aboutsummaryrefslogtreecommitdiff
path: root/cast/streaming/rtcp_common_unittest.cc
blob: 14aaa7eea5018d6912e7c8e0788c740a9aee9900 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cast/streaming/rtcp_common.h"

#include <chrono>
#include <limits>

#include "absl/types/span.h"
#include "gtest/gtest.h"
#include "platform/api/time.h"
#include "util/chrono_helpers.h"

namespace openscreen {
namespace cast {
namespace {

template <typename T>
void SerializeAndExpectPointerAdvanced(const T& source,
                                       int num_bytes,
                                       uint8_t* buffer) {
  absl::Span<uint8_t> buffer_span(buffer, num_bytes);
  source.AppendFields(&buffer_span);
  EXPECT_EQ(buffer + num_bytes, buffer_span.data());
}

// Tests that the RTCP Common Header for a packet type that includes an Item
// Count is successfully serialized and re-parsed.
TEST(RtcpCommonTest, SerializesAndParsesHeaderForSenderReports) {
  RtcpCommonHeader original;
  original.packet_type = RtcpPacketType::kSenderReport;
  original.with.report_count = 31;
  original.payload_size = 16;

  uint8_t buffer[kRtcpCommonHeaderSize];
  SerializeAndExpectPointerAdvanced(original, kRtcpCommonHeaderSize, buffer);

  const auto parsed = RtcpCommonHeader::Parse(buffer);
  ASSERT_TRUE(parsed.has_value());
  EXPECT_EQ(original.packet_type, parsed->packet_type);
  EXPECT_EQ(original.with.report_count, parsed->with.report_count);
  EXPECT_EQ(original.payload_size, parsed->payload_size);
}

// Tests that the RTCP Common Header for a packet type that includes a RTCP
// Subtype is successfully serialized and re-parsed.
TEST(RtcpCommonTest, SerializesAndParsesHeaderForCastFeedback) {
  RtcpCommonHeader original;
  original.packet_type = RtcpPacketType::kPayloadSpecific;
  original.with.subtype = RtcpSubtype::kFeedback;
  original.payload_size = 99 * sizeof(uint32_t);

  uint8_t buffer[kRtcpCommonHeaderSize];
  SerializeAndExpectPointerAdvanced(original, kRtcpCommonHeaderSize, buffer);

  const auto parsed = RtcpCommonHeader::Parse(buffer);
  ASSERT_TRUE(parsed.has_value());
  EXPECT_EQ(original.packet_type, parsed->packet_type);
  EXPECT_EQ(original.with.subtype, parsed->with.subtype);
  EXPECT_EQ(original.payload_size, parsed->payload_size);
}

// Tests that a RTCP Common Header will not be parsed from an empty buffer.
TEST(RtcpCommonTest, WillNotParseHeaderFromEmptyBuffer) {
  const uint8_t kEmptyPacket[] = {};
  EXPECT_FALSE(
      RtcpCommonHeader::Parse(absl::Span<const uint8_t>(kEmptyPacket, 0))
          .has_value());
}

// Tests that a RTCP Common Header will not be parsed from a buffer containing
// garbage data.
TEST(RtcpCommonTest, WillNotParseHeaderFromGarbage) {
  // clang-format off
  const uint8_t kGarbage[] = {
    0x4f, 0x27, 0xeb, 0x22, 0x27, 0xeb, 0x22, 0x4f,
    0xeb, 0x22, 0x4f, 0x27, 0x22, 0x4f, 0x27, 0xeb,
  };
  // clang-format on
  EXPECT_FALSE(RtcpCommonHeader::Parse(kGarbage).has_value());
}

// Tests whether RTCP Common Header validation logic is correct.
TEST(RtcpCommonTest, WillNotParseHeaderWithInvalidData) {
  // clang-format off
  const uint8_t kCastFeedbackPacket[] = {
    0b10000001,  // Version=2, Padding=no, ItemCount=1 byte.
    206,  // RTCP Packet type byte.
    0x00, 0x04,  // Length of remainder of packet, in 32-bit words.
    9, 8, 7, 6,  // SSRC of receiver.
    1, 2, 3, 4,  // SSRC of sender.
    'C', 'A', 'S', 'T',
    0x0a,  // Checkpoint Frame ID (lower 8 bits).
    0x00,  // Number of "Loss Fields"
    0x00, 0x28,  // Current Playout Delay in milliseconds.
  };
  // clang-format on

  // Start with a valid packet, and expect the parse to succeed.
  uint8_t buffer[sizeof(kCastFeedbackPacket)];
  memcpy(buffer, kCastFeedbackPacket, sizeof(buffer));
  EXPECT_TRUE(RtcpCommonHeader::Parse(buffer).has_value());

  // Wrong version in first byte: Expect parse failure.
  buffer[0] = 0b01000001;
  EXPECT_FALSE(RtcpCommonHeader::Parse(buffer).has_value());
  buffer[0] = kCastFeedbackPacket[0];

  // Wrong packet type (not in RTCP range): Expect parse failure.
  buffer[1] = 42;
  EXPECT_FALSE(RtcpCommonHeader::Parse(buffer).has_value());
  buffer[1] = kCastFeedbackPacket[1];
}

// Test that the Report Block optionally included in Sender Reports or Receiver
// Reports can be serialized and re-parsed correctly.
TEST(RtcpCommonTest, SerializesAndParsesRtcpReportBlocks) {
  constexpr Ssrc kSsrc{0x04050607};

  RtcpReportBlock original;
  original.ssrc = kSsrc;
  original.packet_fraction_lost_numerator = 0x67;
  original.cumulative_packets_lost = 74536;
  original.extended_high_sequence_number = 0x0201fedc;
  original.jitter = RtpTimeDelta::FromTicks(123);
  original.last_status_report_id = 0x0908;
  original.delay_since_last_report = RtcpReportBlock::Delay(99999);

  uint8_t buffer[kRtcpReportBlockSize];
  SerializeAndExpectPointerAdvanced(original, kRtcpReportBlockSize, buffer);

  // If the number of report blocks is zero, or some other SSRC is specified,
  // ParseOne() should not return a result.
  EXPECT_FALSE(RtcpReportBlock::ParseOne(buffer, 0, 0).has_value());
  EXPECT_FALSE(RtcpReportBlock::ParseOne(buffer, 0, kSsrc).has_value());
  EXPECT_FALSE(RtcpReportBlock::ParseOne(buffer, 1, 0).has_value());

  // Expect that the report block is parsed correctly.
  const auto parsed = RtcpReportBlock::ParseOne(buffer, 1, kSsrc);
  ASSERT_TRUE(parsed.has_value());
  EXPECT_EQ(original.ssrc, parsed->ssrc);
  EXPECT_EQ(original.packet_fraction_lost_numerator,
            parsed->packet_fraction_lost_numerator);
  EXPECT_EQ(original.cumulative_packets_lost, parsed->cumulative_packets_lost);
  EXPECT_EQ(original.extended_high_sequence_number,
            parsed->extended_high_sequence_number);
  EXPECT_EQ(original.jitter, parsed->jitter);
  EXPECT_EQ(original.last_status_report_id, parsed->last_status_report_id);
  EXPECT_EQ(original.delay_since_last_report, parsed->delay_since_last_report);
}

// Tests that the Report Block parser can, among multiple Report Blocks, find
// the one with a matching recipient SSRC.
TEST(RtcpCommonTest, ParsesOneReportBlockFromMultipleBlocks) {
  constexpr Ssrc kSsrc{0x04050607};
  constexpr int kNumBlocks = 5;

  RtcpReportBlock expected;
  expected.ssrc = kSsrc;
  expected.packet_fraction_lost_numerator = 0x67;
  expected.cumulative_packets_lost = 74536;
  expected.extended_high_sequence_number = 0x0201fedc;
  expected.jitter = RtpTimeDelta::FromTicks(123);
  expected.last_status_report_id = 0x0908;
  expected.delay_since_last_report = RtcpReportBlock::Delay(99999);

  // Generate multiple report blocks with different recipient SSRCs.
  uint8_t buffer[kRtcpReportBlockSize * kNumBlocks];
  absl::Span<uint8_t> buffer_span(buffer, kRtcpReportBlockSize * kNumBlocks);
  for (int i = 0; i < kNumBlocks; ++i) {
    RtcpReportBlock another;
    another.ssrc = expected.ssrc + i - 2;
    another.packet_fraction_lost_numerator =
        expected.packet_fraction_lost_numerator + i - 2;
    another.cumulative_packets_lost = expected.cumulative_packets_lost + i - 2;
    another.extended_high_sequence_number =
        expected.extended_high_sequence_number + i - 2;
    another.jitter = expected.jitter + RtpTimeDelta::FromTicks(i - 2);
    another.last_status_report_id = expected.last_status_report_id + i - 2;
    another.delay_since_last_report =
        expected.delay_since_last_report + RtcpReportBlock::Delay(i - 2);

    another.AppendFields(&buffer_span);
  }

  // Expect that the desired report block is found and parsed correctly.
  const auto parsed = RtcpReportBlock::ParseOne(buffer, kNumBlocks, kSsrc);
  ASSERT_TRUE(parsed.has_value());
  EXPECT_EQ(expected.ssrc, parsed->ssrc);
  EXPECT_EQ(expected.packet_fraction_lost_numerator,
            parsed->packet_fraction_lost_numerator);
  EXPECT_EQ(expected.cumulative_packets_lost, parsed->cumulative_packets_lost);
  EXPECT_EQ(expected.extended_high_sequence_number,
            parsed->extended_high_sequence_number);
  EXPECT_EQ(expected.jitter, parsed->jitter);
  EXPECT_EQ(expected.last_status_report_id, parsed->last_status_report_id);
  EXPECT_EQ(expected.delay_since_last_report, parsed->delay_since_last_report);
}

// Tests the helper for computing the packet fraction loss numerator, a value
// that should always be between 0 and 255, in terms of absolute packet counts.
TEST(RtcpCommonTest, ComputesPacketLossFractionForReportBlocks) {
  const auto ComputeFractionLost = [](int64_t num_apparently_sent,
                                      int64_t num_received) {
    RtcpReportBlock report;
    report.SetPacketFractionLostNumerator(num_apparently_sent, num_received);
    return report.packet_fraction_lost_numerator;
  };

  // If no non-duplicate packets were sent to the Receiver, the packet loss
  // fraction should be zero.
  EXPECT_EQ(0, ComputeFractionLost(0, 0));
  EXPECT_EQ(0, ComputeFractionLost(0, 1));
  EXPECT_EQ(0, ComputeFractionLost(0, 999));

  // If the same number or more packets were received than those apparently
  // sent, the packet loss fraction should be zero.
  EXPECT_EQ(0, ComputeFractionLost(1, 1));
  EXPECT_EQ(0, ComputeFractionLost(1, 2));
  EXPECT_EQ(0, ComputeFractionLost(1, 4));
  EXPECT_EQ(0, ComputeFractionLost(4, 5));
  EXPECT_EQ(0, ComputeFractionLost(42, 42));
  EXPECT_EQ(0, ComputeFractionLost(60, 999));

  // Test various partial loss scenarios.
  EXPECT_EQ(85, ComputeFractionLost(3, 2));
  EXPECT_EQ(128, ComputeFractionLost(10, 5));
  EXPECT_EQ(174, ComputeFractionLost(22, 7));

  // Test various total-loss/near-total-loss scenarios.
  EXPECT_EQ(255, ComputeFractionLost(17, 0));
  EXPECT_EQ(255, ComputeFractionLost(100, 0));
  EXPECT_EQ(255, ComputeFractionLost(9876, 1));
}

// Tests the helper for computing the cumulative packet loss total, a value that
// should always be between 0 and 2^24 - 1, in terms of absolute packet counts.
TEST(RtcpCommonTest, ComputesCumulativePacketLossForReportBlocks) {
  const auto ComputeLoss = [](int64_t num_apparently_sent,
                              int64_t num_received) {
    RtcpReportBlock report;
    report.SetCumulativePacketsLost(num_apparently_sent, num_received);
    return report.cumulative_packets_lost;
  };

  // Test various no-loss scenarios (including duplicate packets).
  EXPECT_EQ(0, ComputeLoss(0, 0));
  EXPECT_EQ(0, ComputeLoss(0, 1));
  EXPECT_EQ(0, ComputeLoss(3, 3));
  EXPECT_EQ(0, ComputeLoss(56, 56));
  EXPECT_EQ(0, ComputeLoss(std::numeric_limits<int64_t>::max() - 12,
                           std::numeric_limits<int64_t>::max()));
  EXPECT_EQ(0, ComputeLoss(std::numeric_limits<int64_t>::max(),
                           std::numeric_limits<int64_t>::max()));

  // Test various partial loss scenarios.
  EXPECT_EQ(1, ComputeLoss(2, 1));
  EXPECT_EQ(2, ComputeLoss(42, 40));
  EXPECT_EQ(1025, ComputeLoss(999999, 999999 - 1025));
  EXPECT_EQ(1, ComputeLoss(std::numeric_limits<int64_t>::max(),
                           std::numeric_limits<int64_t>::max() - 1));

  // Test that a huge cumulative loss saturates to the maximum valid value for
  // the field.
  EXPECT_EQ((1 << 24) - 1, ComputeLoss(999999999, 1));
}

// Tests the helper that converts Clock::durations to the report blocks timebase
// (1/65536 sconds), and also that it saturates to to the valid range of values
// (0 to 2^32 - 1 ticks).
TEST(RtcpCommonTest, ComputesDelayForReportBlocks) {
  RtcpReportBlock report;
  using Delay = RtcpReportBlock::Delay;

  const auto ComputeDelay = [](Clock::duration delay_in_wrong_timebase) {
    RtcpReportBlock report;
    report.SetDelaySinceLastReport(delay_in_wrong_timebase);
    return report.delay_since_last_report;
  };

  // A duration less than or equal to zero should clamp to zero.
  EXPECT_EQ(Delay::zero(), ComputeDelay(Clock::duration::min()));
  EXPECT_EQ(Delay::zero(), ComputeDelay(milliseconds{-1234}));
  EXPECT_EQ(Delay::zero(), ComputeDelay(Clock::duration::zero()));

  // Test conversion of various durations that should not clamp.
  EXPECT_EQ(Delay(32768 /* 1/2 second worth of ticks */),
            ComputeDelay(milliseconds(500)));
  EXPECT_EQ(Delay(65536 /* 1 second worth of ticks */),
            ComputeDelay(seconds(1)));
  EXPECT_EQ(Delay(655360 /* 10 seconds worth of ticks */),
            ComputeDelay(seconds(10)));
  EXPECT_EQ(Delay(4294967294), ComputeDelay(microseconds(65535999983)));
  EXPECT_EQ(Delay(4294967294), ComputeDelay(microseconds(65535999984)));

  // A too-large duration should clamp to the maximum-possible Delay value.
  EXPECT_EQ(Delay(4294967295), ComputeDelay(microseconds(65535999985)));
  EXPECT_EQ(Delay(4294967295), ComputeDelay(microseconds(65535999986)));
  EXPECT_EQ(Delay(4294967295), ComputeDelay(microseconds(999999000000)));
  EXPECT_EQ(Delay(4294967295), ComputeDelay(Clock::duration::max()));
}

}  // namespace
}  // namespace cast
}  // namespace openscreen