aboutsummaryrefslogtreecommitdiff
path: root/src/include/fst/test-properties.h
blob: db1ddcc4287ba337abc07b72a8e40a3a8bfcc0a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// test-properties.h

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: riley@google.com (Michael Riley)
//
// \file
// Functions to manipulate and test property bits

#ifndef FST_LIB_TEST_PROPERTIES_H__
#define FST_LIB_TEST_PROPERTIES_H__

#include <unordered_set>
using std::tr1::unordered_set;
using std::tr1::unordered_multiset;

#include <fst/dfs-visit.h>
#include <fst/connect.h>


DECLARE_bool(fst_verify_properties);

namespace fst {

// For a binary property, the bit is always returned set.
// For a trinary (i.e. two-bit) property, both bits are
// returned set iff either corresponding input bit is set.
inline uint64 KnownProperties(uint64 props) {
  return kBinaryProperties | (props & kTrinaryProperties) |
    ((props & kPosTrinaryProperties) << 1) |
    ((props & kNegTrinaryProperties) >> 1);
}

// Tests compatibility between two sets of properties
inline bool CompatProperties(uint64 props1, uint64 props2) {
  uint64 known_props1 = KnownProperties(props1);
  uint64 known_props2 = KnownProperties(props2);
  uint64 known_props = known_props1 & known_props2;
  uint64 incompat_props = (props1 & known_props) ^ (props2 & known_props);
  if (incompat_props) {
    uint64 prop = 1;
    for (int i = 0; i < 64; ++i, prop <<= 1)
      if (prop & incompat_props)
        LOG(ERROR) << "CompatProperties: mismatch: " << PropertyNames[i]
                   << ": props1 = " << (props1 & prop ? "true" : "false")
                   << ", props2 = " << (props2 & prop ? "true" : "false");
    return false;
  } else {
    return true;
  }
}

// Computes FST property values defined in properties.h.  The value of
// each property indicated in the mask will be determined and returned
// (these will never be unknown here). In the course of determining
// the properties specifically requested in the mask, certain other
// properties may be determined (those with little additional expense)
// and their values will be returned as well. The complete set of
// known properties (whether true or false) determined by this
// operation will be assigned to the the value pointed to by KNOWN.
// If 'use_stored' is true, pre-computed FST properties may be used
// when possible. This routine is seldom called directly; instead it
// is used to implement fst.Properties(mask, true).
template<class Arc>
uint64 ComputeProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known,
                         bool use_stored) {
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;
  typedef typename Arc::StateId StateId;

  uint64 fst_props = fst.Properties(kFstProperties, false);  // Fst-stored

  // Check stored FST properties first if allowed.
  if (use_stored) {
    uint64 known_props = KnownProperties(fst_props);
    // If FST contains required info, return it.
    if ((known_props & mask) == mask) {
      *known = known_props;
      return fst_props;
    }
  }

  // Compute (trinary) properties explicitly.

  // Initialize with binary properties (already known).
  uint64 comp_props = fst_props & kBinaryProperties;

  // Compute these trinary properties with a DFS. We compute only those
  // that need a DFS here, since we otherwise would like to avoid a DFS
  // since its stack could grow large.
  uint64 dfs_props = kCyclic | kAcyclic | kInitialCyclic | kInitialAcyclic |
                     kAccessible | kNotAccessible |
                     kCoAccessible | kNotCoAccessible;
  if (mask & dfs_props) {
    SccVisitor<Arc> scc_visitor(&comp_props);
    DfsVisit(fst, &scc_visitor);
  }

  // Compute any remaining trinary properties via a state and arcs iterations
  if (mask & ~(kBinaryProperties | dfs_props)) {
    comp_props |= kAcceptor | kNoEpsilons | kNoIEpsilons | kNoOEpsilons |
        kILabelSorted | kOLabelSorted | kUnweighted | kTopSorted | kString;
    if (mask & (kIDeterministic | kNonIDeterministic))
      comp_props |= kIDeterministic;
    if (mask & (kODeterministic | kNonODeterministic))
      comp_props |= kODeterministic;

    unordered_set<Label> *ilabels = 0;
    unordered_set<Label> *olabels = 0;

    StateId nfinal = 0;
    for (StateIterator< Fst<Arc> > siter(fst);
         !siter.Done();
         siter.Next()) {
      StateId s = siter.Value();

      Arc prev_arc(kNoLabel, kNoLabel, Weight::One(), 0);
      // Create these only if we need to
      if (mask & (kIDeterministic | kNonIDeterministic))
        ilabels = new unordered_set<Label>;
      if (mask & (kODeterministic | kNonODeterministic))
        olabels = new unordered_set<Label>;

      for (ArcIterator< Fst<Arc> > aiter(fst, s);
           !aiter.Done();
           aiter.Next()) {
        const Arc &arc =aiter.Value();

        if (ilabels && ilabels->find(arc.ilabel) != ilabels->end()) {
          comp_props |= kNonIDeterministic;
          comp_props &= ~kIDeterministic;
        }
        if (olabels && olabels->find(arc.olabel) != olabels->end()) {
          comp_props |= kNonODeterministic;
          comp_props &= ~kODeterministic;
        }
        if (arc.ilabel != arc.olabel) {
          comp_props |= kNotAcceptor;
          comp_props &= ~kAcceptor;
        }
        if (arc.ilabel == 0 && arc.olabel == 0) {
          comp_props |= kEpsilons;
          comp_props &= ~kNoEpsilons;
        }
        if (arc.ilabel == 0) {
          comp_props |= kIEpsilons;
          comp_props &= ~kNoIEpsilons;
        }
        if (arc.olabel == 0) {
          comp_props |= kOEpsilons;
          comp_props &= ~kNoOEpsilons;
        }
        if (prev_arc.ilabel != kNoLabel && arc.ilabel < prev_arc.ilabel) {
          comp_props |= kNotILabelSorted;
          comp_props &= ~kILabelSorted;
        }
        if (prev_arc.olabel != kNoLabel && arc.olabel < prev_arc.olabel) {
          comp_props |= kNotOLabelSorted;
          comp_props &= ~kOLabelSorted;
        }
        if (arc.weight != Weight::One() && arc.weight != Weight::Zero()) {
          comp_props |= kWeighted;
          comp_props &= ~kUnweighted;
        }
        if (arc.nextstate <= s) {
          comp_props |= kNotTopSorted;
          comp_props &= ~kTopSorted;
        }
        if (arc.nextstate != s + 1) {
          comp_props |= kNotString;
          comp_props &= ~kString;
        }
        prev_arc = arc;
        if (ilabels)
          ilabels->insert(arc.ilabel);
        if (olabels)
          olabels->insert(arc.olabel);
      }

      if (nfinal > 0) {             // final state not last
        comp_props |= kNotString;
        comp_props &= ~kString;
      }

      Weight final = fst.Final(s);

      if (final != Weight::Zero()) {  // final state
        if (final != Weight::One()) {
          comp_props |= kWeighted;
          comp_props &= ~kUnweighted;
        }
        ++nfinal;
      } else {                        // non-final state
        if (fst.NumArcs(s) != 1) {
          comp_props |= kNotString;
          comp_props &= ~kString;
        }
      }

      delete ilabels;
      delete olabels;
    }

    if (fst.Start() != kNoStateId && fst.Start() != 0) {
      comp_props |= kNotString;
      comp_props &= ~kString;
    }
  }

  *known = KnownProperties(comp_props);
  return comp_props;
}

// This is a wrapper around ComputeProperties that will cause a fatal
// error if the stored properties and the computed properties are
// incompatible when 'FLAGS_fst_verify_properties' is true.  This
// routine is seldom called directly; instead it is used to implement
// fst.Properties(mask, true).
template<class Arc>
uint64 TestProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known) {
  if (FLAGS_fst_verify_properties) {
    uint64 stored_props = fst.Properties(kFstProperties, false);
    uint64 computed_props = ComputeProperties(fst, mask, known, false);
    if (!CompatProperties(stored_props, computed_props))
      LOG(FATAL) << "TestProperties: stored Fst properties incorrect"
                 << " (stored: props1, computed: props2)";
    return computed_props;
  } else {
    return ComputeProperties(fst, mask, known, true);
  }
}

}  // namespace fst

#endif  // FST_LIB_TEST_PROPERTIES_H__