aboutsummaryrefslogtreecommitdiff
path: root/src/include/fst/prune.h
blob: 5ea5b4dd927cb6a6379a2bebe562d2787539cf92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// prune.h

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: allauzen@google.com (Cyril Allauzen)
//
// \file
// Functions implementing pruning.

#ifndef FST_LIB_PRUNE_H__
#define FST_LIB_PRUNE_H__

#include <vector>
using std::vector;

#include <fst/arcfilter.h>
#include <fst/heap.h>
#include <fst/shortest-distance.h>


namespace fst {

template <class A, class ArcFilter>
class PruneOptions {
 public:
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;

  // Pruning weight threshold.
  Weight weight_threshold;
  // Pruning state threshold.
  StateId state_threshold;
  // Arc filter.
  ArcFilter filter;
  // If non-zero, passes in pre-computed shortest distance to final states.
  const vector<Weight> *distance;
  // Determines the degree of convergence required when computing shortest
  // distances.
  float delta;

  explicit PruneOptions(const Weight& w, StateId s, ArcFilter f,
                        vector<Weight> *d = 0, float e = kDelta)
      : weight_threshold(w),
        state_threshold(s),
        filter(f),
        distance(d),
        delta(e) {}
 private:
  PruneOptions();  // disallow
};


template <class S, class W>
class PruneCompare {
 public:
  typedef S StateId;
  typedef W Weight;

  PruneCompare(const vector<Weight> &idistance,
               const vector<Weight> &fdistance)
      : idistance_(idistance), fdistance_(fdistance) {}

  bool operator()(const StateId x, const StateId y) const {
    Weight wx = Times(x < idistance_.size() ? idistance_[x] : Weight::Zero(),
                      x < fdistance_.size() ? fdistance_[x] : Weight::Zero());
    Weight wy = Times(y < idistance_.size() ? idistance_[y] : Weight::Zero(),
                      y < fdistance_.size() ? fdistance_[y] : Weight::Zero());
    return less_(wx, wy);
  }

 private:
  const vector<Weight> &idistance_;
  const vector<Weight> &fdistance_;
  NaturalLess<Weight> less_;
};



// Pruning algorithm: this version modifies its input and it takes an
// options class as an argment. Delete states and arcs in 'fst' that
// do not belong to a successful path whose weight is no more than
// the weight of the shortest path Times() 'opts.weight_threshold'.
// When 'opts.state_threshold != kNoStateId', the resulting transducer
// will restricted further to have at most 'opts.state_threshold'
// states. Weights need to be commutative and have the path
// property. The weight 'w' of any cycle needs to be bounded, i.e.,
// 'Plus(w, W::One()) = One()'.
template <class Arc, class ArcFilter>
void Prune(MutableFst<Arc> *fst,
           const PruneOptions<Arc, ArcFilter> &opts) {
  typedef typename Arc::Weight Weight;
  typedef typename Arc::StateId StateId;

  if ((Weight::Properties() & (kPath | kCommutative))
      != (kPath | kCommutative)) {
    FSTERROR() << "Prune: Weight needs to have the path property and"
               << " be commutative: "
               << Weight::Type();
    fst->SetProperties(kError, kError);
    return;
  }
  StateId ns = fst->NumStates();
  if (ns == 0) return;
  vector<Weight> idistance(ns, Weight::Zero());
  vector<Weight> tmp;
  if (!opts.distance) {
    tmp.reserve(ns);
    ShortestDistance(*fst, &tmp, true, opts.delta);
  }
  const vector<Weight> *fdistance = opts.distance ? opts.distance : &tmp;

  if ((opts.state_threshold == 0) ||
      (fdistance->size() <= fst->Start()) ||
      ((*fdistance)[fst->Start()] == Weight::Zero())) {
    fst->DeleteStates();
    return;
  }
  PruneCompare<StateId, Weight> compare(idistance, *fdistance);
  Heap< StateId, PruneCompare<StateId, Weight>, false> heap(compare);
  vector<bool> visited(ns, false);
  vector<size_t> enqueued(ns, kNoKey);
  vector<StateId> dead;
  dead.push_back(fst->AddState());
  NaturalLess<Weight> less;
  Weight limit = Times((*fdistance)[fst->Start()], opts.weight_threshold);

  StateId num_visited = 0;
  StateId s = fst->Start();
  if (!less(limit, (*fdistance)[s])) {
    idistance[s] = Weight::One();
    enqueued[s] = heap.Insert(s);
    ++num_visited;
  }

  while (!heap.Empty()) {
    s = heap.Top();
    heap.Pop();
    enqueued[s] = kNoKey;
    visited[s] = true;
    if (less(limit, Times(idistance[s], fst->Final(s))))
      fst->SetFinal(s, Weight::Zero());
    for (MutableArcIterator< MutableFst<Arc> > ait(fst, s);
         !ait.Done();
         ait.Next()) {
      Arc arc = ait.Value();
      if (!opts.filter(arc)) continue;
      Weight weight = Times(Times(idistance[s], arc.weight),
                            arc.nextstate < fdistance->size()
                            ? (*fdistance)[arc.nextstate]
                            : Weight::Zero());
      if (less(limit, weight)) {
        arc.nextstate = dead[0];
        ait.SetValue(arc);
        continue;
      }
      if (less(Times(idistance[s], arc.weight), idistance[arc.nextstate]))
        idistance[arc.nextstate] = Times(idistance[s], arc.weight);
      if (visited[arc.nextstate]) continue;
      if ((opts.state_threshold != kNoStateId) &&
          (num_visited >= opts.state_threshold))
        continue;
      if (enqueued[arc.nextstate] == kNoKey) {
        enqueued[arc.nextstate] = heap.Insert(arc.nextstate);
        ++num_visited;
      } else {
        heap.Update(enqueued[arc.nextstate], arc.nextstate);
      }
    }
  }
  for (size_t i = 0; i < visited.size(); ++i)
    if (!visited[i]) dead.push_back(i);
  fst->DeleteStates(dead);
}


// Pruning algorithm: this version modifies its input and simply takes
// the pruning threshold as an argument. Delete states and arcs in
// 'fst' that do not belong to a successful path whose weight is no
// more than the weight of the shortest path Times()
// 'weight_threshold'.  When 'state_threshold != kNoStateId', the
// resulting transducer will be restricted further to have at most
// 'opts.state_threshold' states. Weights need to be commutative and
// have the path property. The weight 'w' of any cycle needs to be
// bounded, i.e., 'Plus(w, W::One()) = One()'.
template <class Arc>
void Prune(MutableFst<Arc> *fst,
           typename Arc::Weight weight_threshold,
           typename Arc::StateId state_threshold = kNoStateId,
           double delta = kDelta) {
  PruneOptions<Arc, AnyArcFilter<Arc> > opts(weight_threshold, state_threshold,
                                             AnyArcFilter<Arc>(), 0, delta);
  Prune(fst, opts);
}


// Pruning algorithm: this version writes the pruned input Fst to an
// output MutableFst and it takes an options class as an argument.
// 'ofst' contains states and arcs that belong to a successful path in
// 'ifst' whose weight is no more than the weight of the shortest path
// Times() 'opts.weight_threshold'. When 'opts.state_threshold !=
// kNoStateId', 'ofst' will be restricted further to have at most
// 'opts.state_threshold' states. Weights need to be commutative and
// have the path property. The weight 'w' of any cycle needs to be
// bounded, i.e., 'Plus(w, W::One()) = One()'.
template <class Arc, class ArcFilter>
void Prune(const Fst<Arc> &ifst,
           MutableFst<Arc> *ofst,
           const PruneOptions<Arc, ArcFilter> &opts) {
  typedef typename Arc::Weight Weight;
  typedef typename Arc::StateId StateId;

  if ((Weight::Properties() & (kPath | kCommutative))
      != (kPath | kCommutative)) {
    FSTERROR() << "Prune: Weight needs to have the path property and"
               << " be commutative: "
               << Weight::Type();
    ofst->SetProperties(kError, kError);
    return;
  }
  ofst->DeleteStates();
  ofst->SetInputSymbols(ifst.InputSymbols());
  ofst->SetOutputSymbols(ifst.OutputSymbols());
  if (ifst.Start() == kNoStateId)
    return;
  NaturalLess<Weight> less;
  if (less(opts.weight_threshold, Weight::One()) ||
      (opts.state_threshold == 0))
    return;
  vector<Weight> idistance;
  vector<Weight> tmp;
  if (!opts.distance)
    ShortestDistance(ifst, &tmp, true, opts.delta);
  const vector<Weight> *fdistance = opts.distance ? opts.distance : &tmp;

  if ((fdistance->size() <= ifst.Start()) ||
      ((*fdistance)[ifst.Start()] == Weight::Zero())) {
    return;
  }
  PruneCompare<StateId, Weight> compare(idistance, *fdistance);
  Heap< StateId, PruneCompare<StateId, Weight>, false> heap(compare);
  vector<StateId> copy;
  vector<size_t> enqueued;
  vector<bool> visited;

  StateId s = ifst.Start();
  Weight limit = Times(s < fdistance->size() ? (*fdistance)[s] : Weight::Zero(),
                         opts.weight_threshold);
  while (copy.size() <= s)
    copy.push_back(kNoStateId);
  copy[s] = ofst->AddState();
  ofst->SetStart(copy[s]);
  while (idistance.size() <= s)
    idistance.push_back(Weight::Zero());
  idistance[s] = Weight::One();
  while (enqueued.size() <= s) {
    enqueued.push_back(kNoKey);
    visited.push_back(false);
  }
  enqueued[s] = heap.Insert(s);

  while (!heap.Empty()) {
    s = heap.Top();
    heap.Pop();
    enqueued[s] = kNoKey;
    visited[s] = true;
    if (!less(limit, Times(idistance[s], ifst.Final(s))))
      ofst->SetFinal(copy[s], ifst.Final(s));
    for (ArcIterator< Fst<Arc> > ait(ifst, s);
         !ait.Done();
         ait.Next()) {
      const Arc &arc = ait.Value();
      if (!opts.filter(arc)) continue;
      Weight weight = Times(Times(idistance[s], arc.weight),
                            arc.nextstate < fdistance->size()
                            ? (*fdistance)[arc.nextstate]
                            : Weight::Zero());
      if (less(limit, weight)) continue;
      if ((opts.state_threshold != kNoStateId) &&
          (ofst->NumStates() >= opts.state_threshold))
        continue;
      while (idistance.size() <= arc.nextstate)
        idistance.push_back(Weight::Zero());
      if (less(Times(idistance[s], arc.weight),
               idistance[arc.nextstate]))
        idistance[arc.nextstate] = Times(idistance[s], arc.weight);
      while (copy.size() <= arc.nextstate)
        copy.push_back(kNoStateId);
      if (copy[arc.nextstate] == kNoStateId)
        copy[arc.nextstate] = ofst->AddState();
      ofst->AddArc(copy[s], Arc(arc.ilabel, arc.olabel, arc.weight,
                                copy[arc.nextstate]));
      while (enqueued.size() <= arc.nextstate) {
        enqueued.push_back(kNoKey);
        visited.push_back(false);
      }
      if (visited[arc.nextstate]) continue;
      if (enqueued[arc.nextstate] == kNoKey)
        enqueued[arc.nextstate] = heap.Insert(arc.nextstate);
      else
        heap.Update(enqueued[arc.nextstate], arc.nextstate);
    }
  }
}


// Pruning algorithm: this version writes the pruned input Fst to an
// output MutableFst and simply takes the pruning threshold as an
// argument.  'ofst' contains states and arcs that belong to a
// successful path in 'ifst' whose weight is no more than
// the weight of the shortest path Times() 'weight_threshold'. When
// 'state_threshold != kNoStateId', 'ofst' will be restricted further
// to have at most 'opts.state_threshold' states. Weights need to be
// commutative and have the path property. The weight 'w' of any cycle
// needs to be bounded, i.e., 'Plus(w, W::One()) = W::One()'.
template <class Arc>
void Prune(const Fst<Arc> &ifst,
           MutableFst<Arc> *ofst,
           typename Arc::Weight weight_threshold,
           typename Arc::StateId state_threshold = kNoStateId,
           float delta = kDelta) {
  PruneOptions<Arc, AnyArcFilter<Arc> > opts(weight_threshold, state_threshold,
                                             AnyArcFilter<Arc>(), 0, delta);
  Prune(ifst, ofst, opts);
}

}  // namespace fst

#endif // FST_LIB_PRUNE_H_