// cache.h // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Copyright 2005-2010 Google, Inc. // Author: riley@google.com (Michael Riley) // // \file // An Fst implementation that caches FST elements of a delayed // computation. #ifndef FST_LIB_CACHE_H__ #define FST_LIB_CACHE_H__ #include using std::vector; #include #include DECLARE_bool(fst_default_cache_gc); DECLARE_int64(fst_default_cache_gc_limit); namespace fst { struct CacheOptions { bool gc; // enable GC size_t gc_limit; // # of bytes allowed before GC CacheOptions(bool g, size_t l) : gc(g), gc_limit(l) {} CacheOptions() : gc(FLAGS_fst_default_cache_gc), gc_limit(FLAGS_fst_default_cache_gc_limit) {} }; // A CacheStateAllocator allocates and frees CacheStates // template // struct CacheStateAllocator { // S *Allocate(StateId s); // void Free(S *state, StateId s); // }; // // A simple allocator class, can be overridden as needed, // maintains a single entry cache. template struct DefaultCacheStateAllocator { typedef typename S::Arc::StateId StateId; DefaultCacheStateAllocator() : mru_(NULL) { } ~DefaultCacheStateAllocator() { delete mru_; } S *Allocate(StateId s) { if (mru_) { S *state = mru_; mru_ = NULL; state->Reset(); return state; } return new S(); } void Free(S *state, StateId s) { if (mru_) { delete mru_; } mru_ = state; } private: S *mru_; }; // VectorState but additionally has a flags data member (see // CacheState below). This class is used to cache FST elements with // the flags used to indicate what has been cached. Use HasStart() // HasFinal(), and HasArcs() to determine if cached and SetStart(), // SetFinal(), AddArc(), (or PushArc() and SetArcs()) to cache. Note you // must set the final weight even if the state is non-final to mark it as // cached. If the 'gc' option is 'false', cached items have the extent // of the FST - minimizing computation. If the 'gc' option is 'true', // garbage collection of states (not in use in an arc iterator) is // performed, in a rough approximation of LRU order, when 'gc_limit' // bytes is reached - controlling memory use. When 'gc_limit' is 0, // special optimizations apply - minimizing memory use. template > class CacheBaseImpl : public VectorFstBaseImpl { public: typedef S State; typedef C Allocator; typedef typename State::Arc Arc; typedef typename Arc::Weight Weight; typedef typename Arc::StateId StateId; using FstImpl::Type; using FstImpl::Properties; using FstImpl::SetProperties; using VectorFstBaseImpl::NumStates; using VectorFstBaseImpl::AddState; using VectorFstBaseImpl::SetState; explicit CacheBaseImpl(C *allocator = 0) : cache_start_(false), nknown_states_(0), min_unexpanded_state_id_(0), cache_first_state_id_(kNoStateId), cache_first_state_(0), cache_gc_(FLAGS_fst_default_cache_gc), cache_size_(0), cache_limit_(FLAGS_fst_default_cache_gc_limit > kMinCacheLimit || FLAGS_fst_default_cache_gc_limit == 0 ? FLAGS_fst_default_cache_gc_limit : kMinCacheLimit) { allocator_ = allocator ? allocator : new C(); } explicit CacheBaseImpl(const CacheOptions &opts, C *allocator = 0) : cache_start_(false), nknown_states_(0), min_unexpanded_state_id_(0), cache_first_state_id_(kNoStateId), cache_first_state_(0), cache_gc_(opts.gc), cache_size_(0), cache_limit_(opts.gc_limit > kMinCacheLimit || opts.gc_limit == 0 ? opts.gc_limit : kMinCacheLimit) { allocator_ = allocator ? allocator : new C(); } // Preserve gc parameters, but initially cache nothing. CacheBaseImpl(const CacheBaseImpl &impl) : cache_start_(false), nknown_states_(0), min_unexpanded_state_id_(0), cache_first_state_id_(kNoStateId), cache_first_state_(0), cache_gc_(impl.cache_gc_), cache_size_(0), cache_limit_(impl.cache_limit_) { allocator_ = new C(); } ~CacheBaseImpl() { allocator_->Free(cache_first_state_, cache_first_state_id_); delete allocator_; } // Gets a state from its ID; state must exist. const S *GetState(StateId s) const { if (s == cache_first_state_id_) return cache_first_state_; else return VectorFstBaseImpl::GetState(s); } // Gets a state from its ID; state must exist. S *GetState(StateId s) { if (s == cache_first_state_id_) return cache_first_state_; else return VectorFstBaseImpl::GetState(s); } // Gets a state from its ID; return 0 if it doesn't exist. const S *CheckState(StateId s) const { if (s == cache_first_state_id_) return cache_first_state_; else if (s < NumStates()) return VectorFstBaseImpl::GetState(s); else return 0; } // Gets a state from its ID; add it if necessary. S *ExtendState(StateId s) { if (s == cache_first_state_id_) { return cache_first_state_; // Return 1st cached state } else if (cache_limit_ == 0 && cache_first_state_id_ == kNoStateId) { cache_first_state_id_ = s; // Remember 1st cached state cache_first_state_ = allocator_->Allocate(s); return cache_first_state_; } else if (cache_first_state_id_ != kNoStateId && cache_first_state_->ref_count == 0) { // With Default allocator, the Free and Allocate will reuse the same S*. allocator_->Free(cache_first_state_, cache_first_state_id_); cache_first_state_id_ = s; cache_first_state_ = allocator_->Allocate(s); return cache_first_state_; // Return 1st cached state } else { while (NumStates() <= s) // Add state to main cache AddState(0); if (!VectorFstBaseImpl::GetState(s)) { SetState(s, allocator_->Allocate(s)); if (cache_first_state_id_ != kNoStateId) { // Forget 1st cached state while (NumStates() <= cache_first_state_id_) AddState(0); SetState(cache_first_state_id_, cache_first_state_); if (cache_gc_) { cache_states_.push_back(cache_first_state_id_); cache_size_ += sizeof(S) + cache_first_state_->arcs.capacity() * sizeof(Arc); } cache_limit_ = kMinCacheLimit; cache_first_state_id_ = kNoStateId; cache_first_state_ = 0; } if (cache_gc_) { cache_states_.push_back(s); cache_size_ += sizeof(S); if (cache_size_ > cache_limit_) GC(s, false); } } S *state = VectorFstBaseImpl::GetState(s); return state; } } void SetStart(StateId s) { VectorFstBaseImpl::SetStart(s); cache_start_ = true; if (s >= nknown_states_) nknown_states_ = s + 1; } void SetFinal(StateId s, Weight w) { S *state = ExtendState(s); state->final = w; state->flags |= kCacheFinal | kCacheRecent | kCacheModified; } // AddArc adds a single arc to state s and does incremental cache // book-keeping. For efficiency, prefer PushArc and SetArcs below // when possible. void AddArc(StateId s, const Arc &arc) { S *state = ExtendState(s); state->arcs.push_back(arc); if (arc.ilabel == 0) { ++state->niepsilons; } if (arc.olabel == 0) { ++state->noepsilons; } const Arc *parc = state->arcs.empty() ? 0 : &(state->arcs.back()); SetProperties(AddArcProperties(Properties(), s, arc, parc)); state->flags |= kCacheModified; if (cache_gc_ && s != cache_first_state_id_) { cache_size_ += sizeof(Arc); if (cache_size_ > cache_limit_) GC(s, false); } } // Adds a single arc to state s but delays cache book-keeping. // SetArcs must be called when all PushArc calls at a state are // complete. Do not mix with calls to AddArc. void PushArc(StateId s, const Arc &arc) { S *state = ExtendState(s); state->arcs.push_back(arc); } // Marks arcs of state s as cached and does cache book-keeping after all // calls to PushArc have been completed. Do not mix with calls to AddArc. void SetArcs(StateId s) { S *state = ExtendState(s); vector &arcs = state->arcs; state->niepsilons = state->noepsilons = 0; for (size_t a = 0; a < arcs.size(); ++a) { const Arc &arc = arcs[a]; if (arc.nextstate >= nknown_states_) nknown_states_ = arc.nextstate + 1; if (arc.ilabel == 0) ++state->niepsilons; if (arc.olabel == 0) ++state->noepsilons; } ExpandedState(s); state->flags |= kCacheArcs | kCacheRecent | kCacheModified; if (cache_gc_ && s != cache_first_state_id_) { cache_size_ += arcs.capacity() * sizeof(Arc); if (cache_size_ > cache_limit_) GC(s, false); } }; void ReserveArcs(StateId s, size_t n) { S *state = ExtendState(s); state->arcs.reserve(n); } void DeleteArcs(StateId s, size_t n) { S *state = ExtendState(s); const vector &arcs = state->arcs; for (size_t i = 0; i < n; ++i) { size_t j = arcs.size() - i - 1; if (arcs[j].ilabel == 0) --state->niepsilons; if (arcs[j].olabel == 0) --state->noepsilons; } state->arcs.resize(arcs.size() - n); SetProperties(DeleteArcsProperties(Properties())); state->flags |= kCacheModified; } void DeleteArcs(StateId s) { S *state = ExtendState(s); state->niepsilons = 0; state->noepsilons = 0; state->arcs.clear(); SetProperties(DeleteArcsProperties(Properties())); state->flags |= kCacheModified; } // Is the start state cached? bool HasStart() const { if (!cache_start_ && Properties(kError)) cache_start_ = true; return cache_start_; } // Is the final weight of state s cached? bool HasFinal(StateId s) const { const S *state = CheckState(s); if (state && state->flags & kCacheFinal) { state->flags |= kCacheRecent; return true; } else { return false; } } // Are arcs of state s cached? bool HasArcs(StateId s) const { const S *state = CheckState(s); if (state && state->flags & kCacheArcs) { state->flags |= kCacheRecent; return true; } else { return false; } } Weight Final(StateId s) const { const S *state = GetState(s); return state->final; } size_t NumArcs(StateId s) const { const S *state = GetState(s); return state->arcs.size(); } size_t NumInputEpsilons(StateId s) const { const S *state = GetState(s); return state->niepsilons; } size_t NumOutputEpsilons(StateId s) const { const S *state = GetState(s); return state->noepsilons; } // Provides information needed for generic arc iterator. void InitArcIterator(StateId s, ArcIteratorData *data) const { const S *state = GetState(s); data->base = 0; data->narcs = state->arcs.size(); data->arcs = data->narcs > 0 ? &(state->arcs[0]) : 0; data->ref_count = &(state->ref_count); ++(*data->ref_count); } // Number of known states. StateId NumKnownStates() const { return nknown_states_; } // Update number of known states taking in account the existence of state s. void UpdateNumKnownStates(StateId s) { if (s >= nknown_states_) nknown_states_ = s + 1; } // Find the mininum never-expanded state Id StateId MinUnexpandedState() const { while (min_unexpanded_state_id_ < expanded_states_.size() && expanded_states_[min_unexpanded_state_id_]) ++min_unexpanded_state_id_; return min_unexpanded_state_id_; } // Removes from cache_states_ and uncaches (not referenced-counted) // states that have not been accessed since the last GC until // cache_limit_/3 bytes are uncached. If that fails to free enough, // recurs uncaching recently visited states as well. If still // unable to free enough memory, then widens cache_limit_. void GC(StateId current, bool free_recent) { if (!cache_gc_) return; VLOG(2) << "CacheImpl: Enter GC: object = " << Type() << "(" << this << "), free recently cached = " << free_recent << ", cache size = " << cache_size_ << ", cache limit = " << cache_limit_ << "\n"; typename list::iterator siter = cache_states_.begin(); size_t cache_target = (2 * cache_limit_)/3 + 1; while (siter != cache_states_.end()) { StateId s = *siter; S* state = VectorFstBaseImpl::GetState(s); if (cache_size_ > cache_target && state->ref_count == 0 && (free_recent || !(state->flags & kCacheRecent)) && s != current) { cache_size_ -= sizeof(S) + state->arcs.capacity() * sizeof(Arc); allocator_->Free(state, s); SetState(s, 0); cache_states_.erase(siter++); } else { state->flags &= ~kCacheRecent; ++siter; } } if (!free_recent && cache_size_ > cache_target) { GC(current, true); } else { while (cache_size_ > cache_target) { cache_limit_ *= 2; cache_target *= 2; } } VLOG(2) << "CacheImpl: Exit GC: object = " << Type() << "(" << this << "), free recently cached = " << free_recent << ", cache size = " << cache_size_ << ", cache limit = " << cache_limit_ << "\n"; } void ExpandedState(StateId s) { if (s < min_unexpanded_state_id_) return; while (expanded_states_.size() <= s) expanded_states_.push_back(false); expanded_states_[s] = true; } // Caching on/off switch, limit and size accessors. bool GetCacheGc() const { return cache_gc_; } size_t GetCacheLimit() const { return cache_limit_; } size_t GetCacheSize() const { return cache_size_; } private: static const size_t kMinCacheLimit = 8096; // Minimum (non-zero) cache limit static const uint32 kCacheFinal = 0x0001; // Final weight has been cached static const uint32 kCacheArcs = 0x0002; // Arcs have been cached static const uint32 kCacheRecent = 0x0004; // Mark as visited since GC public: static const uint32 kCacheModified = 0x0008; // Mark state as modified static const uint32 kCacheFlags = kCacheFinal | kCacheArcs | kCacheRecent | kCacheModified; protected: C *allocator_; // used to allocate new states private: mutable bool cache_start_; // Is the start state cached? StateId nknown_states_; // # of known states vector expanded_states_; // states that have been expanded mutable StateId min_unexpanded_state_id_; // minimum never-expanded state Id StateId cache_first_state_id_; // First cached state id S *cache_first_state_; // First cached state list cache_states_; // list of currently cached states bool cache_gc_; // enable GC size_t cache_size_; // # of bytes cached size_t cache_limit_; // # of bytes allowed before GC void operator=(const CacheBaseImpl &impl); // disallow }; template const uint32 CacheBaseImpl::kCacheFinal; template const uint32 CacheBaseImpl::kCacheArcs; template const uint32 CacheBaseImpl::kCacheRecent; template const uint32 CacheBaseImpl::kCacheModified; template const size_t CacheBaseImpl::kMinCacheLimit; // Arcs implemented by an STL vector per state. Similar to VectorState // but adds flags and ref count to keep track of what has been cached. template struct CacheState { typedef A Arc; typedef typename A::Weight Weight; typedef typename A::StateId StateId; CacheState() : final(Weight::Zero()), flags(0), ref_count(0) {} void Reset() { flags = 0; ref_count = 0; arcs.resize(0); } Weight final; // Final weight vector arcs; // Arcs represenation size_t niepsilons; // # of input epsilons size_t noepsilons; // # of output epsilons mutable uint32 flags; mutable int ref_count; }; // A CacheBaseImpl with a commonly used CacheState. template class CacheImpl : public CacheBaseImpl< CacheState > { public: typedef CacheState State; CacheImpl() {} explicit CacheImpl(const CacheOptions &opts) : CacheBaseImpl< CacheState >(opts) {} CacheImpl(const CacheImpl &impl) : CacheBaseImpl(impl) {} private: void operator=(const CacheImpl &impl); // disallow }; // Use this to make a state iterator for a CacheBaseImpl-derived Fst, // which must have type 'State' defined. Note this iterator only // returns those states reachable from the initial state, so consider // implementing a class-specific one. template class CacheStateIterator : public StateIteratorBase { public: typedef typename F::Arc Arc; typedef typename Arc::StateId StateId; typedef typename F::State State; typedef CacheBaseImpl Impl; CacheStateIterator(const F &fst, Impl *impl) : fst_(fst), impl_(impl), s_(0) {} bool Done() const { if (s_ < impl_->NumKnownStates()) return false; fst_.Start(); // force start state if (s_ < impl_->NumKnownStates()) return false; for (StateId u = impl_->MinUnexpandedState(); u < impl_->NumKnownStates(); u = impl_->MinUnexpandedState()) { // force state expansion ArcIterator aiter(fst_, u); aiter.SetFlags(kArcValueFlags, kArcValueFlags | kArcNoCache); for (; !aiter.Done(); aiter.Next()) impl_->UpdateNumKnownStates(aiter.Value().nextstate); impl_->ExpandedState(u); if (s_ < impl_->NumKnownStates()) return false; } return true; } StateId Value() const { return s_; } void Next() { ++s_; } void Reset() { s_ = 0; } private: // This allows base class virtual access to non-virtual derived- // class members of the same name. It makes the derived class more // efficient to use but unsafe to further derive. virtual bool Done_() const { return Done(); } virtual StateId Value_() const { return Value(); } virtual void Next_() { Next(); } virtual void Reset_() { Reset(); } const F &fst_; Impl *impl_; StateId s_; }; // Use this to make an arc iterator for a CacheBaseImpl-derived Fst, // which must have types 'Arc' and 'State' defined. template > > class CacheArcIterator { public: typedef typename F::Arc Arc; typedef typename F::State State; typedef typename Arc::StateId StateId; typedef CacheBaseImpl Impl; CacheArcIterator(Impl *impl, StateId s) : i_(0) { state_ = impl->ExtendState(s); ++state_->ref_count; } ~CacheArcIterator() { --state_->ref_count; } bool Done() const { return i_ >= state_->arcs.size(); } const Arc& Value() const { return state_->arcs[i_]; } void Next() { ++i_; } size_t Position() const { return i_; } void Reset() { i_ = 0; } void Seek(size_t a) { i_ = a; } uint32 Flags() const { return kArcValueFlags; } void SetFlags(uint32 flags, uint32 mask) {} private: const State *state_; size_t i_; DISALLOW_COPY_AND_ASSIGN(CacheArcIterator); }; // Use this to make a mutable arc iterator for a CacheBaseImpl-derived Fst, // which must have types 'Arc' and 'State' defined. template > > class CacheMutableArcIterator : public MutableArcIteratorBase { public: typedef typename F::State State; typedef typename F::Arc Arc; typedef typename Arc::StateId StateId; typedef typename Arc::Weight Weight; typedef CacheBaseImpl Impl; // You will need to call MutateCheck() in the constructor. CacheMutableArcIterator(Impl *impl, StateId s) : i_(0), s_(s), impl_(impl) { state_ = impl_->ExtendState(s_); ++state_->ref_count; }; ~CacheMutableArcIterator() { --state_->ref_count; } bool Done() const { return i_ >= state_->arcs.size(); } const Arc& Value() const { return state_->arcs[i_]; } void Next() { ++i_; } size_t Position() const { return i_; } void Reset() { i_ = 0; } void Seek(size_t a) { i_ = a; } void SetValue(const Arc& arc) { state_->flags |= CacheBaseImpl::kCacheModified; uint64 properties = impl_->Properties(); Arc& oarc = state_->arcs[i_]; if (oarc.ilabel != oarc.olabel) properties &= ~kNotAcceptor; if (oarc.ilabel == 0) { --state_->niepsilons; properties &= ~kIEpsilons; if (oarc.olabel == 0) properties &= ~kEpsilons; } if (oarc.olabel == 0) { --state_->noepsilons; properties &= ~kOEpsilons; } if (oarc.weight != Weight::Zero() && oarc.weight != Weight::One()) properties &= ~kWeighted; oarc = arc; if (arc.ilabel != arc.olabel) { properties |= kNotAcceptor; properties &= ~kAcceptor; } if (arc.ilabel == 0) { ++state_->niepsilons; properties |= kIEpsilons; properties &= ~kNoIEpsilons; if (arc.olabel == 0) { properties |= kEpsilons; properties &= ~kNoEpsilons; } } if (arc.olabel == 0) { ++state_->noepsilons; properties |= kOEpsilons; properties &= ~kNoOEpsilons; } if (arc.weight != Weight::Zero() && arc.weight != Weight::One()) { properties |= kWeighted; properties &= ~kUnweighted; } properties &= kSetArcProperties | kAcceptor | kNotAcceptor | kEpsilons | kNoEpsilons | kIEpsilons | kNoIEpsilons | kOEpsilons | kNoOEpsilons | kWeighted | kUnweighted; impl_->SetProperties(properties); } uint32 Flags() const { return kArcValueFlags; } void SetFlags(uint32 f, uint32 m) {} private: virtual bool Done_() const { return Done(); } virtual const Arc& Value_() const { return Value(); } virtual void Next_() { Next(); } virtual size_t Position_() const { return Position(); } virtual void Reset_() { Reset(); } virtual void Seek_(size_t a) { Seek(a); } virtual void SetValue_(const Arc &a) { SetValue(a); } uint32 Flags_() const { return Flags(); } void SetFlags_(uint32 f, uint32 m) { SetFlags(f, m); } size_t i_; StateId s_; Impl *impl_; State *state_; DISALLOW_COPY_AND_ASSIGN(CacheMutableArcIterator); }; } // namespace fst #endif // FST_LIB_CACHE_H__