_##flavor##_CnR( const arrtype* src, int srcstep, CvSize ssize, \
+ arrtype* dst, int dststep, CvSize dsize, \
+ const float* mapx, int mxstep, \
+ const float* mapy, int mystep, \
+ int cn, const arrtype* fillval ) \
+{ \
+ int i, j, k; \
+ ssize.width = MAX( ssize.width - 3, 0 ); \
+ ssize.height = MAX( ssize.height - 3, 0 ); \
+ \
+ srcstep /= sizeof(src[0]); \
+ dststep /= sizeof(dst[0]); \
+ mxstep /= sizeof(mapx[0]); \
+ mystep /= sizeof(mapy[0]); \
+ \
+ for( i = 0; i < dsize.height; i++, dst += dststep, \
+ mapx += mxstep, mapy += mystep ) \
+ { \
+ for( j = 0; j < dsize.width; j++ ) \
+ { \
+ int ix = cvRound(mapx[j]*(1 << ICV_WARP_SHIFT)); \
+ int iy = cvRound(mapy[j]*(1 << ICV_WARP_SHIFT)); \
+ int ifx = ix & ICV_WARP_MASK; \
+ int ify = iy & ICV_WARP_MASK; \
+ ix >>= ICV_WARP_SHIFT; \
+ iy >>= ICV_WARP_SHIFT; \
+ \
+ if( (unsigned)(ix-1) < (unsigned)ssize.width && \
+ (unsigned)(iy-1) < (unsigned)ssize.height ) \
+ { \
+ for( k = 0; k < cn; k++ ) \
+ { \
+ const arrtype* s = src + (iy-1)*srcstep + ix*cn + k; \
+ \
+ float t0 = load_macro(s[-cn])*icvCubicCoeffs[ifx*2 + 1] + \
+ load_macro(s[0])*icvCubicCoeffs[ifx*2] + \
+ load_macro(s[cn])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2] +\
+ load_macro(s[cn*2])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2+1];\
+ \
+ s += srcstep; \
+ \
+ float t1 = load_macro(s[-cn])*icvCubicCoeffs[ifx*2 + 1] + \
+ load_macro(s[0])*icvCubicCoeffs[ifx*2] + \
+ load_macro(s[cn])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2] +\
+ load_macro(s[cn*2])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2+1];\
+ \
+ s += srcstep; \
+ \
+ float t2 = load_macro(s[-cn])*icvCubicCoeffs[ifx*2 + 1] + \
+ load_macro(s[0])*icvCubicCoeffs[ifx*2] + \
+ load_macro(s[cn])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2] +\
+ load_macro(s[cn*2])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2+1];\
+ \
+ s += srcstep; \
+ \
+ float t3 = load_macro(s[-cn])*icvCubicCoeffs[ifx*2 + 1] + \
+ load_macro(s[0])*icvCubicCoeffs[ifx*2] + \
+ load_macro(s[cn])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2] +\
+ load_macro(s[cn*2])*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ifx)*2+1];\
+ \
+ worktype t = cast_macro1( t0*icvCubicCoeffs[ify*2 + 1] + \
+ t1*icvCubicCoeffs[ify*2] + \
+ t2*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ify)*2] + \
+ t3*icvCubicCoeffs[(ICV_CUBIC_TAB_SIZE-ify)*2+1] );\
+ \
+ dst[j*cn + k] = cast_macro2(t); \
+ } \
+ } \
+ else if( fillval ) \
+ for( k = 0; k < cn; k++ ) \
+ dst[j*cn + k] = fillval[k]; \
+ } \
+ } \
+ \
+ return CV_OK; \
+}
+
+
+ICV_DEF_REMAP_BILINEAR_FUNC( 8u, uchar, CV_8TO32F, cvRound )
+ICV_DEF_REMAP_BILINEAR_FUNC( 16u, ushort, CV_NOP, cvRound )
+ICV_DEF_REMAP_BILINEAR_FUNC( 32f, float, CV_NOP, CV_NOP )
+
+ICV_DEF_REMAP_BICUBIC_FUNC( 8u, uchar, int, CV_8TO32F, cvRound, CV_FAST_CAST_8U )
+ICV_DEF_REMAP_BICUBIC_FUNC( 16u, ushort, int, CV_NOP, cvRound, CV_CAST_16U )
+ICV_DEF_REMAP_BICUBIC_FUNC( 32f, float, float, CV_NOP, CV_NOP, CV_NOP )
+
+typedef CvStatus (CV_STDCALL * CvRemapFunc)(
+ const void* src, int srcstep, CvSize ssize,
+ void* dst, int dststep, CvSize dsize,
+ const float* mapx, int mxstep,
+ const float* mapy, int mystep,
+ int cn, const void* fillval );
+
+static void icvInitRemapTab( CvFuncTable* bilinear_tab, CvFuncTable* bicubic_tab )
+{
+ bilinear_tab->fn_2d[CV_8U] = (void*)icvRemap_Bilinear_8u_CnR;
+ bilinear_tab->fn_2d[CV_16U] = (void*)icvRemap_Bilinear_16u_CnR;
+ bilinear_tab->fn_2d[CV_32F] = (void*)icvRemap_Bilinear_32f_CnR;
+
+ bicubic_tab->fn_2d[CV_8U] = (void*)icvRemap_Bicubic_8u_CnR;
+ bicubic_tab->fn_2d[CV_16U] = (void*)icvRemap_Bicubic_16u_CnR;
+ bicubic_tab->fn_2d[CV_32F] = (void*)icvRemap_Bicubic_32f_CnR;
+}
+
+
+/******************** IPP remap functions *********************/
+
+typedef CvStatus (CV_STDCALL * CvRemapIPPFunc)(
+ const void* src, CvSize srcsize, int srcstep, CvRect srcroi,
+ const float* xmap, int xmapstep, const float* ymap, int ymapstep,
+ void* dst, int dststep, CvSize dstsize, int interpolation );
+
+icvRemap_8u_C1R_t icvRemap_8u_C1R_p = 0;
+icvRemap_8u_C3R_t icvRemap_8u_C3R_p = 0;
+icvRemap_8u_C4R_t icvRemap_8u_C4R_p = 0;
+
+icvRemap_32f_C1R_t icvRemap_32f_C1R_p = 0;
+icvRemap_32f_C3R_t icvRemap_32f_C3R_p = 0;
+icvRemap_32f_C4R_t icvRemap_32f_C4R_p = 0;
+
+/**************************************************************/
+
+#define CV_REMAP_SHIFT 5
+#define CV_REMAP_MASK ((1 << CV_REMAP_SHIFT) - 1)
+
+#if CV_SSE2 && defined(__GNUC__)
+#define align(x) __attribute__ ((aligned (x)))
+#elif CV_SSE2 && (defined(__ICL) || defined _MSC_VER && _MSC_VER >= 1300)
+#define align(x) __declspec(align(x))
+#else
+#define align(x)
+#endif
+
+static void icvRemapFixedPt_8u( const CvMat* src, CvMat* dst,
+ const CvMat* xymap, const CvMat* amap, const uchar* fillval )
+{
+ const int TABSZ = 1 << (CV_REMAP_SHIFT*2);
+ static ushort align(8) atab[TABSZ][4];
+ static int inittab = 0;
+
+ int x, y, cols = src->cols, rows = src->rows;
+ const uchar* sptr0 = src->data.ptr;
+ int sstep = src->step;
+ uchar fv0 = fillval[0], fv1 = fillval[1], fv2 = fillval[2], fv3 = fillval[3];
+ int cn = CV_MAT_CN(src->type);
+#if CV_SSE2
+ const uchar* sptr1 = sptr0 + sstep;
+ __m128i br = _mm_set1_epi32((cols-2) + ((rows-2)<<16));
+ __m128i xy2ofs = _mm_set1_epi32(1 + (sstep << 16));
+ __m128i z = _mm_setzero_si128();
+ int align(16) iofs0[4], iofs1[4];
+#endif
+
+ if( !inittab )
+ {
+ for( y = 0; y <= CV_REMAP_MASK; y++ )
+ for( x = 0; x <= CV_REMAP_MASK; x++ )
+ {
+ int k = (y << CV_REMAP_SHIFT) + x;
+ atab[k][0] = (ushort)((CV_REMAP_MASK+1 - y)*(CV_REMAP_MASK+1 - x));
+ atab[k][1] = (ushort)((CV_REMAP_MASK+1 - y)*x);
+ atab[k][2] = (ushort)(y*(CV_REMAP_MASK+1 - x));
+ atab[k][3] = (ushort)(y*x);
+ }
+ inittab = 1;
+ }
+
+ for( y = 0; y < rows; y++ )
+ {
+ const short* xy = (const short*)(xymap->data.ptr + xymap->step*y);
+ const ushort* alpha = (const ushort*)(amap->data.ptr + amap->step*y);
+ uchar* dptr = (uchar*)(dst->data.ptr + dst->step*y);
+ int x = 0;
+
+ if( cn == 1 )
+ {
+ #if CV_SSE2
+ for( ; x <= cols - 8; x += 8 )
+ {
+ __m128i xy0 = _mm_load_si128( (const __m128i*)(xy + x*2));
+ __m128i xy1 = _mm_load_si128( (const __m128i*)(xy + x*2 + 8));
+ // 0|0|0|0|... <= x0|y0|x1|y1|... < cols-1|rows-1|cols-1|rows-1|... ?
+ __m128i mask0 = _mm_cmpeq_epi32(_mm_or_si128(_mm_cmpgt_epi16(z, xy0),
+ _mm_cmpgt_epi16(xy0,br)), z);
+ __m128i mask1 = _mm_cmpeq_epi32(_mm_or_si128(_mm_cmpgt_epi16(z, xy1),
+ _mm_cmpgt_epi16(xy1,br)), z);
+ __m128i ofs0 = _mm_and_si128(_mm_madd_epi16( xy0, xy2ofs ), mask0 );
+ __m128i ofs1 = _mm_and_si128(_mm_madd_epi16( xy1, xy2ofs ), mask1 );
+ unsigned i0, i1;
+ __m128i v0, v1, v2, v3, a0, a1, b0, b1;
+ _mm_store_si128( (__m128i*)iofs0, ofs0 );
+ _mm_store_si128( (__m128i*)iofs1, ofs1 );
+ i0 = *(ushort*)(sptr0 + iofs0[0]) + (*(ushort*)(sptr0 + iofs0[1]) << 16);
+ i1 = *(ushort*)(sptr0 + iofs0[2]) + (*(ushort*)(sptr0 + iofs0[3]) << 16);
+ v0 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
+ i0 = *(ushort*)(sptr1 + iofs0[0]) + (*(ushort*)(sptr1 + iofs0[1]) << 16);
+ i1 = *(ushort*)(sptr1 + iofs0[2]) + (*(ushort*)(sptr1 + iofs0[3]) << 16);
+ v1 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
+ v0 = _mm_unpacklo_epi8(v0, z);
+ v1 = _mm_unpacklo_epi8(v1, z);
+
+ a0 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)atab[alpha[x]]),
+ _mm_loadl_epi64((__m128i*)atab[alpha[x+1]]));
+ a1 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)atab[alpha[x+2]]),
+ _mm_loadl_epi64((__m128i*)atab[alpha[x+3]]));
+ b0 = _mm_unpacklo_epi64(a0, a1);
+ b1 = _mm_unpackhi_epi64(a0, a1);
+ v0 = _mm_madd_epi16(v0, b0);
+ v1 = _mm_madd_epi16(v1, b1);
+ v0 = _mm_and_si128(_mm_add_epi32(v0, v1), mask0);
+
+ i0 = *(ushort*)(sptr0 + iofs1[0]) + (*(ushort*)(sptr0 + iofs1[1]) << 16);
+ i1 = *(ushort*)(sptr0 + iofs1[2]) + (*(ushort*)(sptr0 + iofs1[3]) << 16);
+ v2 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
+ i0 = *(ushort*)(sptr1 + iofs1[0]) + (*(ushort*)(sptr1 + iofs1[1]) << 16);
+ i1 = *(ushort*)(sptr1 + iofs1[2]) + (*(ushort*)(sptr1 + iofs1[3]) << 16);
+ v3 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(i0), _mm_cvtsi32_si128(i1));
+ v2 = _mm_unpacklo_epi8(v2, z);
+ v3 = _mm_unpacklo_epi8(v3, z);
+
+ a0 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)atab[alpha[x+4]]),
+ _mm_loadl_epi64((__m128i*)atab[alpha[x+5]]));
+ a1 = _mm_unpacklo_epi32(_mm_loadl_epi64((__m128i*)atab[alpha[x+6]]),
+ _mm_loadl_epi64((__m128i*)atab[alpha[x+7]]));
+ b0 = _mm_unpacklo_epi64(a0, a1);
+ b1 = _mm_unpackhi_epi64(a0, a1);
+ v2 = _mm_madd_epi16(v2, b0);
+ v3 = _mm_madd_epi16(v3, b1);
+ v2 = _mm_and_si128(_mm_add_epi32(v2, v3), mask1);
+
+ v0 = _mm_srai_epi32(v0, CV_REMAP_SHIFT*2);
+ v2 = _mm_srai_epi32(v2, CV_REMAP_SHIFT*2);
+ v0 = _mm_packus_epi16(_mm_packs_epi32(v0, v2), z);
+ _mm_storel_epi64( (__m128i*)(dptr + x), v0 );
+ }
+ #endif
+
+ for( ; x < cols; x++ )
+ {
+ int xi = xy[x*2], yi = xy[x*2+1];
+ if( (unsigned)yi >= (unsigned)(rows - 1) ||
+ (unsigned)xi >= (unsigned)(cols - 1))
+ {
+ dptr[x] = fv0;
+ }
+ else
+ {
+ const uchar* sptr = sptr0 + sstep*yi + xi;
+ const ushort* a = atab[alpha[x]];
+ dptr[x] = (uchar)((sptr[0]*a[0] + sptr[1]*a[1] + sptr[sstep]*a[2] +
+ sptr[sstep+1]*a[3])>>CV_REMAP_SHIFT*2);
+ }
+ }
+ }
+ else if( cn == 3 )
+ {
+ for( ; x < cols; x++ )
+ {
+ int xi = xy[x*2], yi = xy[x*2+1];
+ if( (unsigned)yi >= (unsigned)(rows - 1) ||
+ (unsigned)xi >= (unsigned)(cols - 1))
+ {
+ dptr[x*3] = fv0; dptr[x*3+1] = fv1; dptr[x*3+2] = fv2;
+ }
+ else
+ {
+ const uchar* sptr = sptr0 + sstep*yi + xi*3;
+ const ushort* a = atab[alpha[x]];
+ int v0, v1, v2;
+ v0 = (sptr[0]*a[0] + sptr[3]*a[1] +
+ sptr[sstep]*a[2] + sptr[sstep+3]*a[3])>>CV_REMAP_SHIFT*2;
+ v1 = (sptr[1]*a[0] + sptr[4]*a[1] +
+ sptr[sstep+1]*a[2] + sptr[sstep+4]*a[3])>>CV_REMAP_SHIFT*2;
+ v2 = (sptr[2]*a[0] + sptr[5]*a[1] +
+ sptr[sstep+2]*a[2] + sptr[sstep+5]*a[3])>>CV_REMAP_SHIFT*2;
+ dptr[x*3] = (uchar)v0; dptr[x*3+1] = (uchar)v1; dptr[x*3+2] = (uchar)v2;
+ }
+ }
+ }
+ else
+ {
+ assert( cn == 4 );
+ for( ; x < cols; x++ )
+ {
+ int xi = xy[x*2], yi = xy[x*2+1];
+ if( (unsigned)yi >= (unsigned)(rows - 1) ||
+ (unsigned)xi >= (unsigned)(cols - 1))
+ {
+ dptr[x*4] = fv0; dptr[x*4+1] = fv1;
+ dptr[x*4+2] = fv2; dptr[x*4+3] = fv3;
+ }
+ else
+ {
+ const uchar* sptr = sptr0 + sstep*yi + xi*3;
+ const ushort* a = atab[alpha[x]];
+ int v0, v1;
+ v0 = (sptr[0]*a[0] + sptr[4]*a[1] +
+ sptr[sstep]*a[2] + sptr[sstep+3]*a[3])>>CV_REMAP_SHIFT*2;
+ v1 = (sptr[1]*a[0] + sptr[5]*a[1] +
+ sptr[sstep+1]*a[2] + sptr[sstep+5]*a[3])>>CV_REMAP_SHIFT*2;
+ dptr[x*4] = (uchar)v0; dptr[x*4+1] = (uchar)v1;
+ v0 = (sptr[2]*a[0] + sptr[6]*a[1] +
+ sptr[sstep+2]*a[2] + sptr[sstep+6]*a[3])>>CV_REMAP_SHIFT*2;
+ v1 = (sptr[3]*a[0] + sptr[7]*a[1] +
+ sptr[sstep+3]*a[2] + sptr[sstep+7]*a[3])>>CV_REMAP_SHIFT*2;
+ dptr[x*4+2] = (uchar)v0; dptr[x*4+3] = (uchar)v1;
+ }
+ }
+ }
+ }
+}
+
+
+CV_IMPL void
+cvRemap( const CvArr* srcarr, CvArr* dstarr,
+ const CvArr* _mapx, const CvArr* _mapy,
+ int flags, CvScalar fillval )
+{
+ static CvFuncTable bilinear_tab;
+ static CvFuncTable bicubic_tab;
+ static int inittab = 0;
+
+ CV_FUNCNAME( "cvRemap" );
+
+ __BEGIN__;
+
+ CvMat srcstub, *src = (CvMat*)srcarr;
+ CvMat dststub, *dst = (CvMat*)dstarr;
+ CvMat mxstub, *mapx = (CvMat*)_mapx;
+ CvMat mystub, *mapy = (CvMat*)_mapy;
+ int type, depth, cn;
+ bool fltremap;
+ int method = flags & 3;
+ double fillbuf[4];
+ CvSize ssize, dsize;
+
+ if( !inittab )
+ {
+ icvInitRemapTab( &bilinear_tab, &bicubic_tab );
+ icvInitLinearCoeffTab();
+ icvInitCubicCoeffTab();
+ inittab = 1;
+ }
+
+ CV_CALL( src = cvGetMat( srcarr, &srcstub ));
+ CV_CALL( dst = cvGetMat( dstarr, &dststub ));
+ CV_CALL( mapx = cvGetMat( mapx, &mxstub ));
+ CV_CALL( mapy = cvGetMat( mapy, &mystub ));
+
+ if( !CV_ARE_TYPES_EQ( src, dst ))
+ CV_ERROR( CV_StsUnmatchedFormats, "" );
+
+ if( CV_MAT_TYPE(mapx->type) == CV_16SC1 && CV_MAT_TYPE(mapy->type) == CV_16SC2 )
+ {
+ CvMat* temp;
+ CV_SWAP(mapx, mapy, temp);
+ }
+
+ if( (CV_MAT_TYPE(mapx->type) != CV_32FC1 || CV_MAT_TYPE(mapy->type) != CV_32FC1) &&
+ (CV_MAT_TYPE(mapx->type) != CV_16SC2 || CV_MAT_TYPE(mapy->type) != CV_16SC1))
+ CV_ERROR( CV_StsUnmatchedFormats, "Either both map arrays must have 32fC1 type, "
+ "or one of them must be 16sC2 and the other one must be 16sC1" );
+
+ if( !CV_ARE_SIZES_EQ( mapx, mapy ) || !CV_ARE_SIZES_EQ( mapx, dst ))
+ CV_ERROR( CV_StsUnmatchedSizes,
+ "Both map arrays and the destination array must have the same size" );
+
+ fltremap = CV_MAT_TYPE(mapx->type) == CV_32FC1;
+ type = CV_MAT_TYPE(src->type);
+ depth = CV_MAT_DEPTH(type);
+ cn = CV_MAT_CN(type);
+ if( cn > 4 )
+ CV_ERROR( CV_BadNumChannels, "" );
+
+ ssize = cvGetMatSize(src);
+ dsize = cvGetMatSize(dst);
+
+ cvScalarToRawData( &fillval, fillbuf, CV_MAT_TYPE(src->type), 0 );
+
+ if( !fltremap )
+ {
+ if( CV_MAT_TYPE(src->type) != CV_8UC1 && CV_MAT_TYPE(src->type) != CV_8UC3 &&
+ CV_MAT_TYPE(src->type) != CV_8UC4 )
+ CV_ERROR( CV_StsUnsupportedFormat,
+ "Only 8-bit input/output is supported by the fixed-point variant of cvRemap" );
+ icvRemapFixedPt_8u( src, dst, mapx, mapy, (uchar*)fillbuf );
+ EXIT;
+ }
+
+ if( icvRemap_8u_C1R_p )
+ {
+ CvRemapIPPFunc ipp_func =
+ type == CV_8UC1 ? icvRemap_8u_C1R_p :
+ type == CV_8UC3 ? icvRemap_8u_C3R_p :
+ type == CV_8UC4 ? icvRemap_8u_C4R_p :
+ type == CV_32FC1 ? icvRemap_32f_C1R_p :
+ type == CV_32FC3 ? icvRemap_32f_C3R_p :
+ type == CV_32FC4 ? icvRemap_32f_C4R_p : 0;
+
+ if( ipp_func )
+ {
+ int srcstep = src->step ? src->step : CV_STUB_STEP;
+ int dststep = dst->step ? dst->step : CV_STUB_STEP;
+ int mxstep = mapx->step ? mapx->step : CV_STUB_STEP;
+ int mystep = mapy->step ? mapy->step : CV_STUB_STEP;
+ CvStatus status;
+ CvRect srcroi = {0, 0, ssize.width, ssize.height};
+
+ // this is not the most efficient way to fill outliers
+ if( flags & CV_WARP_FILL_OUTLIERS )
+ cvSet( dst, fillval );
+
+ status = ipp_func( src->data.ptr, ssize, srcstep, srcroi,
+ mapx->data.fl, mxstep, mapy->data.fl, mystep,
+ dst->data.ptr, dststep, dsize,
+ 1 << (method == CV_INTER_NN || method == CV_INTER_LINEAR ||
+ method == CV_INTER_CUBIC ? method : CV_INTER_LINEAR) );
+ if( status >= 0 )
+ EXIT;
+ }
+ }
+
+ {
+ CvRemapFunc func = method == CV_INTER_CUBIC ?
+ (CvRemapFunc)bicubic_tab.fn_2d[depth] :
+ (CvRemapFunc)bilinear_tab.fn_2d[depth];
+
+ if( !func )
+ CV_ERROR( CV_StsUnsupportedFormat, "" );
+
+ func( src->data.ptr, src->step, ssize, dst->data.ptr, dst->step, dsize,
+ mapx->data.fl, mapx->step, mapy->data.fl, mapy->step,
+ cn, flags & CV_WARP_FILL_OUTLIERS ? fillbuf : 0 );
+ }
+
+ __END__;
+}
+
+CV_IMPL void
+cvConvertMaps( const CvArr* arrx, const CvArr* arry,
+ CvArr* arrxy, CvArr* arra )
+{
+ CV_FUNCNAME( "cvConvertMaps" );
+
+ __BEGIN__;
+
+ CvMat xstub, *mapx = cvGetMat( arrx, &xstub );
+ CvMat ystub, *mapy = cvGetMat( arry, &ystub );
+ CvMat xystub, *mapxy = cvGetMat( arrxy, &xystub );
+ CvMat astub, *mapa = cvGetMat( arra, &astub );
+ int x, y, cols = mapx->cols, rows = mapx->rows;
+
+ CV_ASSERT( CV_ARE_SIZES_EQ(mapx, mapy) && CV_ARE_TYPES_EQ(mapx, mapy) &&
+ CV_MAT_TYPE(mapx->type) == CV_32FC1 &&
+ CV_ARE_SIZES_EQ(mapxy, mapx) && CV_ARE_SIZES_EQ(mapxy, mapa) &&
+ CV_MAT_TYPE(mapxy->type) == CV_16SC2 &&
+ CV_MAT_TYPE(mapa->type) == CV_16SC1 );
+
+ for( y = 0; y < rows; y++ )
+ {
+ const float* xrow = (const float*)(mapx->data.ptr + mapx->step*y);
+ const float* yrow = (const float*)(mapy->data.ptr + mapy->step*y);
+ short* xy = (short*)(mapxy->data.ptr + mapxy->step*y);
+ short* alpha = (short*)(mapa->data.ptr + mapa->step*y);
+
+ for( x = 0; x < cols; x++ )
+ {
+ int xi = cvRound(xrow[x]*(1 << CV_REMAP_SHIFT));
+ int yi = cvRound(yrow[x]*(1 << CV_REMAP_SHIFT));
+ xy[x*2] = (short)(xi >> CV_REMAP_SHIFT);
+ xy[x*2+1] = (short)(yi >> CV_REMAP_SHIFT);
+ alpha[x] = (short)((xi & CV_REMAP_MASK) + ((yi & CV_REMAP_MASK)<<CV_REMAP_SHIFT));
+ }
+ }
+
+ __END__;
+}
+
+
+/****************************************************************************************\
+* Log-Polar Transform *
+\****************************************************************************************/
+
+/* now it is done via Remap; more correct implementation should use
+ some super-sampling technique outside of the "fovea" circle */
+CV_IMPL void
+cvLogPolar( const CvArr* srcarr, CvArr* dstarr,
+ CvPoint2D32f center, double M, int flags )
+{
+ CvMat* mapx = 0;
+ CvMat* mapy = 0;
+ double* exp_tab = 0;
+ float* buf = 0;
+
+ CV_FUNCNAME( "cvLogPolar" );
+
+ __BEGIN__;
+
+ CvMat srcstub, *src = (CvMat*)srcarr;
+ CvMat dststub, *dst = (CvMat*)dstarr;
+ CvSize ssize, dsize;
+
+ CV_CALL( src = cvGetMat( srcarr, &srcstub ));
+ CV_CALL( dst = cvGetMat( dstarr, &dststub ));
+
+ if( !CV_ARE_TYPES_EQ( src, dst ))
+ CV_ERROR( CV_StsUnmatchedFormats, "" );
+
+ if( M <= 0 )
+ CV_ERROR( CV_StsOutOfRange, "M should be >0" );
+
+ ssize = cvGetMatSize(src);
+ dsize = cvGetMatSize(dst);
+
+ CV_CALL( mapx = cvCreateMat( dsize.height, dsize.width, CV_32F ));
+ CV_CALL( mapy = cvCreateMat( dsize.height, dsize.width, CV_32F ));
+
+ if( !(flags & CV_WARP_INVERSE_MAP) )
+ {
+ int phi, rho;
+
+ CV_CALL( exp_tab = (double*)cvAlloc( dsize.width*sizeof(exp_tab[0])) );
+
+ for( rho = 0; rho < dst->width; rho++ )
+ exp_tab[rho] = exp(rho/M);
+
+ for( phi = 0; phi < dsize.height; phi++ )
+ {
+ double cp = cos(phi*2*CV_PI/dsize.height);
+ double sp = sin(phi*2*CV_PI/dsize.height);
+ float* mx = (float*)(mapx->data.ptr + phi*mapx->step);
+ float* my = (float*)(mapy->data.ptr + phi*mapy->step);
+
+ for( rho = 0; rho < dsize.width; rho++ )
+ {
+ double r = exp_tab[rho];
+ double x = r*cp + center.x;
+ double y = r*sp + center.y;
+
+ mx[rho] = (float)x;
+ my[rho] = (float)y;
+ }
+ }
+ }
+ else
+ {
+ int x, y;
+ CvMat bufx, bufy, bufp, bufa;
+ double ascale = (ssize.width-1)/(2*CV_PI);
+
+ CV_CALL( buf = (float*)cvAlloc( 4*dsize.width*sizeof(buf[0]) ));
+
+ bufx = cvMat( 1, dsize.width, CV_32F, buf );
+ bufy = cvMat( 1, dsize.width, CV_32F, buf + dsize.width );
+ bufp = cvMat( 1, dsize.width, CV_32F, buf + dsize.width*2 );
+ bufa = cvMat( 1, dsize.width, CV_32F, buf + dsize.width*3 );
+
+ for( x = 0; x < dsize.width; x++ )
+ bufx.data.fl[x] = (float)x - center.x;
+
+ for( y = 0; y < dsize.height; y++ )
+ {
+ float* mx = (float*)(mapx->data.ptr + y*mapx->step);
+ float* my = (float*)(mapy->data.ptr + y*mapy->step);
+
+ for( x = 0; x < dsize.width; x++ )
+ bufy.data.fl[x] = (float)y - center.y;
+
+#if 1
+ cvCartToPolar( &bufx, &bufy, &bufp, &bufa );
+
+ for( x = 0; x < dsize.width; x++ )
+ bufp.data.fl[x] += 1.f;
+
+ cvLog( &bufp, &bufp );
+
+ for( x = 0; x < dsize.width; x++ )
+ {
+ double rho = bufp.data.fl[x]*M;
+ double phi = bufa.data.fl[x]*ascale;
+
+ mx[x] = (float)rho;
+ my[x] = (float)phi;
+ }
+#else
+ for( x = 0; x < dsize.width; x++ )
+ {
+ double xx = bufx.data.fl[x];
+ double yy = bufy.data.fl[x];
+
+ double p = log(sqrt(xx*xx + yy*yy) + 1.)*M;
+ double a = atan2(yy,xx);
+ if( a < 0 )
+ a = 2*CV_PI + a;
+ a *= ascale;
+
+ mx[x] = (float)p;
+ my[x] = (float)a;
+ }
+#endif
+ }
+ }
+
+ cvRemap( src, dst, mapx, mapy, flags, cvScalarAll(0) );
+
+ __END__;
+
+ cvFree( &exp_tab );
+ cvFree( &buf );
+ cvReleaseMat( &mapx );
+ cvReleaseMat( &mapy );
+}
+
+/* End of file. */