aboutsummaryrefslogtreecommitdiff
path: root/doc/oprofile.xml
blob: 1432cc5f1cd53623b2981504459d6368b17f2a2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
<?xml version="1.0" encoding='ISO-8859-1'?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">

<book id="oprofile-guide">
<bookinfo>
	<title>OProfile manual</title>
 
	<authorgroup>
		<author>
			<firstname>John</firstname>
			<surname>Levon</surname>
			<affiliation>
				<address><email>levon@movementarian.org</email></address>
			</affiliation>
		</author>
	</authorgroup>

	<copyright>
		<year>2000-2004</year>
		<holder>Victoria University of Manchester, John Levon and others</holder>
	</copyright>
</bookinfo>

<toc></toc>

<chapter id="introduction">
<title>Introduction</title>

<para>
This manual applies to OProfile version <oprofileversion />.
OProfile is a profiling system for Linux 2.2/2.4/2.6 systems on a number of architectures. It is capable of profiling
all parts of a running system, from the kernel (including modules and interrupt handlers) to shared libraries
to binaries. It runs transparently in the background collecting information at a low overhead. These
features make it ideal for profiling entire systems to determine bottle necks in real-world systems.
</para>
<para>
Many CPUs provide "performance counters", hardware registers that can count "events"; for example,
cache misses, or CPU cycles. OProfile provides profiles of code based on the number of these occurring events:
repeatedly, every time a certain (configurable) number of events has occurred, the PC value is recorded.
This information is aggregated into profiles for each binary image.</para>
<para>
Some hardware setups do not allow OProfile to use performance counters: in these cases, no
events are available, and OProfile operates in timer/RTC mode, as described in later chapters.
</para>
<sect1 id="applications">
<title>Applications of OProfile</title>
<para>
OProfile is useful in a number of situations. You might want to use OProfile when you :
</para>
<itemizedlist>
<listitem><para>need low overhead</para></listitem>
<listitem><para>cannot use highly intrusive profiling methods</para></listitem>
<listitem><para>need to profile interrupt handlers</para></listitem>
<listitem><para>need to profile an application and its shared libraries</para></listitem>
<listitem><para>need to profile dynamically compiled code of supported virtual machines (see <xref linkend="jitsupport"/>)</para></listitem>
<listitem><para>need to capture the performance behaviour of entire system</para></listitem>
<listitem><para>want to examine hardware effects such as cache misses</para></listitem>
<listitem><para>want detailed source annotation</para></listitem>
<listitem><para>want instruction-level profiles</para></listitem>
<listitem><para>want call-graph profiles</para></listitem>
</itemizedlist>
<para>
OProfile is not a panacea. OProfile might not be a complete solution when you :
</para>
<itemizedlist>
<listitem><para>require call graph profiles on platforms other than 2.6/x86</para></listitem>
<listitem><para>don't have root permissions</para></listitem>
<listitem><para>require 100% instruction-accurate profiles</para></listitem>
<listitem><para>need function call counts or an interstitial profiling API</para></listitem>
<listitem><para>cannot tolerate any disturbance to the system whatsoever</para></listitem>
<listitem><para>need to profile interpreted or dynamically compiled code of non-supported virtual machines</para></listitem>
</itemizedlist>
<sect2 id="jitsupport">
<title>Support for dynamically compiled (JIT) code</title>
<para>
Older versions of OProfile were not capable of attributing samples to symbols from dynamically
compiled code, i.e. "just-in-time (JIT) code". Typical JIT compilers load the JIT code into
anonymous memory regions. OProfile reported the samples from such code, but the attribution
provided was simply:
        <screen>"anon: &lt;tgid&gt;&lt;address range&gt;" </screen>
Due to this limitation, it wasn't possible to profile applications executed by virtual machines (VMs)
like the Java Virtual Machine. OProfile now contains an infrastructure to support JITed code.
A development library is provided to allow developers
to add support for any VM that produces dynamically compiled code (see the <emphasis>OProfile JIT agent
developer guide</emphasis>).
In addition, built-in support is included for the following:</para>
<itemizedlist><listitem>JVMTI agent library for Java (1.5 and higher)</listitem>
<listitem>JVMPI agent library for Java (1.5 and lower)</listitem>
</itemizedlist>
<para>
For information on how to use OProfile's JIT support, see <xref linkend="setup-jit"/>.
</para>
</sect2>
</sect1>

<sect1 id="requirements">
<title>System requirements</title>

<variablelist>
	<varlistentry>
		<term>Linux kernel 2.2/2.4/2.6</term>
		<listitem><para>
			OProfile uses a kernel module that can be compiled for
			2.2.11 or later and 2.4. 2.4.10 or above is required if you use the 
			boot-time kernel option <option>nosmp</option>.  2.6 kernels are supported with the in-kernel
			OProfile driver. Note that only 32-bit x86 and IA64 are supported on 2.2/2.4 kernels.
			</para>

			<para>
			2.6 kernels are strongly recommended. Under 2.4, OProfile may cause system crashes if power
			management is used, or the BIOS does not correctly deal with local APICs.
			</para>

			<para>
			To use OProfile's JIT support, a kernel version 2.6.13 or later is required.
			In earlier kernel versions, the anonymous memory regions are not reported to OProfile and results
			in profiling reports without any samples in these regions.
			</para>

			<para>
			PPC64 processors (Power4/Power5/PPC970, etc.) require a recent (&gt; 2.6.5) kernel with the line 
			<constant>#define PV_970</constant> present in <filename>include/asm-ppc64/processor.h</filename>.
<!-- FIXME: do we require always gte 2.4.10 for nosmp ? -->
                       </para>
                       <para>
                       Profiling the Cell Broadband Engine PowerPC Processing Element (PPE) requires a kernel version
                       of 2.6.18 or more recent.
                       Profiling the Cell Broadband Engine Synergistic Processing Element (SPE) requires a kernel version
                       of 2.6.22 or more recent.  Additionally, full support of SPE profiling requires a BFD library
                       from binutils code dated January 2007 or later.  To ensure the proper BFD support exists, run
                       the <code>configure</code> utility with <code>--with-target=cell-be</code>.

		       Profiling the Cell Broadband Engine using SPU events requires a kernel version of 2.6.29-rc1
		       or  more recent.

                       <note>Attempting to profile SPEs with kernel versions older than 2.6.22 may cause the
                       system to crash.</note>
                       </para>
		
			<para>
			Instruction-Based Sampling (IBS) profile on AMD family10h processors requires 
			kernel version 2.6.28-rc2 or later.
			</para>
		</listitem>
	</varlistentry>
	<varlistentry>
		<term>modutils 2.4.6 or above</term>
		<listitem><para>
			You should have installed modutils 2.4.6 or higher (in fact earlier versions work well in almost all
			cases).
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>Supported architecture</term>
		<listitem><para>
			For Intel IA32, a CPU with either a P6 generation or Pentium 4 core is
			required. In marketing terms this translates to anything
			between an Intel Pentium Pro (not Pentium Classics) and
			a Pentium 4 / Xeon, including all Celerons.  The AMD
			Athlon, Opteron, Phenom, and Turion CPUs are also supported.  Other IA32
			CPU types only support the RTC mode of OProfile; please
			see later in this manual for details.  Hyper-threaded Pentium IVs
			are not supported in 2.4. For 2.4 kernels, the Intel
			IA-64 CPUs are also supported. For 2.6 kernels, there is additionally
			support for Alpha processors, MIPS, ARM, x86-64, sparc64, ppc64, AVR32, and,
			in timer mode, PA-RISC and s390.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>Uniprocessor or SMP</term>
		<listitem><para>
			SMP machines are fully supported.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>Required libraries</term>
		<listitem><para>
			These libraries are required : <filename>popt</filename>, <filename>bfd</filename>,
			<filename>liberty</filename> (debian users: libiberty is provided in binutils-dev package), <filename>dl</filename>,
			plus the standard C++ libraries.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>Required user account</term>
		<listitem><para>
			For secure processing of sample data from JIT virtual machines (e.g., Java),
			the special user account "oprofile" must exist on the system.  The 'configure'
			and 'make install' operations will print warning messages if this
			account is not found.  If you intend to profile JITed code, you must create
			a group account named 'oprofile' and then create the 'oprofile' user account,
			setting the default group to 'oprofile'.  A runtime error message is printed to
			the oprofile daemon log when processing JIT samples if this special user
			account cannot be found.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>OProfile GUI</term>
		<listitem><para>
			The use of the GUI to start the profiler requires the <filename>Qt 2</filename> library. <filename>Qt 3</filename> should
			also work.
		</para></listitem>
	</varlistentry>
	<varlistentry>
 		<term><acronym>ELF</acronym></term>
		<listitem><para>
			Probably not too strenuous a requirement, but older <acronym>A.OUT</acronym> binaries/libraries are not supported.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>K&amp;R coding style</term>
		<listitem><para>
			OK, so it's not really a requirement, but I wish it was...
		</para></listitem>
	</varlistentry>
</variablelist>


</sect1>

<sect1 id="resources">
<title>Internet resources</title>

<variablelist>
	<varlistentry>
		<term>Web page</term>
		<listitem><para>
			There is a web page (which you may be reading now) at
			<ulink url="http://oprofile.sf.net/">http://oprofile.sf.net/</ulink>.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>Download</term>
		<listitem><para>
			You can download a source tarball or get anonymous CVS at the sourceforge page,
			<ulink url="http://sf.net/projects/oprofile/">http://sf.net/projects/oprofile/</ulink>.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>Mailing list</term>
		<listitem><para>
			There is a low-traffic OProfile-specific mailing list, details at
			<ulink url="http://sf.net/mail/?group_id=16191">http://sf.net/mail/?group_id=16191</ulink>.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>Bug tracker</term>
		<listitem><para>
			There is a bug tracker for OProfile at SourceForge,
			<ulink url="http://sf.net/tracker/?group_id=16191&amp;atid=116191">http://sf.net/tracker/?group_id=16191&amp;atid=116191</ulink>.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term>IRC channel</term>
		<listitem><para>
			Several OProfile developers and users sometimes hang out on channel <command>#oprofile</command>
			on the <ulink url="http://oftc.net">OFTC</ulink> network. 
		</para></listitem>
	</varlistentry>
</variablelist>

</sect1>

<sect1 id="install">
<title>Installation</title>

<para>
First you need to build OProfile and install it. <command>./configure</command>, <command>make</command>, <command>make install</command>
is often all you need, but note these arguments to <command>./configure</command> :
</para>
<variablelist>
	<varlistentry>
		<term><option>--with-linux</option></term>
		<listitem><para>
			Use this option to specify the location of the kernel source tree you wish
			to compile against. The kernel module is built against this source and
			will only work with a running kernel built from the same source with
			exact same options, so it is important you specify this option if you need
			to.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--with-java</option></term>
		<listitem>
			<para>
			Use this option if you need to profile Java applications.  Also, see
			<xref linkend="requirements"/>, "Required user account".  This option
			is used to specify the location of the Java Development Kit (JDK)
			source tree you wish to use. This is necessary to get the interface description
			of the JVMPI (or JVMTI) interface to compile the JIT support code successfully.
			</para>
			<note>
				<para>
				The Java Runtime Environment (JRE) does not include the development
				files that are required to compile the JIT support code, so the full
				JDK must be installed in order to use this option.
				</para>
			</note>
			<para>
			By default, the Oprofile JIT support libraries will be installed in
			<filename>&lt;oprof_install_dir&gt;/lib/oprofile</filename>.  To build
			and install OProfile and the JIT support libraries as 64-bit, you can
			do something like the following:
			<screen>
			# CFLAGS="-m64" CXXFLAGS="-m64" ./configure \
			--with-kernel-support --with-java={my_jdk_installdir} \
			--libdir=/usr/local/lib64
			</screen>
			</para>
			<note>
				<para>
				If you encounter errors building 64-bit, you should
				install libtool 1.5.26 or later since that release of
				libtool fixes known problems for certain platforms.
				If you install libtool into a non-standard location,
				you'll need to edit the invocation of 'aclocal' in
				OProfile's autogen.sh as follows (assume an install
				location of /usr/local):
				</para>
				<para>
				<code>aclocal -I m4 -I /usr/local/share/aclocal</code>
				</para>
			</note> 
		</listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--with-kernel-support</option></term>
		<listitem><para>
			Use this option with 2.6 and above kernels to indicate the 
	    		kernel provides the OProfile device driver.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--with-qt-dir/includes/libraries</option></term>
		<listitem><para>
			Specify the location of Qt headers and libraries. It defaults to searching in
			<constant>$QTDIR</constant> if these are not specified.
		</para></listitem>
	</varlistentry>
	<varlistentry id="disable-werror">
		<term><option>--disable-werror</option></term>
		<listitem><para>
			Development versions of OProfile build by
			default with <option>-Werror</option>. This option turns
			<option>-Werror</option> off.
		</para></listitem>
	</varlistentry>
	<varlistentry id="disable-optimization">
		<term><option>--disable-optimization</option></term>
		<listitem><para>
			Disable the <option>-O2</option> compiler flag
			(useful if you discover an OProfile bug and want to give a useful
			back-trace etc.)
		</para></listitem>
	</varlistentry>
</variablelist>
<para>
You'll need to have a configured kernel source for the current kernel
to build the module for 2.4 kernels.  Since all distributions provide different kernels it's unlikely the running kernel match the configured source
you installed. The safest way is to recompile your own kernel, run it and compile oprofile. It is also recommended that if you have a
uniprocessor machine, you enable the local APIC / IO_APIC support for
your kernel (this is automatically enabled for SMP kernels). With many BIOS, kernel &gt;= 2.6.9 and UP kernel it's not sufficient to enable the local APIC you must also turn it on explicitly at boot time by providing "lapic" option to the kernel. On
machines with power management, such as laptops, the power management
must be turned off when using OProfile with 2.4 kernels. The power management software
in the BIOS cannot handle the non-maskable interrupts (NMIs) used by
OProfile for data collection. If you use the NMI watchdog, be aware that
the watchdog is disabled when profiling starts, and not re-enabled until the
OProfile module is removed (or, in 2.6, when OProfile is not running). If you compile OProfile for
a 2.2 kernel you must be root to compile the module. If you are using
2.6 kernels or higher, you do not need kernel source, as long as the
OProfile driver is enabled; additionally, you should not need to disable
power management.
</para>
<para>
Please note that you must save or have available the <filename>vmlinux</filename> file
generated during a kernel compile, as OProfile needs it (you can use
<option>--no-vmlinux</option>, but this will prevent kernel profiling).
</para>

</sect1>

<sect1 id="uninstall">
<title>Uninstalling OProfile</title>
<para>
You must have the source tree available to uninstall OProfile; a <command>make uninstall</command> will
remove all installed files except your configuration file in the directory <filename>~/.oprofile</filename>.
</para>
</sect1>

</chapter>

<chapter id="overview"> 
<title>Overview</title>

<sect1 id="getting-started">
<title>Getting started</title>
<para>
Before you can use OProfile, you must set it up. The minimum setup required for this
is to tell OProfile where the <filename>vmlinux</filename> file corresponding to the
running kernel is, for example :
</para>
<screen>opcontrol --vmlinux=/boot/vmlinux-`uname -r`</screen>
<para>
If you don't want to profile the kernel itself,
you can tell OProfile you don't have a <filename>vmlinux</filename> file :
</para>
<screen>opcontrol --no-vmlinux</screen>
<para>
Now we are ready to start the daemon (<command>oprofiled</command>) which collects
the profile data :
</para>
<screen>opcontrol --start</screen>
<para>
When I want to stop profiling, I can do so with :
</para>
<screen>opcontrol --shutdown</screen>
<para>
Note that unlike <command>gprof</command>, no instrumentation (<option>-pg</option>
and <option>-a</option> options to <command>gcc</command>)
is necessary.
</para>
<para>
Periodically (or on <command>opcontrol --shutdown</command> or <command>opcontrol --dump</command>)
the profile data is written out into the $SESSION_DIR/samples directory (by default at <filename>/var/lib/oprofile/samples</filename>).
These profile files cover shared libraries, applications, the kernel (vmlinux), and kernel modules.
You can clear the profile data (at any time) with <command>opcontrol --reset</command>.
</para>
<para>
To place these sample database files in a specific directory instead of the default location (<filename>/var/lib/oprofile</filename>) use the <option>--session-dir=dir</option> option. You must also specify the <option>--session-dir</option> to tell the tools to continue using this directory. (In the future, we should allow this to be specified in an environment variable.) :
</para>
<screen>opcontrol --no-vmlinux --session-dir=/home/me/tmpsession</screen>
<screen>opcontrol --start --session-dir=/home/me/tmpsession</screen>
<para>
You can get summaries of this data in a number of ways at any time. To get a summary of
data across the entire system for all of these profiles, you can do :
</para>
<screen>opreport [--session-dir=dir]</screen>
<para>
Or to get a more detailed summary, for a particular image, you can do something like :
</para>
<screen>opreport -l /boot/vmlinux-`uname -r`</screen>
<para>
There are also a number of other ways of presenting the data, as described later in this manual.
Note that OProfile will choose a default profiling setup for you. However, there are a number
of options you can pass to <command>opcontrol</command> if you need to change something,
also detailed later.
</para>

</sect1>

<sect1 id="tools-overview">
<title>Tools summary</title>
<para>
This section gives a brief description of the available OProfile utilities and their purpose.
</para>
<variablelist>
<varlistentry>
	<term><filename>ophelp</filename></term>
	<listitem><para>
		This utility lists the available events and short descriptions.
	</para></listitem>
</varlistentry>
	
<varlistentry>
	<term><filename>opcontrol</filename></term>
	<listitem><para>
		Used for controlling the OProfile data collection, discussed in <xref linkend="controlling" />.
	</para></listitem>
</varlistentry>

<varlistentry>
	<term><filename>agent libraries</filename></term>
	<listitem><para>
			Used by virtual machines (like the Java VM) to record information about JITed code being profiled. See <xref linkend="setup-jit" />.
		</para></listitem>
</varlistentry>

<varlistentry>
	<term><filename>opreport</filename></term>
	<listitem><para>
		This is the main tool for retrieving useful profile data, described in
		<xref linkend="opreport" />.
	</para></listitem>
</varlistentry>

<varlistentry>
	<term><filename>opannotate</filename></term>
	<listitem><para>
		This utility can be used to produce annotated source, assembly or mixed source/assembly.
		Source level annotation is available only if the application was compiled with 
		debugging symbols. See <xref linkend="opannotate" />.
	</para></listitem>
</varlistentry>

<varlistentry>
	<term><filename>opgprof</filename></term>
	<listitem><para>
		This utility can output gprof-style data files for a binary, for use with
		<command>gprof -p</command>. See <xref linkend="opgprof" />.
	</para></listitem>
</varlistentry>

<varlistentry>
	<term><filename>oparchive</filename></term>
	<listitem><para>
		This utility can be used to collect executables, debuginfo,
		and sample files and copy the files into an archive.
		The archive is self-contained and can be moved to another
		machine for further analysis.
		See <xref linkend="oparchive" />.
	</para></listitem>
</varlistentry>

<varlistentry>
	<term><filename>opimport</filename></term>
	<listitem><para>
		This utility converts sample database files from a foreign binary format (abi) to
		the native format. This is useful only when moving sample files between hosts,
		for analysis on platforms other than the one used for collection.
		See <xref linkend="opimport" />.
	</para></listitem>
</varlistentry>

</variablelist>
</sect1>
	
</chapter>
 
<chapter id="controlling">
<title>Controlling the profiler</title>

<sect1 id="controlling-daemon">
<title>Using <command>opcontrol</command></title>
<para>
In this section we describe the configuration and control of the profiling system
with opcontrol in more depth.
The <command>opcontrol</command> script has a default setup, but you
can alter this with the options given below. In particular,
if your hardware supports performance counters, you can configure them.
There are a number of counters (for example, counter 0 and counter 1
on the Pentium III). Each of these counters can be programmed with
an event to count, such as cache misses or MMX operations. The event
chosen for each counter is reflected in the profile data collected
by OProfile: functions and binaries at the top of the profiles reflect
that most of the chosen events happened within that code.
</para>
<para>
Additionally, each counter has a "count" value: this corresponds to how
detailed the profile is. The lower the value, the more frequently profile
samples are taken. A counter can choose to sample only kernel code, user-space code,
or both (both is the default). Finally, some events have a "unit mask"
- this is a value that further restricts the types of event that are counted. 
The event types and unit masks for your CPU are listed by <command>opcontrol
--list-events</command>.
</para>
<para>
The <command>opcontrol</command> script provides the following actions :
</para>
<variablelist>
	<varlistentry>
		<term><option>--init</option></term>
		<listitem><para>
		Loads the OProfile module if required and makes the OProfile driver
		interface available.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--setup</option></term>
		<listitem><para>
		    Followed by list arguments for profiling set up. List of arguments
		    saved in <filename>/root/.oprofile/daemonrc</filename>.
		    Giving this option is not necessary; you can just directly pass one
		    of the setup options, e.g. <command>opcontrol --no-vmlinux</command>.
		  </para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--status</option></term>
		<listitem><para>
		Show configuration information.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--start-daemon</option></term>
		<listitem><para>
		    Start the oprofile daemon without starting actual profiling. The profiling
		can then be started using <option>--start</option>. This is useful for avoiding
		measuring the cost of daemon startup, as <option>--start</option> is a simple
		write to a file in oprofilefs. Not available in 2.2/2.4 kernels.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--start</option></term>
		<listitem><para>
		    Start data collection with either arguments provided by <option>--setup</option>
		or information saved in <filename>/root/.oprofile/daemonrc</filename>. Specifying
		the addition <option>--verbose</option> makes the daemon generate lots of debug data
		whilst it is running.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--dump</option></term>
		<listitem><para>
		    Force a flush of the collected profiling data to the daemon.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--stop</option></term>
		<listitem><para>
		    Stop data collection (this separate step is not possible with 2.2 or 2.4 kernels).
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--shutdown</option></term>
		<listitem><para>
		    Stop data collection and kill the daemon.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--reset</option></term>
		<listitem><para>
		    Clears out data from current session, but leaves saved sessions.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--save=</option>session_name</term>
		<listitem><para>
		    Save data from current session to session_name.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--deinit</option></term>
		<listitem><para>
                Shuts down daemon. Unload the OProfile module and oprofilefs.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--list-events</option></term>
		<listitem><para>
		    List event types and unit masks.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--help</option></term>
		<listitem><para>
		    Generate usage messages.
		</para></listitem>
	</varlistentry>
</variablelist>

<para>
There are a number of possible settings, of which, only
<option>--vmlinux</option> (or <option>--no-vmlinux</option>)
is required. These settings are stored in <filename>~/.oprofile/daemonrc</filename>.
</para>
<variablelist>
	<varlistentry>
		<term><option>--buffer-size=</option>num</term>
		<listitem><para>
		Number of samples in kernel buffer. When using a 2.6 kernel
		buffer watershed need to be tweaked when changing this value.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--buffer-watershed=</option>num</term>
		<listitem><para>
		Set kernel buffer watershed to num samples (2.6 only). When it'll remain only
		buffer-size - buffer-watershed free entry in the kernel buffer data will be
		flushed to daemon, most usefull value are in the range [0.25 - 0.5] * buffer-size.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--cpu-buffer-size=</option>num</term>
		<listitem><para>
		Number of samples in kernel per-cpu buffer (2.6 only). If you
		profile at high rate it can help to increase this if the log
		file show excessive count of sample lost cpu buffer overflow. 
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--event=</option>[eventspec]</term>
		<listitem><para>
		Use the given performance counter event to profile.
		See <xref linkend="eventspec" /> below.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--session-dir=</option>dir_path</term>
		<listitem><para>
		    Create/use sample database out of directory <filename>dir_path</filename> instead of
		the default location (/var/lib/oprofile).
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--separate=</option>[none,lib,kernel,thread,cpu,all]</term>
		<listitem><para>
		By default, every profile is stored in a single file. Thus, for example,
		samples in the C library are all accredited to the <filename>/lib/libc.o</filename>
		profile. However, you choose to create separate sample files by specifying
		one of the below options.
		</para>
		<informaltable frame="all">
		<tgroup cols='2'> 
		<tbody>
		<row><entry><option>none</option></entry><entry>No profile separation (default)</entry></row>
		<row><entry><option>lib</option></entry><entry>Create per-application profiles for libraries</entry></row>
		<row><entry><option>kernel</option></entry><entry>Create per-application profiles for the kernel and kernel modules</entry></row>
		<row><entry><option>thread</option></entry><entry>Create profiles for each thread and each task</entry></row>
		<row><entry><option>cpu</option></entry><entry>Create profiles for each CPU</entry></row>
		<row><entry><option>all</option></entry><entry>All of the above options</entry></row>
		</tbody>
		</tgroup>
		</informaltable>
		<para>
		Note  that <option>--separate=kernel</option> also turns on <option>--separate=lib</option>.
		<!-- FIXME: update if this change -->
		When using <option>--separate=kernel</option>, samples in hardware interrupts, soft-irqs, or other
		asynchronous kernel contexts are credited to the task currently running. This means you will see
		seemingly nonsense profiles such as <filename>/bin/bash</filename> showing samples for the PPP modules,
		etc.
		</para>
		<para>
		On 2.2/2.4 only kernel threads already started when profiling begins are correctly profiled;
		newly started kernel thread samples are credited to the vmlinux (kernel) profile.
		</para>
		<para>
		Using <option>--separate=thread</option> creates a lot
		of sample files if you leave OProfile running for a while; it's most
		useful when used for short sessions, or when using image filtering.
		</para>
		</listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--callgraph=</option>#depth</term>
		<listitem><para>
		Enable call-graph sample collection with a maximum depth. Use 0 to disable
		callgraph profiling.  NOTE: Callgraph support is available on a limited
		number of platforms at this time; for example:
		<para>
		<itemizedlist>
		<listitem><para>x86 with recent 2.6 kernel</para></listitem>
		<listitem><para>ARM with recent 2.6 kernel</para></listitem>
		<listitem><para>PowerPC with 2.6.17 kernel</para></listitem>
		</itemizedlist>
		</para>
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--image=</option>image,[images]|"all"</term>
		<listitem><para>
		Image filtering. If you specify one or more absolute
		paths to binaries, OProfile will only produce profile results for those
		binary images. This is useful for restricting the sometimes voluminous
		output you may get otherwise, especially with
		<option>--separate=thread</option>. Note that if you are using
		<option>--separate=lib</option> or
		<option>--separate=kernel</option>, then if you specification an
		application binary, the shared libraries and kernel code
		<emphasis>are</emphasis> included. Specify the value
		"all" to profile everything (the default).
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--vmlinux=</option>file</term>
		<listitem><para>
		vmlinux kernel image.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>--no-vmlinux</option></term>
		<listitem><para>
		Use this when you don't have a kernel vmlinux file, and you don't want
		to profile the kernel. This still counts the total number of kernel samples,
		but can't give symbol-based results for the kernel or any modules.
		</para></listitem>
	</varlistentry>
</variablelist>

<sect2 id="opcontrolexamples">
<title>Examples</title>

<sect3 id="examplesperfctr">
<title>Intel performance counter setup</title>
<para>
Here, we have a Pentium III running at 800MHz, and we want to look at where data memory
references are happening most, and also get results for CPU time.
</para>
<screen>
# opcontrol --event=CPU_CLK_UNHALTED:400000 --event=DATA_MEM_REFS:10000
# opcontrol --vmlinux=/boot/2.6.0/vmlinux
# opcontrol --start
</screen>
</sect3>

<sect3 id="examplesrtc">
<title>RTC mode</title>
<para>
Here, we have an Intel laptop without support for performance counters, running on 2.4 kernels.
</para>
<screen>
# ophelp -r
CPU with RTC device
# opcontrol --vmlinux=/boot/2.4.13/vmlinux --event=RTC_INTERRUPTS:1024
# opcontrol --start
</screen>
</sect3>

<sect3 id="examplesstartdaemon">
<title>Starting the daemon separately</title>
<para>
If we're running 2.6 kernels, we can use <option>--start-daemon</option> to avoid
the profiler startup affecting results.
</para>
<screen>
# opcontrol --vmlinux=/boot/2.6.0/vmlinux
# opcontrol --start-daemon
# my_favourite_benchmark --init
# opcontrol --start ; my_favourite_benchmark --run ; opcontrol --stop
</screen>
</sect3>

<sect3 id="exampleseparate">
<title>Separate profiles for libraries and the kernel</title>
<para>
Here, we want to see a profile of the OProfile daemon itself, including when
it was running inside the kernel driver, and its use of shared libraries.
</para>
<screen>
# opcontrol --separate=kernel --vmlinux=/boot/2.6.0/vmlinux
# opcontrol --start
# my_favourite_stress_test --run
# opreport -l -p /lib/modules/2.6.0/kernel /usr/local/bin/oprofiled
</screen>
</sect3>

<sect3 id="examplessessions">
<title>Profiling sessions</title>
<para>
It can often be useful to split up profiling data into several different
time periods. For example, you may want to collect data on an application's
startup separately from the normal runtime data. You can use the simple
command <command>opcontrol --save</command> to do this. For example :
</para>
<screen>
# opcontrol --save=blah
</screen>
<para>
will create a sub-directory in <filename>$SESSION_DIR/samples</filename> containing the samples
up to that point (the current session's sample files are moved into this
directory). You can then pass this session name as a parameter to the post-profiling
analysis tools, to only get data up to the point you named the
session. If you do not want to save a session, you can do
<command>rm -rf $SESSION_DIR/samples/sessionname</command> or, for the
current session, <command>opcontrol --reset</command>.
</para>
</sect3>
</sect2> 

<sect2 id="eventspec">
<title>Specifying performance counter events</title>
<para>
The <option>--event</option> option to <command>opcontrol</command>
takes a specification that indicates how the details of each
hardware performance counter should be setup. If you want to
revert to OProfile's default setting (<option>--event</option>
is strictly optional), use <option>--event=default</option>. Use of this
option over-rides all previous event selections.
</para>
<para>
You can pass multiple event specifications. OProfile will allocate
hardware counters as necessary. Note that some combinations are not
allowed by the CPU; running <command>opcontrol --list-events</command> gives the details
of each event. The event specification is a colon-separated string
of the form <option><emphasis>name</emphasis>:<emphasis>count</emphasis>:<emphasis>unitmask</emphasis>:<emphasis>kernel</emphasis>:<emphasis>user</emphasis></option> as described in this table:
</para>
<informaltable frame="all">
<tgroup cols='2'> 
<tbody>
<row><entry><option>name</option></entry><entry>The symbolic event name, e.g. <constant>CPU_CLK_UNHALTED</constant></entry></row>
<row><entry><option>count</option></entry><entry>The counter reset value, e.g. 100000</entry></row>
<row><entry><option>unitmask</option></entry><entry>The unit mask, as given in the events list, e.g. 0x0f</entry></row>
<row><entry><option>kernel</option></entry><entry>Whether to profile kernel code</entry></row>
<row><entry><option>user</option></entry><entry>Whether to profile userspace code</entry></row>
</tbody>
</tgroup>
</informaltable>
<para>
The last three values are optional, if you omit them (e.g. <option>--event=DATA_MEM_REFS:30000</option>),
they will be set to the default values (a unit mask of 0, and profiling both kernel and
userspace code). Note that some events require a unit mask.
</para>
<note><para>
For the PowerPC platforms, all events specified must be in the same group; i.e., the group number
appended to the event name (e.g. <constant>&lt;<emphasis>some-event-name</emphasis>&gt;_GRP9</constant>) must be the same.
</para></note>
<para>
If OProfile is using RTC mode, and you want to alter the default counter value,
you can use something like <option>--event=RTC_INTERRUPTS:2048</option>. Note the last
three values here are ignored.
If OProfile is using timer-interrupt mode, there is no configuration possible.
</para>
<para>
The table below lists the events selected by default
(<option>--event=default</option>) for the various computer architectures:
</para>
<informaltable frame="all">
<tgroup cols='3'> 
<tbody>
<row><entry>Processor</entry><entry>cpu_type</entry><entry>Default event</entry></row>
<row><entry>Alpha EV4</entry><entry>alpha/ev4</entry><entry>CYCLES:100000:0:1:1</entry></row>
<row><entry>Alpha EV5</entry><entry>alpha/ev5</entry><entry>CYCLES:100000:0:1:1</entry></row>
<row><entry>Alpha PCA56</entry><entry>alpha/pca56</entry><entry>CYCLES:100000:0:1:1</entry></row>
<row><entry>Alpha EV6</entry><entry>alpha/ev6</entry><entry>CYCLES:100000:0:1:1</entry></row>
<row><entry>Alpha EV67</entry><entry>alpha/ev67</entry><entry>CYCLES:100000:0:1:1</entry></row>
<row><entry>ARM/XScale PMU1</entry><entry>arm/xscale1</entry><entry>CPU_CYCLES:100000:0:1:1</entry></row>
<row><entry>ARM/XScale PMU2</entry><entry>arm/xscale2</entry><entry>CPU_CYCLES:100000:0:1:1</entry></row>
<row><entry>ARM/MPCore</entry><entry>arm/mpcore</entry><entry>CPU_CYCLES:100000:0:1:1</entry></row>
<row><entry>AVR32</entry><entry>avr32</entry><entry>CPU_CYCLES:100000:0:1:1</entry></row>
<row><entry>Athlon</entry><entry>i386/athlon</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Pentium Pro</entry><entry>i386/ppro</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Pentium II</entry><entry>i386/pii</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Pentium III</entry><entry>i386/piii</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Pentium M (P6 core)</entry><entry>i386/p6_mobile</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Pentium 4 (non-HT)</entry><entry>i386/p4</entry><entry>GLOBAL_POWER_EVENTS:100000:1:1:1</entry></row>
<row><entry>Pentium 4 (HT)</entry><entry>i386/p4-ht</entry><entry>GLOBAL_POWER_EVENTS:100000:1:1:1</entry></row>
<row><entry>Hammer</entry><entry>x86-64/hammer</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Family10h</entry><entry>x86-64/family10</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Family11h</entry><entry>x86-64/family11h</entry><entry>CPU_CLK_UNHALTED:100000:0:1:1</entry></row>
<row><entry>Itanium</entry><entry>ia64/itanium</entry><entry>CPU_CYCLES:100000:0:1:1</entry></row>
<row><entry>Itanium 2</entry><entry>ia64/itanium2</entry><entry>CPU_CYCLES:100000:0:1:1</entry></row>
<row><entry>TIMER_INT</entry><entry>timer</entry><entry>None selectable</entry></row>
<row><entry>IBM iseries</entry><entry>PowerPC 4/5/970</entry><entry>CYCLES:10000:0:1:1</entry></row>
<row><entry>IBM pseries</entry><entry>PowerPC 4/5/970/Cell</entry><entry>CYCLES:10000:0:1:1</entry></row>
<row><entry>IBM s390</entry><entry>timer</entry><entry>None selectable</entry></row>
<row><entry>IBM s390x</entry><entry>timer</entry><entry>None selectable</entry></row>
</tbody>
</tgroup>
</informaltable>

</sect2>

</sect1>
 
<sect1 id="setup-jit">
	<title>Setting up the JIT profiling feature</title>
	<para>
		To gather information about JITed code from a virtual machine,
		it needs to be instrumented with an agent library. We use the
		agent libraries for Java in the following example. To use the
		Java profiling feature, you must build OProfile with the "--with-java" option
                (<xref linkend="install" />).

	</para>

	<sect2 id="setup-jit-jvm">
		<title>JVM instrumentation</title>
		<para>
			Add this to the startup parameters of the JVM (for JVMTI):

			<screen><option>-agentpath:&lt;libdir&gt;/libjvmti_oprofile.so[=&lt;options&gt;]</option> </screen>
			or
			<screen><option>-agentlib:jvmti_oprofile[=&lt;options&gt;]</option> </screen>
		</para>
		<para>
			The JVMPI agent implementation is enabled with the command line option
			<screen><option>-Xrunjvmpi_oprofile[:&lt;options&gt;]</option> </screen>
		</para>
		<para>
			Currently, there is just one option available -- <option>debug</option>. For JVMPI,
			the convention for specifying an option is <option>option_name=[yes|no]</option>.
			For JVMTI, the option specification is simply the option name, implying
			"yes"; no option specified implies "no".
		</para>
                <para>
                        The agent library (installed in <filename>&lt;oprof_install_dir&gt;/lib/oprofile</filename>)
                        needs to be in the library search path (e.g. add the library directory
                        to <constant>LD_LIBRARY_PATH</constant>). If the command line of
                        the JVM is not accessible, it may be buried within shell scripts or a
                        launcher program. It may also be possible to set an environment variable to add
                        the instrumentation.
                        For Sun JVMs this is <constant>JAVA_TOOL_OPTIONS</constant>. Please check
                        your JVM documentation for
                        further information on the agent startup options.
                </para>

	</sect2>
</sect1>

<sect1 id="oprofile-gui">
<title>Using <command>oprof_start</command></title>
<para>
The <command>oprof_start</command> application provides a convenient way to start the profiler.
Note that <command>oprof_start</command> is just a wrapper around the <command>opcontrol</command> script,
so it does not provide more services than the script itself.
</para>
<para>
After <command>oprof_start</command> is started you can select the event type for each counter;
the sampling rate and other related parameters are explained in <xref linkend="controlling-daemon" />.
The "Configuration" section allows you to set general parameters such as the buffer size, kernel filename
etc. The counter setup interface should be self-explanatory; <xref linkend="hardware-counters" /> and related 
links contain information on using unit masks.
</para>
<para>
A status line shows the current status of the profiler: how long it has been running, and the average
number of interrupts received per second and the total, over all processors.
Note that quitting <command>oprof_start</command> does not stop the profiler.
</para>
<para>
Your configuration is saved in the same file as <command>opcontrol</command> uses; that is,
<filename>~/.oprofile/daemonrc</filename>.
</para>

</sect1>

<sect1 id="detailed-parameters">
<title>Configuration details</title>

<sect2 id="hardware-counters">
<title>Hardware performance counters</title>
<note>
<para>
Your CPU type may not include the requisite support for hardware performance counters, in which case
you must use OProfile in RTC mode in 2.4 (see <xref linkend="rtc" />), or timer mode in 2.6 (see <xref linkend="timer" />). 
You do not really need to read this section unless you are interested in using 
events other than the default event chosen by OProfile.
</para>
</note>
<para>
The Intel hardware performance counters are detailed in the Intel IA-32 Architecture Manual, Volume 3, available
from <ulink url="http://developer.intel.com/">http://developer.intel.com/</ulink>. 
The AMD Athlon/Opteron/Phenom/Turion implementation is detailed in <ulink
url="http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf">
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf</ulink>.
For PowerPC64 processors in IBM iSeries, pSeries, and blade server systems, processor documentation
is available at <ulink url="http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC/">
http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC</ulink>.  (For example, the
specific publication containing information on the performance monitor unit for the PowerPC970 is 
"IBM PowerPC 970FX RISC Microprocessor User's Manual.")
These processors are capable of delivering an interrupt when a counter overflows.
This is the basic mechanism on which OProfile is based. The delivery mode is <acronym>NMI</acronym>,
so blocking interrupts in the kernel does not prevent profiling. When the interrupt handler is called,
the current <acronym>PC</acronym> value and the current task are recorded into the profiling structure.
This allows the overflow event to be attached to a specific assembly instruction in a binary image.
The daemon receives this data from the kernel, and writes it to the sample files.
</para>
<para>
If we use an event such as <constant>CPU_CLK_UNHALTED</constant> or <constant>INST_RETIRED</constant>
(<constant>GLOBAL_POWER_EVENTS</constant> or <constant>INSTR_RETIRED</constant>, respectively, on the Pentium 4), we can
use the overflow counts as an estimate of actual time spent in each part of code. Alternatively we can profile interesting
data such as the cache behaviour of routines with the other available counters.
</para>
<para>
However there are several caveats. First, there are those issues listed in the Intel manual. There is a delay
between the counter overflow and the interrupt delivery that can skew results on a small scale - this means
you cannot rely on the profiles at the instruction level as being perfectly accurate.
If you are using an "event-mode" counter such as the cache counters, a count registered against it doesn't mean
that it is responsible for that event. However, it implies that the counter overflowed in the dynamic
vicinity of that instruction, to within a few instructions. Further details on this problem can be found in 
<xref linkend="interpreting" /> and also in the Digital paper "ProfileMe: A Hardware Performance Counter".
</para>
<para>
Each counter has several configuration parameters.
First, there is the unit mask: this simply further specifies what to count.
Second, there is the counter value, discussed below. Third, there is a parameter whether to increment counts
whilst in kernel or user space. You can configure these separately for each counter.
</para>
<para>
After each overflow event, the counter will be re-initialized
such that another overflow will occur after this many events have been counted. Thus, higher
values mean less-detailed profiling, and lower values mean more detail, but higher overhead.
Picking a good value for this
parameter is, unfortunately, somewhat of a black art. It is of course dependent on the event
you have chosen.
Specifying too large a value will mean not enough interrupts are generated
to give a realistic profile (though this problem can be ameliorated by profiling for <emphasis>longer</emphasis>).
Specifying too small a value can lead to higher performance overhead.
</para>

</sect2>

<sect2 id="rtc">
<title>OProfile in RTC mode</title>
<note><para>
This section applies to 2.2/2.4 kernels only.
</para></note>
<para>
Some CPU types do not provide the needed hardware support to use the hardware performance counters. This includes
some laptops, classic Pentiums, and other CPU types not yet supported by OProfile (such as Cyrix). 
On these machines, OProfile falls
back to using the real-time clock interrupt to collect samples. This interrupt is also used by the <command>rtc</command>
module: you cannot have both the OProfile and rtc modules loaded nor the rtc support compiled in the kernel.
</para>
<para>
RTC mode is less capable than the hardware counters mode; in particular, it is unable to profile sections of
the kernel where interrupts are disabled. There is just one available event, "RTC interrupts", and its value 
corresponds to the number of interrupts generated per second (that is, a higher number means a better profiling
resolution, and higher overhead). The current implementation of the real-time clock supports only power-of-two
sampling rates from 2 to 4096 per second.  Other values within this range are rounded to the nearest power of
two.
</para>
<para>
You can force use of the RTC interrupt with the <option>force_rtc=1</option> module parameter.
</para>
<para>
Setting the value from the GUI should be straightforward. On the command line, you need to specify the
event to <command>opcontrol</command>, e.g. :
</para>
<para><command>opcontrol --event=RTC_INTERRUPTS:256</command></para>
</sect2>

<sect2 id="timer">
<title>OProfile in timer interrupt mode</title>
<note><para>
This section applies to 2.6 kernels and above only.
</para></note>
<para>
In 2.6 kernels on CPUs without OProfile support for the hardware performance counters, the driver
falls back to using the timer interrupt for profiling. Like the RTC mode in 2.4 kernels, this is not able to
profile code that has interrupts disabled. Note that there are no configuration parameters for
setting this, unlike the RTC and hardware performance counter setup.
</para>
<para>
You can force use of the timer interrupt by using the <option>timer=1</option> module
parameter (or <option>oprofile.timer=1</option> on the boot command line if OProfile is
built-in).
</para>
</sect2>

<sect2 id="p4">
<title>Pentium 4 support</title>
<para>
The Pentium 4 / Xeon performance counters are organized around 3 types of model specific registers (MSRs): 45 event
selection control registers (ESCRs), 18 counter configuration control registers (CCCRs) and 18 counters. ESCRs describe a
particular set of events which are to be recorded, and CCCRs bind ESCRs to counters and configure their
operation. Unfortunately the relationship between these registers is quite complex; they cannot all be used with one
another at any time. There is, however, a subset of 8 counters, 8 ESCRs, and 8 CCCRs which can be used independently of
one another, so OProfile only accesses those registers, treating them as a bank of 8 "normal" counters, similar
to those in the P6 or Athlon/Opteron/Phenom/Turion families of CPU.
</para>
<para>
There is currently no support for Precision Event-Based Sampling (PEBS), nor any advanced uses of the Debug Store
(DS). Current support is limited to the conservative extension of OProfile's existing interrupt-based model described
above.  Performance monitoring hardware on Pentium 4 / Xeon processors with Hyperthreading enabled (multiple logical
processors on a single die) is not supported in 2.4 kernels (you can use OProfile if you disable hyper-threading,
though).
</para>
</sect2>

<sect2 id="ia64">
<title>Intel Itanium 2 support</title>
<para>
The Itanium 2 performance monitoring unit (PMU) organizes the counters as four
pairs of performance event monitoring registers. Each pair is composed of a
Performance Monitoring Configuration (PMC) register and Performance Monitoring
Data (PMD) register.  The PMC selects the performance event being monitored and
the PMD determines the sampling interval. The IA64 Performance Monitoring Unit
(PMU) triggers sampling with maskable interrupts. Thus, samples will not occur
in sections of the IA64 kernel where interrupts are disabled.
</para>
<para>
None of the advance features of the Itanium 2 performance monitoring unit
such as opcode matching, address range matching, or precise event sampling are
supported by this version of OProfile.  The Itanium 2 support only maps OProfile's
existing interrupt-based model to the PMU hardware.
</para>
</sect2>

<sect2 id="ppc64">
<title>PowerPC64 support</title>
<para>
The performance monitoring unit (PMU) for the IBM PowerPC 64-bit processors 
consists of between 4 and 8 counters (depending on the model), plus three
special purpose registers used for programming the counters -- MMCR0, MMCR1,
and MMCRA.  Advanced features such as instruction matching and thresholding are
not supported by this version of OProfile.
<note>Later versions of the IBM POWER5+ processor (beginning with revision 3.0)
run the performance monitor unit in POWER6 mode, effectively removing OProfile's
access to counters 5 and 6.  These two counters are dedicated to counting
instructions completed and cycles, respectively.  In POWER6 mode, however, the
counters do not generate an interrupt on overflow and so are unusable by
OProfile.  Kernel versions 2.6.23 and higher will recognize this mode
and export "ppc64/power5++" as the cpu_type to the oprofilefs pseudo filesystem.
OProfile userspace responds to this cpu_type by removing these counters from
the list of potential events to count.  Without this kernel support, attempts
to profile using an event from one of these counters will yield incorrect
results -- typically, zero (or near zero) samples in the generated report.
</note>
</para>

</sect2>

<sect2 id="cell-be">
<title>Cell Broadband Engine support</title>
<para>
The Cell Broadband Engine (CBE) processor core consists of a PowerPC Processing
Element (PPE) and 8 Synergistic Processing Elements (SPE).  PPEs and SPEs each
consist of a processing unit (PPU and SPU, respectively) and other hardware
components, such as memory controllers.
</para>
<para>
A PPU has two hardware threads (aka "virtual CPUs").  The performance monitor
unit of the CBE collects event information on one hardware thread at a time.
Therefore, when profiling PPE events,
OProfile collects the profile based on the selected events by time slicing the
performance counter hardware between the two threads.   The user must ensure the
collection interval is long enough so that the time spent collecting data for
each PPU is sufficient to obtain a good profile.
</para>
<para>
To profile an SPU application, the user should specify the SPU_CYCLES event.
When starting OProfile with SPU_CYCLES, the opcontrol script enforces certain
separation parameters (separate=cpu,lib) to ensure that sufficient information
is collected in the sample data in order to generate a complete report.  The
--merge=cpu option can be used to obtain a more readable report if analyzing
the performance of each separate SPU is not necessary.
</para>
<para>
Profiling with an SPU event (events 4100 through 4163) is not compatible with any other
event.  Further more, only one SPU event can be specified at a time.  The hardware only
supports profiling on one SPU per node at a time.  The OProfile kernel code time slices
between the eight SPUs to collect data on all SPUs.
</para>
<para>
SPU profile reports have some unique characteristics compared to reports for
standard architectures:
</para>
<itemizedlist>
<listitem>Typically no "app name" column.  This is really standard OProfile behavior
when the report contains samples for just a single application, which is
commonly the case when profiling SPUs.</listitem>
<listitem>"CPU" equates to "SPU"</listitem>
<listitem>Specifying '--long-filenames' on the opreport command does not always result
in long filenames.  This happens when the SPU application code is embedded in
the PPE executable or shared library.  The embedded SPU ELF data contains only the
short filename (i.e., no path information) for the SPU binary file that was used as
the source for embedding.   The reason that just the short filename is used is because
the original SPU binary file may not exist or be accessible at runtime.  The performance
analyst must have sufficient knowledge of the application to be able to correlate the
SPU binary image names found in the  report to the application's source files.
<note>
Compile the application with -g and generate the OProfile report
with -g to facilitate finding the right source file(s) on which to focus.
</note>
</listitem>
</itemizedlist>

</sect2>

<sect2 id="amd-ibs-support">
<title>AMD64 (x86_64) Instruction-Based Sampling (IBS) support</title>

<para>
Instruction-Based Sampling (IBS) is a new performance measurement technique
available on AMD Family 10h processors. Traditional performance counter
sampling is not precise enough to isolate performance issues to individual
instructions. IBS, however, precisely identifies instructions which are not
making the best use of the processor pipeline and memory hierarchy.
For more information, please refer to the "Instruction-Based Sampling:
A New Performance Analysis Technique for AMD Family 10h Processors" (
<ulink url="http://developer.amd.com/assets/AMD_IBS_paper_EN.pdf">
http://developer.amd.com/assets/AMD_IBS_paper_EN.pdf</ulink>).
There are two types of IBS profile types, described in the following sections.
</para>

<sect3 id="ibs-fetch">
<title>IBS Fetch</title>

<para>
IBS fetch sampling is a statistical sampling method which counts completed
fetch operations. When the number of completed fetch operations reaches the
maximum fetch count (the sampling period), IBS tags the fetch operation and
monitors that operation until it either completes or aborts. When a tagged
fetch completes or aborts, a sampling interrupt is generated and an IBS fetch
sample is taken. An IBS fetch sample contains a timestamp, the identifier of
the interrupted process, the virtual fetch address, and several event flags
and values that describe what happened during the fetch operation. 
</para>

</sect3>

<sect3 id="ibs-op">
<title>IBS Op</title>

<para>
IBS op sampling selects, tags, and monitors macro-ops as issued from AMD64
instructions. Two options are available for selecting ops for sampling:
</para>

<itemizedlist>
<listitem>
Cycles-based selection counts CPU clock cycles. The op is tagged and monitored
when the count reaches a threshold (the sampling period) and a valid op is
available. 
</listitem>

<listitem>
Dispatched op-based selection counts dispatched macro-ops.
When the count reaches a threshold, the next valid op is tagged and monitored. 
</listitem>
</itemizedlist>

<para>
In both cases, an IBS sample is generated only if the tagged op retires.
Thus, IBS op event information does not measure speculative execution activity.
The execution stages of the pipeline monitor the tagged macro-op. When the
tagged macro-op retires, a sampling interrupt is generated and an IBS op
sample is taken. An IBS op sample contains a timestamp, the identifier of
the interrupted process, the virtual address of the AMD64 instruction from
which the op was issued, and several event flags and values that describe
what happened when the macro-op executed.
</para>

</sect3>

<para>
Enabling IBS profiling is done simply by specifying IBS performance events
through the "--event=" options. These events are listed in the
<function>opcontrol --list-events</function>.
</para>

<screen>
opcontrol --event=IBS_FETCH_XXX:&lt;count&gt;:&lt;um&gt;:&lt;kernel&gt;:&lt;user&gt;
opcontrol --event=IBS_OP_XXX:&lt;count&gt;:&lt;um&gt;:&lt;kernel&gt;:&lt;user&gt;

Note: * All IBS fetch event must have the same event count and unitmask,
        as do those for IBS op.
</screen>

</sect2>


<sect2 id="misuse">
<title>Dangerous counter settings</title>
<para>
OProfile is a low-level profiler which allow continuous profiling with a low-overhead cost.
If too low a count reset value is set for a counter, the system can become overloaded with counter
interrupts, and seem as if the system has frozen. Whilst some validation is done, it
is not foolproof.
</para>
<note><para>
This can happen as follows: When the profiler count
reaches zero an NMI handler is called which stores the sample values in an internal buffer, then resets the counter
to its original value. If the count is very low, a pending NMI can be sent before the NMI handler has
completed. Due to the priority of the NMI, the local APIC delivers the pending interrupt immediately after
completion of the previous interrupt handler, and control never returns to other parts of the system.
In this way the system seems to be frozen.
</para></note>
<para>If this happens, it will be impossible to bring the system back to a workable state.
There is no way to provide real security against this happening, other than making sure to use a reasonable value
for the counter reset. For example, setting <constant>CPU_CLK_UNHALTED</constant> event type with a ridiculously low reset count (e.g. 500)
is likely to freeze the system.
</para>
<para>
In short : <command>Don't try a foolish sample count value</command>. Unfortunately the definition of a foolish value
is really dependent on the event type - if ever in doubt, e-mail </para>
<address><email>oprofile-list@lists.sf.net</email>.</address>
</sect2>

</sect1>
 
</chapter>

<chapter id="results">
<title>Obtaining results</title>
<para>
OK, so the profiler has been running, but it's not much use unless we can get some data out. Fairly often,
OProfile does a little <emphasis>too</emphasis> good a job of keeping overhead low, and no data reaches
the profiler. This can happen on lightly-loaded machines. Remember you can force a dump at any time with :
</para>
<para><command>opcontrol --dump</command></para>
<para>Remember to do this before complaining there is no profiling data !
Now that we've got some data, it has to be processed. That's the job of <command>opreport</command>,
<command>opannotate</command>, or <command>opgprof</command>.
</para>

<sect1 id="profile-spec">
<title>Profile specifications</title>

<para>
All of the analysis tools take a <emphasis>profile specification</emphasis>.
This is a set of definitions that describe which actual profiles should be
examined. The simplest profile specification is empty: this will match all
the available profile files for the current session (this is what happens
when you do <command>opreport</command>).
</para>
<para>
Specification parameters are of the form <option>name:value[,value]</option>.
For example, if I wanted to get a combined symbol summary for
<filename>/bin/myprog</filename> and <filename>/bin/myprog2</filename>,
I could do <command>opreport -l image:/bin/myprog,/bin/myprog2</command>.
As a special case, you don't actually need to specify the <option>image:</option>
part here: anything left on the command line is assumed to be an
<option>image:</option> name. Similarly, if no <option>session:</option>
is specified, then <option>session:current</option> is assumed ("current"
is a special name of the current / last profiling session).
</para>
<para>
In addition to the comma-separated list shown above, some of the 
specification parameters can take <command>glob</command>-style
values. For example, if I want to see image summaries for all
binaries profiled in <filename>/usr/bin/</filename>, I could do
<command>opreport image:/usr/bin/\*</command>. Note the necessity
to escape the special character from the shell.
</para>
<para>
For <command>opreport</command>, profile specifications can be used to
define two profiles, giving differential output. This is done by
enclosing each of the two specifications within curly braces, as shown
in the examples below. Any specifications outside of curly braces are
shared across both.
</para>

<sect2 id="profile-spec-examples">
<title>Examples</title>

<para>
Image summaries for all profiles with <constant>DATA_MEM_REFS</constant>
samples in the saved session called "stresstest" :
</para>
<screen>
# opreport session:stresstest event:DATA_MEM_REFS
</screen>

<para>
Symbol summary for the application called "test_sym53c8xx,9xx". Note the
escaping is necessary as <option>image:</option> takes a comma-separated list.
</para>
<screen>
# opreport -l ./test/test_sym53c8xx\,9xx
</screen>

<para>
Image summaries for all binaries in the <filename>test</filename> directory,
excepting <filename>boring-test</filename> :
</para>
<screen>
# opreport image:./test/\* image-exclude:./test/boring-test
</screen>

<para>
Differential profile of a binary stored in two archives :
</para>
<screen>
# opreport -l /bin/bash { archive:./orig } { archive:./new }
</screen>

<para>
Differential profile of an archived binary with the current session :
</para>
<screen>
# opreport -l /bin/bash { archive:./orig } { }
</screen>

</sect2> <!-- profile spec examples -->

<sect2 id="profile-spec-details">
<title>Profile specification parameters</title>

<variablelist>
	<varlistentry>
		<term><option>archive:</option><emphasis>archivepath</emphasis></term>
		<listitem><para>
		A path to an archive made with <command>oparchive</command>.
		Absence of this tag, unlike others, means "the current system",
		equivalent to specifying "archive:".
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>session:</option><emphasis>sessionlist</emphasis></term>
		<listitem><para>
		A comma-separated list of session names to resolve in. Absence of this
		tag, unlike others, means "the current session", equivalent to
		specifying "session:current".
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>session-exclude:</option><emphasis>sessionlist</emphasis></term>
		<listitem><para>
                A comma-separated list of sessions to exclude.
		</para></listitem>
	</varlistentry>
	<varlistentry>
		<term><option>image:</option><emphasis>imagelist</emphasis></term>
		<listitem><para>
                A comma-separated list of image names to resolve. Each entry may be relative
                path, <command>glob</command>-style name, or full path, e.g.</para>
		<screen>opreport 'image:/usr/bin/oprofiled,*op*,./opreport'</screen>
		</listitem>
	</varlistentry>

	<varlistentry>
		<term><option>image-exclude:</option><emphasis>imagelist</emphasis></term>
		<listitem><para>
		Same as <option>image:</option>, but the matching images are excluded.
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>lib-image:</option><emphasis>imagelist</emphasis></term>
		<listitem><para>
		Same as <option>image:</option>, but only for images that are for
		a particular primary binary image (namely, an application). This only
		makes sense to use if you're using <option>--separate</option>.
		This includes kernel modules and the kernel when using
		<option>--separate=kernel</option>.
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>lib-image-exclude:</option><emphasis>imagelist</emphasis></term>
		<listitem><para>
		Same as <option>lib-image:</option>, but the matching images
		are excluded.
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>event:</option><emphasis>eventlist</emphasis></term>
		<listitem><para>
		The symbolic event name to match on, e.g. <option>event:DATA_MEM_REFS</option>.
		You can pass a list of events for side-by-side comparison with <command>opreport</command>.
		When using the timer interrupt, the event is always "TIMER".
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>count:</option><emphasis>eventcountlist</emphasis></term>
		<listitem><para>
		The event count to match on, e.g. <option>event:DATA_MEM_REFS count:30000</option>.
		Note that this value refers to the setting used for <command>opcontrol</command>
		only, and has nothing to do with the sample counts in the profile data
		itself.
		You can pass a list of events for side-by-side comparison with <command>opreport</command>.
		When using the timer interrupt, the count is always 0 (indicating it cannot be set).
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>unit-mask:</option><emphasis>masklist</emphasis></term>
		<listitem><para>
		The unit mask value of the event to match on, e.g. <option>unit-mask:1</option>.
		You can pass a list of events for side-by-side comparison with <command>opreport</command>.
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>cpu:</option><emphasis>cpulist</emphasis></term>
		<listitem><para>
		Only consider profiles for the given numbered CPU (starting from zero).
		This is only useful when using CPU profile separation.
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>tgid:</option><emphasis>pidlist</emphasis></term>
		<listitem><para>
		Only consider profiles for the given task groups. Unless some program
		is using threads, the task group ID of a process is the same
		as its process ID. This option corresponds to the POSIX
		notion of a thread group.
		This is only useful when using per-process profile separation.
		</para></listitem>
	</varlistentry>

	<varlistentry>
		<term><option>tid:</option><emphasis>tidlist</emphasis></term>
		<listitem><para>
		Only consider profiles for the given threads. When using
		recent thread libraries, all threads in a process share the
		same task group ID, but have different thread IDs. You can
		use this option in combination with <option>tgid:</option> to
		restrict the results to particular threads within a process.
		This is only useful when using per-process profile separation.
		</para></listitem>
	</varlistentry>
</variablelist>

</sect2>

<sect2 id="locating-and-managing-binary-images">
<title>Locating and managing binary images</title>
<para>
Each session's sample files can be found in the $SESSION_DIR/samples/ directory (default: <filename>/var/lib/oprofile/samples/</filename>).
These are used, along with the binary image files, to produce human-readable data.
In some circumstances (kernel modules in an initrd, or modules on 2.6 kernels), OProfile
will not be able to find the binary images. All the tools have an <option>--image-path</option>
option to which you can pass a comma-separated list of alternate paths to search. For example,
I can let OProfile find my 2.6 modules by using <command>--image-path /lib/modules/2.6.0/kernel/</command>.
It is your responsibility to ensure that the correct images are found when using this
option.
</para>
<para>
Note that if a binary image changes after the sample file was created, you won't be able to get useful
symbol-based data out. This situation is detected for you. If you replace a binary, you should
make sure to save the old binary if you need to do comparative profiles.
</para>

</sect2>

<sect2 id="no-results">
<title>What to do when you don't get any results</title>
<para>
When attempting to get output, you may see the error :
</para>
<screen>
error: no sample files found: profile specification too strict ?
</screen>
<para>
What this is saying is that the profile specification you passed in,
when matched against the available sample files, resulted in no matches.
There are a number of reasons this might happen:
</para>
<variablelist>
<varlistentry><term>spelling</term><listitem><para>
You specified a binary name, but spelt it wrongly. Check your spelling !
</para></listitem></varlistentry>
<varlistentry><term>profiler wasn't running</term><listitem><para>
Make very sure that OProfile was actually up and running when you ran
the binary.
</para></listitem></varlistentry>
<varlistentry><term>binary didn't run long enough</term><listitem><para>
Remember OProfile is a statistical profiler - you're not guaranteed to
get samples for short-running programs. You can help this by using a
lower count for the performance counter, so there are a lot more samples
taken per second.
</para></listitem></varlistentry>
<varlistentry><term>binary spent most of its time in libraries</term><listitem><para>
Similarly, if the binary spends little time in the main binary image
itself, with most of it spent in shared libraries it uses, you might
not see any samples for the binary image itself. You can check this
by using <command>opcontrol --separate=lib</command> before the
profiling session, so <command>opreport</command> and friends show
the library profiles on a per-application basis.
</para></listitem></varlistentry>
<varlistentry><term>specification was really too strict</term><listitem><para>
For example, you specified something like <option>tgid:3433</option>,
but no task with that group ID ever ran the code.
</para></listitem></varlistentry>
<varlistentry><term>binary didn't generate any events</term><listitem><para>
If you're using a particular event counter, for example counting MMX
operations, the code might simply have not generated any events in the
first place. Verify the code you're profiling does what you expect it
to.
</para></listitem></varlistentry>
<varlistentry><term>you didn't specify kernel module name correctly</term><listitem><para>
If you're using 2.6 kernels, and trying to get reports for a kernel
module, make sure to use the <option>-p</option> option, and specify the
module name <emphasis>with</emphasis> the <filename>.ko</filename>
extension. Check if the module is one loaded from initrd.
</para></listitem></varlistentry>
</variablelist>

</sect2>

</sect1> <!-- profile-spec -->

<sect1 id="opreport">
<title>Image summaries and symbol summaries (<command>opreport</command>)</title>
<para>
The <command>opreport</command> utility is the primary utility you will use for 
getting formatted data out of OProfile. It produces two types of data: image summaries
and symbol summaries. An image summary lists the number of samples for individual
binary images such as libraries or applications. Symbol summaries provide per-symbol
profile data. In the following example, we're getting an image summary for the whole
system:
</para>
<screen>
$ opreport --long-filenames
CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a unit mask of 0x00 (No unit mask) count 23150
   905898 59.7415 /usr/lib/gcc-lib/i386-redhat-linux/3.2/cc1plus
   214320 14.1338 /boot/2.6.0/vmlinux
   103450  6.8222 /lib/i686/libc-2.3.2.so
    60160  3.9674 /usr/local/bin/madplay
    31769  2.0951 /usr/local/oprofile-pp/bin/oprofiled
    26550  1.7509 /usr/lib/libartsflow.so.1.0.0
    23906  1.5765 /usr/bin/as
    18770  1.2378 /oprofile
    15528  1.0240 /usr/lib/qt-3.0.5/lib/libqt-mt.so.3.0.5
    11979  0.7900 /usr/X11R6/bin/XFree86
    11328  0.7471 /bin/bash
    ...
</screen>
<para>
If we had specified <option>--symbols</option> in the previous command, we would have
gotten a symbol summary of all the images across the entire system. We can restrict this to only
part of the system profile; for example,
below is a symbol summary of the OProfile daemon. Note that as we used
<command>opcontrol --separate=kernel</command>, symbols from images that <command>oprofiled</command>
has used are also shown.
</para>
<screen>
$ opreport -l `which oprofiled` 2>/dev/null | more
CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a unit mask of 0x00 (No unit mask) count 23150
vma      samples  %           image name               symbol name
0804be10 14971    28.1993     oprofiled                odb_insert
0804afdc 7144     13.4564     oprofiled                pop_buffer_value
c01daea0 6113     11.5144     vmlinux                  __copy_to_user_ll
0804b060 2816      5.3042     oprofiled                opd_put_sample
0804b4a0 2147      4.0441     oprofiled                opd_process_samples
0804acf4 1855      3.4941     oprofiled                opd_put_image_sample
0804ad84 1766      3.3264     oprofiled                opd_find_image
0804a5ec 1084      2.0418     oprofiled                opd_find_module
0804ba5c 741       1.3957     oprofiled                odb_hash_add_node
...
</screen>

<para>
These are the two basic ways you are most likely to use regularly, but <command>opreport</command>
can do a lot more than that, as described below.
</para>

<sect2 id="opreport-merging">
<title>Merging separate profiles</title>

If you have used one of the <option>--separate=</option> options
whilst profiling, there can be several separate profiles for
a single binary image within a session. Normally the output
will keep these images separated (so, for example, the image summary
output shows library image summaries on a per-application basis,
when using <option>--separate=lib</option>).
Sometimes it can be useful to merge these results back together
before getting results. The <option>--merge</option> option allows
you to do that.
</sect2>

<sect2 id="opreport-comparison">
<title>Side-by-side multiple results</title>
If you have used multiple events when profiling, by default you get
side-by-side results of each event's sample values from <command>opreport</command>.
You can restrict which events to list by appropriate use of the
<option>event:</option> profile specifications, etc.
</sect2>

<sect2 id="opreport-callgraph">
<title>Callgraph output</title>
<para>
This section provides details on how to use the OProfile callgraph feature.
</para>
<sect3 id="op-cg1">
<title>Callgraph details</title>
<para>
When using the <option>opcontrol --callgraph</option> option, you can see what
functions are calling other functions in the output. Consider the
following program:
</para>
<screen>
#include &lt;string.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;

#define SIZE 500000

static int compare(const void *s1, const void *s2)
{
        return strcmp(s1, s2);
}

static void repeat(void)
{
        int i;
        char *strings[SIZE];
        char str[] = "abcdefghijklmnopqrstuvwxyz";

        for (i = 0; i &lt; SIZE; ++i) {
                strings[i] = strdup(str);
                strfry(strings[i]);
        }

        qsort(strings, SIZE, sizeof(char *), compare);
}

int main()
{
        while (1)
                repeat();
}
</screen>
<para>
When running with the call-graph option, OProfile will
record the function stack every time it takes a sample.
<command>opreport --callgraph</command> outputs an entry for each
function, where each entry looks similar to:
</para>
<screen>
samples  %        image name               symbol name
  197       0.1548  cg                       main
  127036   99.8452  cg                       repeat
84590    42.5084  libc-2.3.2.so            strfry
  84590    66.4838  libc-2.3.2.so            strfry [self]
  39169    30.7850  libc-2.3.2.so            random_r
  3475      2.7312  libc-2.3.2.so            __i686.get_pc_thunk.bx
-------------------------------------------------------------------------------
</screen>
<para>
Here the non-indented line is the function we're focussing upon
(<function>strfry()</function>). This
line is the same as you'd get from a normal <command>opreport</command>
output.
</para>
<para>
Above the non-indented line we find the functions that called this
function (for example, <function>repeat()</function> calls
<function>strfry()</function>). The samples and percentage values here
refer to the number of times we took a sample where this call was found
in the stack; the percentage is relative to all other callers of the
function we're focussing on. Note that these values are
<emphasis>not</emphasis> call counts; they only reflect the call stack
every time a sample is taken; that is, if a call is found in the stack
at the time of a sample, it is recorded in this count.
</para>
<para>
Below the line are functions that are called by
<function>strfry()</function> (called <emphasis>callees</emphasis>).
It's clear here that <function>strfry()</function> calls
<function>random_r()</function>. We also see a special entry with a
"[self]" marker. This records the normal samples for the function, but
the percentage becomes relative to all callees. This allows you to
compare time spent in the function itself compared to functions it
calls. Note that if a function calls itself, then it will appear in the
list of callees of itself, but without the "[self]" marker; so recursive
calls are still clearly separable.
</para>
<para>
You may have noticed that the output lists <function>main()</function>
as calling <function>strfry()</function>, but it's clear from the source
that this doesn't actually happen. See <xref
linkend="interpreting-callgraph" /> for an explanation.
</para>
</sect3>
<sect3 id="cg-with-jitsupport">
<title>Callgraph and JIT support</title>
<para>
Callgraph output where anonymously mapped code is in the callstack can sometimes be misleading.
For all such code, the samples for the anonymously mapped code are stored in a samples subdirectory
named <filename>{anon:anon}/&lt;tgid&gt;.&lt;begin_addr&gt;.&lt;end_addr&gt;</filename>.
As stated earlier, if this anonymously mapped code is JITed code from a supported VM like Java,
OProfile creates an ELF file to provide a (somewhat) permanent backing file for the code.
However, when viewing callgraph output, any anonymously mapped code in the callstack
will be attributed to <filename>anon (&lt;tgid&gt;: range:&lt;begin_addr&gt;-&lt;end_addr&gt;</filename>,
even if a <filename>.jo</filename> ELF file had been created for it.  See the example below.
</para>
<screen>
-------------------------------------------------------------------------------
  1         2.2727  libj9ute23.so            java.bin                 traceV
  2         4.5455  libj9ute23.so            java.bin                 utsTraceV
  4         9.0909  libj9trc23.so            java.bin                 fillInUTInterfaces
  37       84.0909  libj9trc23.so            java.bin                 twGetSequenceCounter
8         0.0154  libj9prt23.so            java.bin                 j9time_hires_clock
  27       61.3636  anon (tgid:10014 range:0x100000-0x103000) java.bin                 (no symbols)
  9        20.4545  libc-2.4.so              java.bin                 gettimeofday
  8        18.1818  libj9prt23.so            java.bin                 j9time_hires_clock [self]
-------------------------------------------------------------------------------
</screen>
<para>
The output shows that "anon (tgid:10014 range:0x100000-0x103000)" was a callee of
<code>j9time_hires_clock</code>, even though the ELF file <filename>10014.jo</filename> was
created for this profile run.  Unfortunately, there is currently no way to correlate
that anonymous callgraph entry with its corresponding <filename>.jo</filename> file.
</para>
</sect3>


</sect2> <!-- opreport-callgraph -->

<sect2 id="opreport-diff">
<title>Differential profiles with <command>opreport</command></title>

<para>
Often, we'd like to be able to compare two profiles. For example, when
analysing the performance of an application, we'd like to make code
changes and examine the effect of the change. This is supported in
<command>opreport</command> by giving a profile specification that
identifies two different profiles. The general form is of:
</para>
<screen>
$ opreport &lt;shared-spec&gt; { &lt;first-profile&gt; } { &lt;second-profile&gt; }
</screen>
<note><para>
We lost our Dragon book down the back of the sofa, so you have to be
careful to have spaces around those braces, or things will get
hopelessly confused. We can only apologise.
</para></note>
<para>
For each of the profiles, the shared section is prefixed, and then the
specification is analysed. The usual parameters work both within the
shared section, and in the sub-specification within the curly braces.
</para>
<para>
A typical way to use this feature is with archives created with
<command>oparchive</command>. Let's look at an example:
</para>
<screen>
$ ./a
$ oparchive -o orig ./a
$ opcontrol --reset
  # edit and recompile a
$ ./a
  # now compare the current profile of a with the archived profile
$ opreport -xl ./a { archive:./orig } { }
CPU: PIII, speed 863.233 MHz (estimated)
Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a
unit mask of 0x00 (No unit mask) count 100000
samples  %        diff %    symbol name
92435    48.5366  +0.4999   a
54226    ---      ---       c
49222    25.8459  +++       d
48787    25.6175  -2.2e-01  b
</screen>
<para>
Note that we specified an empty second profile in the curly braces, as
we wanted to use the current session; alternatively, we could
have specified another archive, or a tgid etc. We specified the binary
<command>a</command> in the shared section, so we matched that in both
the profiles we're diffing.
</para>
<para>
As in the normal output, the results are sorted by the number of
samples, and the percentage field represents the relative percentage of
the symbol's samples in the second profile.
</para>
<para>
Notice the new column in the output. This value represents the
percentage change of the relative percent between the first and the
second profile: roughly, "how much more important this symbol is".
Looking at the symbol <function>a()</function>, we can see that it took
roughly the same amount of the total profile in both the first and the
second profile. The function <function>c()</function> was not in the new
profile, so has been marked with <function>---</function>. Note that the
sample value is the number of samples in the first profile; since we're
displaying results for the second profile, we don't list a percentage
value for it, as it would be meaningless. <function>d()</function> is
new in the second profile, and consequently marked with
<function>+++</function>.
</para>
<para>
When comparing profiles between different binaries, it should be clear
that functions can change in terms of VMA and size. To avoid this
problem, <command>opreport</command> considers a symbol to be the same
if the symbol name, image name, and owning application name all match;
any other factors are ignored. Note that the check for application name
means that trying to compare library profiles between two different
applications will not work as you might expect: each symbol will be
considered different.
</para>

</sect2> <!-- opreport-diff -->

<sect2 id="opreport-anon">
<title>Anonymous executable mappings</title>
<para>
Many applications, typically ones involving dynamic compilation into
machine code (just-in-time, or "JIT", compilation), have executable mappings that
are not backed by an ELF file. <command>opreport</command> has basic support for showing the
samples taken in these regions; for example:
<screen>
$ opreport /usr/bin/mono -l
CPU: ppc64 POWER5, speed 1654.34 MHz (estimated)
Counted CYCLES events (Processor Cycles using continuous sampling) with a unit mask of 0x00 (No unit mask) count 100000
samples  %        image name    		                symbol name
47       58.7500  mono                     			(no symbols)
14       17.5000  anon (tgid:3189 range:0xf72aa000-0xf72fa000)  (no symbols)
9        11.2500  anon (tgid:3189 range:0xf6cca000-0xf6dd9000)  (no symbols)
.	 .	  .						.
</screen>
</para>
<para>
Note that, since such mappings are dependent upon individual invocations of
a binary, these mappings are always listed as a dependent image,
even when using <option>--separate=none</option>.
Equally, the results are not affected by the <option>--merge</option>
option.
</para>
<para>
As shown in the opreport output above, OProfile is unable to attribute the samples to any
symbol(s) because there is no ELF file for this code.
Enhanced support for JITed code is now available for some virtual machines; 
e.g., the Java Virtual Machine.  For details about OProfile output for
JITed code, see <xref linkend="getting-jit-reports" />.
</para>
<para>For more information about JIT support in OProfile, see <xref linkend="jitsupport"/>.
</para>
</sect2> <!-- opreport-anon -->

<sect2 id="opreport-xml">
<title>XML formatted output</title>
<para>
The -xml option can be used to generate XML instead of the usual
text format.  This allows opreport to eliminate some of the constraints
dictated by the two dimensional text format.  For example, it is possible
to separate the sample data across multiple events, cpus and threads.  The XML
schema implemented by opreport is found in doc/opreport.xsd. It contains
more detailed comments about the structure of the XML generated by opreport.
</para>
<para>
Since XML is consumed by a client program rather than a user, its structure
is fairly static.  In particular, the --sort option is incompatible with the
--xml option.  Percentages are not dislayed in the XML so the options related
to percentages will have no effect.  Full pathnames are always displayed in
the XML so --long-filenames is not necessary.  The --details option will cause
all of the individual sample data to be included in the XML as well as the
instruction byte stream for each symbol (for doing disassembly) and can result
in very large XML files.
</para>
</sect2> <!-- opreport-xml -->

<sect2 id="opreport-options">
<title>Options for <command>opreport</command></title>

<variablelist>
<varlistentry><term><option>--accumulated / -a</option></term><listitem><para>
Accumulate sample and percentage counts in the symbol list.
</para></listitem></varlistentry>
<varlistentry><term><option>--callgraph / -c</option></term><listitem><para>
Show callgraph information.
</para></listitem></varlistentry>
<varlistentry><term><option>--debug-info / -g</option></term><listitem><para>
Show source file and line for each symbol.
</para></listitem></varlistentry>
<varlistentry><term><option>--demangle / -D none|normal|smart</option></term><listitem><para>
none: no demangling. normal: use default demangler (default) smart: use
pattern-matching to make C++ symbol demangling more readable.
</para></listitem></varlistentry>
<varlistentry><term><option>--details / -d</option></term><listitem><para>
Show per-instruction details for all selected symbols. Note that, for
binaries without symbol information, the VMA values shown are raw file
offsets for the image binary.
</para></listitem></varlistentry>
<varlistentry><term><option>--exclude-dependent / -x</option></term><listitem><para>
Do not include application-specific images for libraries, kernel modules
and the kernel. This option only makes sense if the profile session
used --separate.
</para></listitem></varlistentry>
<varlistentry><term><option>--exclude-symbols / -e [symbols]</option></term><listitem><para>
Exclude all the symbols in the given comma-separated list.
</para></listitem></varlistentry>
<varlistentry><term><option>--global-percent / -%</option></term><listitem><para>
Make all percentages relative to the whole profile.
</para></listitem></varlistentry>
<varlistentry><term><option>--help / -? / --usage</option></term><listitem><para>
Show help message.
</para></listitem></varlistentry>
<varlistentry><term><option>--image-path / -p [paths]</option></term><listitem><para>
Comma-separated list of additional paths to search for binaries.
This is needed to find modules in kernels 2.6 and upwards.
</para></listitem></varlistentry>
<varlistentry><term><option>--root / -R [path]</option></term><listitem><para>
A path to a filesystem to search for additional binaries.
</para></listitem></varlistentry>
<varlistentry><term><option>--include-symbols / -i [symbols]</option></term><listitem><para>
Only include symbols in the given comma-separated list.
</para></listitem></varlistentry>
<varlistentry><term><option>--long-filenames / -f</option></term><listitem><para>
Output full paths instead of basenames.
</para></listitem></varlistentry>
<varlistentry><term><option>--merge / -m [lib,cpu,tid,tgid,unitmask,all]</option></term><listitem><para>
Merge any profiles separated in a --separate session.
</para></listitem></varlistentry>
<varlistentry><term><option>--no-header</option></term><listitem><para>
Don't output a header detailing profiling parameters.
</para></listitem></varlistentry>
<varlistentry><term><option>--output-file / -o [file]</option></term><listitem><para>
Output to the given file instead of stdout.
</para></listitem></varlistentry>
<varlistentry><term><option>--reverse-sort / -r</option></term><listitem><para>
Reverse the sort from the default.
</para></listitem></varlistentry>
<varlistentry><term><option>--session-dir=</option>dir_path</term><listitem><para>
Use sample database out of directory <filename>dir_path</filename> 
instead of the default location (/var/lib/oprofile).
</para></listitem></varlistentry>
<varlistentry><term><option>--show-address / -w</option></term><listitem><para>
Show the VMA address of each symbol (off by default).
</para></listitem></varlistentry>
<varlistentry><term><option>--sort / -s [vma,sample,symbol,debug,image]</option></term><listitem><para>
Sort the list of symbols by, respectively, symbol address,
number of samples, symbol name, debug filename and line number,
binary image filename.
</para></listitem></varlistentry>
<varlistentry><term><option>--symbols / -l</option></term><listitem><para>
List per-symbol information instead of a binary image summary.
</para></listitem></varlistentry>
<varlistentry><term><option>--threshold / -t [percentage]</option></term><listitem><para>
Only output data for symbols that have more than the given percentage
of total samples.
</para></listitem></varlistentry>
<varlistentry><term><option>--verbose / -V [options]</option></term><listitem><para>
Give verbose debugging output.
</para></listitem></varlistentry>
<varlistentry><term><option>--version / -v</option></term><listitem><para>
Show version.
</para></listitem></varlistentry>
<varlistentry><term><option>--xml / -X</option></term><listitem><para>
Generate XML output.
</para></listitem></varlistentry>
</variablelist>

</sect2>

</sect1> <!-- opreport -->

<sect1 id="opannotate">
<title>Outputting annotated source (<command>opannotate</command>)</title>
<para>
The <command>opannotate</command> utility generates annotated source files or assembly listings, optionally
mixed with source.
If you want to see the source file, the profiled application needs to have debug information, and the source
must be available through this debug information. For GCC, you must use the <option>-g</option> option
when you are compiling.
If the binary doesn't contain sufficient debug information, you can still
use <command>opannotate <option>--assembly</option></command> to get annotated assembly.
</para>
<para>
Note that for the reason explained in <xref linkend="hardware-counters" /> the results can be
inaccurate. The debug information itself can add other problems; for example, the line number for a symbol can be
incorrect. Assembly instructions can be re-ordered and moved by the compiler, and this can lead to
crediting source lines with samples not really "owned" by this line. Also see
<xref linkend="interpreting" />.
</para>
<para>
You can output the annotation to one single file, containing all the source found using the
<option>--source</option>. You can use this in conjunction with <option>--assembly</option>
to get combined source/assembly output.
</para>
<para>
You can also output a directory of annotated source files that maintains the structure of
the original sources. Each line in the annotated source is prepended with the samples
for that line. Additionally, each symbol is annotated giving details for the symbol
as a whole. An example:
</para>
<screen>
$ opannotate --source --output-dir=annotated /usr/local/oprofile-pp/bin/oprofiled
$ ls annotated/home/moz/src/oprofile-pp/daemon/
opd_cookie.h  opd_image.c  opd_kernel.c  opd_sample_files.c  oprofiled.c
</screen>
<para>
Line numbers are maintained in the source files, but each file has
a footer appended describing the profiling details. The actual annotation
looks something like this :
</para>
<screen>
...
               :static uint64_t pop_buffer_value(struct transient * trans)
 11510  1.9661 :{ /* pop_buffer_value total:  89901 15.3566 */
               :        uint64_t val;
               :
 10227  1.7469 :        if (!trans->remaining) {
               :                fprintf(stderr, "BUG: popping empty buffer !\n");
               :                exit(EXIT_FAILURE);
               :        }
               :
               :        val = get_buffer_value(trans->buffer, 0);
  2281  0.3896 :        trans->remaining--;
  2296  0.3922 :        trans->buffer += kernel_pointer_size;
               :        return val;
 10454  1.7857 :}
...
</screen>

<para>
The first number on each line is the number of samples, whilst the second is
the relative percentage of total samples.
</para>

<sect2 id="opannotate-finding-source">
<title>Locating source files</title>
<para>
Of course, <command>opannotate</command> needs to be able to locate the source files
for the binary image(s) in order to produce output. Some binary images have debug
information where the given source file paths are relative, not absolute. You can
specify search paths to look for these files (similar to <command>gdb</command>'s
<option>dir</option> command) with the <option>--search-dirs</option> option.
</para>
<para>
Sometimes you may have a binary image which gives absolute paths for the source files,
but you have the actual sources elsewhere (commonly, you've installed an SRPM for
a binary on your system and you want annotation from an existing profile). You can
use the <option>--base-dirs</option> option to redirect OProfile to look somewhere
else for source files. For example, imagine we have a binary generated from a source
file that is given in the debug information as <filename>/tmp/build/libfoo/foo.c</filename>,
and you have the source tree matching that binary installed in <filename>/home/user/libfoo/</filename>.
You can redirect OProfile to find <filename>foo.c</filename> correctly like this :
</para>
<screen>
$ opannotate --source --base-dirs=/tmp/build/libfoo/ --search-dirs=/home/user/libfoo/ --output-dir=annotated/ /lib/libfoo.so
</screen>
<para>
You can specify multiple (comma-separated) paths to both options.
</para>
</sect2>

<sect2 id="opannotate-details">
<title>Usage of <command>opannotate</command></title>

<variablelist>
<varlistentry><term><option>--assembly / -a</option></term><listitem><para>
Output annotated assembly. If this is combined with --source, then mixed
source / assembly annotations are output.
</para></listitem></varlistentry>
<varlistentry><term><option>--base-dirs / -b [paths]/</option></term><listitem><para>
Comma-separated list of path prefixes. This can be used to point OProfile to a
different location for source files when the debug information specifies an
absolute path on your system for the source that does not exist. The prefix
is stripped from the debug source file paths, then searched in the search dirs
specified by <option>--search-dirs</option>.
</para></listitem></varlistentry>
<varlistentry><term><option>--demangle / -D none|normal|smart</option></term><listitem><para>
none: no demangling. normal: use default demangler (default) smart: use
pattern-matching to make C++ symbol demangling more readable.
</para></listitem></varlistentry>
<varlistentry><term><option>--exclude-dependent / -x</option></term><listitem><para>
Do not include application-specific images for libraries, kernel modules
and the kernel. This option only makes sense if the profile session
used --separate.
</para></listitem></varlistentry>
<varlistentry><term><option>--exclude-file [files]</option></term><listitem><para>
Exclude all files in the given comma-separated list of glob patterns.
</para></listitem></varlistentry>
<varlistentry><term><option>--exclude-symbols / -e [symbols]</option></term><listitem><para>
Exclude all the symbols in the given comma-separated list.
</para></listitem></varlistentry>
<varlistentry><term><option>--help / -? / --usage</option></term><listitem><para>
Show help message.
</para></listitem></varlistentry>
<varlistentry><term><option>--image-path / -p [paths]</option></term><listitem><para>
Comma-separated list of additional paths to search for binaries.
This is needed to find modules in kernels 2.6 and upwards.
</para></listitem></varlistentry>
<varlistentry><term><option>--root / -R [path]</option></term><listitem><para>
A path to a filesystem to search for additional binaries.
</para></listitem></varlistentry>
<varlistentry><term><option>--include-file [files]</option></term><listitem><para>
Only include files in the given comma-separated list of glob patterns.
</para></listitem></varlistentry>
<varlistentry><term><option>--include-symbols / -i [symbols]</option></term><listitem><para>
Only include symbols in the given comma-separated list.
</para></listitem></varlistentry>
<varlistentry><term><option>--objdump-params [params]</option></term><listitem><para>
Pass the given parameters as extra values when calling objdump.
</para></listitem></varlistentry>
<varlistentry><term><option>--output-dir / -o [dir]</option></term><listitem><para>
Output directory. This makes opannotate output one annotated file for each
source file. This option can't be used in conjunction with --assembly.
</para></listitem></varlistentry>
<varlistentry><term><option>--search-dirs / -d [paths]</option></term><listitem><para>
Comma-separated list of paths to search for source files. This is useful to find
source files when the debug information only contains relative paths.
</para></listitem></varlistentry>
<varlistentry><term><option>--source / -s</option></term><listitem><para>
Output annotated source. This requires debugging information to be available
for the binaries.
</para></listitem></varlistentry>
<varlistentry><term><option>--threshold / -t [percentage]</option></term><listitem><para>
Only output data for symbols that have more than the given percentage
of total samples.
</para></listitem></varlistentry>
<varlistentry><term><option>--verbose / -V [options]</option></term><listitem><para>
Give verbose debugging output.
</para></listitem></varlistentry>
<varlistentry><term><option>--version / -v</option></term><listitem><para>
Show version.
</para></listitem></varlistentry>
</variablelist>


</sect2> <!-- opannotate-details -->

</sect1> <!-- opannotate -->

<sect1 id="getting-jit-reports">
	<title>OProfile results with JIT samples</title>
	<para>
		After profiling a Java (or other supported VM) application, the command
		<screen><command>"opcontrol --dump"</command> </screen>
		flushes the sample buffers and creates ELF binaries from the
		intermediate files that were written by the agent library.
		The ELF binaries are named <filename>&lt;tgid&gt;.jo</filename>.
		With the symbol information stored in these ELF files, it is
		possible to map samples to the appropriate symbols.
	</para>
	<para>
		The usual analysis tools (<command>opreport</command> and/or 
		<command>opannotate</command>) can now be used
		to get symbols and assembly code for the instrumented VM processes.
	</para>
<para>
Below is an example of a profile report of a Java application that has been
instrumented with the provided agent library.
<screen>
$ opreport -l /usr/lib/jvm/jre-1.5.0-ibm/bin/java
CPU: Core Solo / Duo, speed 2167 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Unhalted clock cycles) with a unit mask of 0x00 (Unhalted core cycles) count 100000
samples  %        image name               symbol name
186020   50.0523  no-vmlinux               no-vmlinux               (no symbols)
34333     9.2380  7635.jo                  java                     void test.f1()
19022     5.1182  libc-2.5.so              libc-2.5.so              _IO_file_xsputn@@GLIBC_2.1
18762     5.0483  libc-2.5.so              libc-2.5.so              vfprintf
16408     4.4149  7635.jo                  java                     void test$HelloThread.run()
16250     4.3724  7635.jo                  java                     void test$test_1.f2(int)
15303     4.1176  7635.jo                  java                     void test.f2(int, int)
13252     3.5657  7635.jo                  java                     void test.f2(int)
5165      1.3897  7635.jo                  java                     void test.f4()
955       0.2570  7635.jo                  java                     void test$HelloThread.run()~

</screen>
</para>
<note><para>
	  Depending on the JVM that is used, certain options of opreport and opannotate
	  do NOT work since they rely on debug information (e.g. source code line number)
	  that is not always available. The Sun JVM does provide the necessary debug
	  information via the JVMTI[PI] interface,
	  but other JVMs do not.
  </para></note>
	<para>
		As you can see in the opreport output, the JIT support agent for Java
		generates symbols to include the class and method signature.
		A symbol with the suffix &tilde;&lt;n&gt; (e.g.
		<code>void test$HelloThread.run()&tilde;1</code>) means that this is
		the &lt;n&gt;th occurrence of the identical name. This happens if a method is re-JITed.
		A symbol with the suffix %&lt;n&gt;, means that the address space of this symbol
		was reused during the sample session (see <xref linkend="overlapping-symbols" />).
		The value &lt;n&gt; is the percentage of time that this symbol/code was present in
		relation to the total lifetime of all overlapping other symbols. A symbol of the form
		<code>&lt;return_val&gt; &lt;class_name&gt;$&lt;method_sig&gt;</code> denotes an
		inner class.
	</para>
</sect1>

<sect1 id="opgprof">
<title><command>gprof</command>-compatible output (<command>opgprof</command>)</title>
<para>
If you're familiar with the output produced by <command>GNU gprof</command>,
you may find <command>opgprof</command> useful. It takes a single binary
as an argument, and produces a <filename>gmon.out</filename> file for use
with <command>gprof -p</command>. If call-graph profiling is enabled,
then this is also included.
</para>
<screen>
$ opgprof `which oprofiled` # generates gmon.out file
$ gprof -p `which oprofiled` | head
Flat profile:

Each sample counts as 1 samples.
  %   cumulative   self              self     total
 time   samples   samples    calls  T1/call  T1/call  name
 33.13 206237.00 206237.00                             odb_insert
 22.67 347386.00 141149.00                             pop_buffer_value
  9.56 406881.00 59495.00                             opd_put_sample
  7.34 452599.00 45718.00                             opd_find_image
  7.19 497327.00 44728.00                             opd_process_samples
</screen>

<sect2 id="opgprof-details">
<title>Usage of <command>opgprof</command></title>

<variablelist>
<varlistentry><term><option>--help / -? / --usage</option></term><listitem><para>
Show help message.
</para></listitem></varlistentry>
<varlistentry><term><option>--image-path / -p [paths]</option></term><listitem><para>
Comma-separated list of additional paths to search for binaries.
This is needed to find modules in kernels 2.6 and upwards.
</para></listitem></varlistentry>
<varlistentry><term><option>--root / -R [path]</option></term><listitem><para>
A path to a filesystem to search for additional binaries.
</para></listitem></varlistentry>
<varlistentry><term><option>--output-filename / -o [file]</option></term><listitem><para>
Output to the given file instead of the default, gmon.out
</para></listitem></varlistentry>
<varlistentry><term><option>--threshold / -t [percentage]</option></term><listitem><para>
Only output data for symbols that have more than the given percentage
of total samples.
</para></listitem></varlistentry>
<varlistentry><term><option>--verbose / -V [options]</option></term><listitem><para>
Give verbose debugging output.
</para></listitem></varlistentry>
<varlistentry><term><option>--version / -v</option></term><listitem><para>
Show version.
</para></listitem></varlistentry>
</variablelist>

</sect2> <!-- opgprof-details -->

</sect1> <!-- opgprof -->

<sect1 id="oparchive">
<title>Archiving measurements (<command>oparchive</command>)</title>
<para>
	The <command>oparchive</command> utility generates a directory populated
	with executable, debug, and oprofile sample files. This directory can be
	moved to another machine via <command>tar</command> and analyzed without
	further use of the data collection machine.
</para>

<para>
	The following command would collect the sample files, the executables
	associated with the sample files, and the debuginfo files associated
	with the executables and copy them into
	<filename>/tmp/current_data</filename>:
</para>

<screen>
# oparchive -o /tmp/current_data
</screen>

<sect2 id="oparchive-details">
<title>Usage of <command>oparchive</command></title>

<variablelist>
<varlistentry><term><option>--help / -? / --usage</option></term><listitem><para>
Show help message.
</para></listitem></varlistentry>
<varlistentry><term><option>--exclude-dependent / -x</option></term><listitem><para>
Do not include application-specific images for libraries, kernel modules
and the kernel. This option only makes sense if the profile session
used --separate.
</para></listitem></varlistentry>
<varlistentry><term><option>--image-path / -p [paths]</option></term><listitem><para>
Comma-separated list of additional paths to search for binaries.
This is needed to find modules in kernels 2.6 and upwards.
</para></listitem></varlistentry>
<varlistentry><term><option>--root / -R [path]</option></term><listitem><para>
A path to a filesystem to search for additional binaries.
</para></listitem></varlistentry>
<varlistentry><term><option>--output-directory / -o [directory]</option></term><listitem><para>
Output to the given directory. There is no default. This must be specified.
</para></listitem></varlistentry>
<varlistentry><term><option>--list-files / -l</option></term><listitem><para>
Only list the files that would be archived, don't copy them.
</para></listitem></varlistentry>
<varlistentry><term><option>--verbose / -V [options]</option></term><listitem><para>
Give verbose debugging output.
</para></listitem></varlistentry>
<varlistentry><term><option>--version / -v</option></term><listitem><para>
Show version.
</para></listitem></varlistentry>
</variablelist>

</sect2> <!-- oparchive-details -->

</sect1> <!-- oparchive -->

<sect1 id="opimport">
<title>Converting sample database files (<command>opimport</command>)</title>
<para>
	This utility converts sample database files from a foreign binary format (abi) to
	the native format. This is useful only when moving sample files between hosts,
	for analysis on platforms other than the one used for collection. The abi format
	of the file to be imported is described in a text file located in <filename>$SESSION_DIR/abi</filename>.
</para>

<para>
	The following command would convert the input samples files to the
	output samples files using the given abi file as a binary description
	of the input file and the curent platform abi as a binary description
	of the output file.
</para>

<screen>
# opimport -a /var/lib/oprofile/abi -o /tmp/current/.../GLOBAL_POWER_EVENTS.200000.1.all.all.all /var/lib/.../mprime/GLOBAL_POWER_EVENTS.200000.1.all.all.all
</screen>

<sect2 id="opimport-details">
<title>Usage of <command>opimport</command></title>

<variablelist>
<varlistentry><term><option>--help / -? / --usage</option></term><listitem><para>
Show help message.
</para></listitem></varlistentry>
<varlistentry><term><option>--abi / -a [filename]</option></term><listitem><para>
Input abi file description location.
</para></listitem></varlistentry>
<varlistentry><term><option>--force / -f</option></term><listitem><para>
Force conversion even if the input and output abi are identical.
</para></listitem></varlistentry>
<varlistentry><term><option>--output / -o [filename]</option></term><listitem><para>
Specify the output filename. If the output file already exists, the file is
not overwritten but data are accumulated in. Sample filename are informative
for post profile tools and must be kept identical, in other word the pathname
from the first path component containing a '{' must be kept as it in the
output filename.
</para></listitem></varlistentry>
<varlistentry><term><option>--verbose / -V</option></term><listitem><para>
Give verbose debugging output.
</para></listitem></varlistentry>
<varlistentry><term><option>--version / -v</option></term><listitem><para>
Show version.
</para></listitem></varlistentry>
</variablelist>

</sect2> <!-- opimport-details -->

</sect1> <!-- opimport -->

</chapter>

<chapter id="interpreting">
<title>Interpreting profiling results</title>
<para>
The standard caveats of profiling apply in interpreting the results from OProfile:
profile realistic situations, profile different scenarios, profile
for as long as a time as possible, avoid system-specific artifacts, don't trust
the profile data too much. Also bear in mind the comments on the performance
counters above - you <emphasis>cannot</emphasis> rely on totally accurate
instruction-level profiling.  However, for almost all circumstances the data
can be useful. Ideally a utility such as Intel's VTUNE would be available to
allow careful instruction-level analysis; go hassle Intel for this, not me ;)
</para>
<sect1 id="irq-latency">
<title>Profiling interrupt latency</title>
<para>
This is an example of how the latency of delivery of profiling interrupts
can impact the reliability of the profiling data. This is pretty much a 
worst-case-scenario example: these problems are fairly rare.
</para>
<screen>
double fun(double a, double b, double c)
{
 double result = 0;
 for (int i = 0 ; i &lt; 10000; ++i) {
  result += a;
  result *= b;
  result /= c;
 }
 return result;
}
</screen>
<para>
Here the last instruction of the loop is very costly, and you would expect the result
reflecting that - but (cutting the instructions inside the loop):
</para>
<screen>
$ opannotate -a -t 10 ./a.out

     88 15.38% : 8048337:       fadd   %st(3),%st
     48 8.391% : 8048339:       fmul   %st(2),%st
     68 11.88% : 804833b:       fdiv   %st(1),%st
    368 64.33% : 804833d:       inc    %eax
               : 804833e:       cmp    $0x270f,%eax
               : 8048343:       jle    8048337
</screen>
<para>
The problem comes from the x86 hardware; when the counter overflows the IRQ
is asserted but the hardware has features that can delay the NMI interrupt:
x86 hardware is synchronous (i.e. cannot interrupt during an instruction);
there is also a latency when the IRQ is asserted, and the multiple
execution units and the out-of-order model of modern x86 CPUs also causes
problems. This is the same function, with annotation :
</para>
<screen>
$ opannotate -s -t 10 ./a.out

               :double fun(double a, double b, double c)
               :{ /* _Z3funddd total:     572 100.0% */
               : double result = 0;
    368 64.33% : for (int i = 0 ; i &lt; 10000; ++i) {
     88 15.38% :  result += a;
     48 8.391% :  result *= b;
     68 11.88% :  result /= c;
               : }
               : return result;
               :}
</screen>
<para>
The conclusion: don't trust samples coming at the end of a loop,
particularly if the last instruction generated by the compiler is costly. This
case can also occur for branches. Always bear in mind that samples
can be delayed by a few cycles from its real position. That's a hardware
problem and OProfile can do nothing about it.
</para>
</sect1>
<sect1 id="kernel-profiling">
<title>Kernel profiling</title>
<sect2 id="irq-masking">
<title>Interrupt masking</title>
<para>
OProfile uses non-maskable interrupts (NMI) on the P6 generation, Pentium 4,
Athlon, Opteron, Phenom, and Turion processors. These interrupts can occur even in section of the
Linux where interrupts are disabled, allowing collection of samples in virtually
all executable code.  The RTC, timer interrupt mode, and Itanium 2 collection mechanisms
use maskable interrupts. Thus, the RTC and Itanium 2 data collection mechanism have "sample
shadows", or blind spots: regions where no samples will be collected. Typically, the samples
will be attributed to the code immediately after the interrupts are re-enabled.
</para>
</sect2>
<sect2 id="idle">
<title>Idle time</title>
<para>
Your kernel is likely to support halting the processor when a CPU is idle. As
the typical hardware events like <constant>CPU_CLK_UNHALTED</constant> do not
count when the CPU is halted, the kernel profile will not reflect the actual
amount of time spent idle. You can change this behaviour by booting with
the <option>idle=poll</option> option, which uses a different idle routine. This
will appear as <function>poll_idle()</function> in your kernel profile.
</para>
</sect2>
<sect2 id="kernel-modules">
<title>Profiling kernel modules</title>
<para>
OProfile profiles kernel modules by default. However, there are a couple of problems
you may have when trying to get results. First, you may have booted via an initrd;
this means that the actual path for the module binaries cannot be determined automatically.
To get around this, you can use the <option>-p</option> option to the profiling tools
to specify where to look for the kernel modules.
</para>
<para>
In 2.6, the information on where kernel module binaries are located has been removed.
This means OProfile needs guiding with the <option>-p</option> option to find your
modules. Normally, you can just use your standard module top-level directory for this.
Note that due to this problem, OProfile cannot check that the modification times match;
it is your responsibility to make sure you do not modify a binary after a profile
has been created.
</para>
<para>
If you have run <command>insmod</command> or <command>modprobe</command> to insert a module
in a particular directory, it is important that you specify this directory with the 
<option>-p</option> option first, so that it over-rides an older module binary that might
exist in other directories you've specified with <option>-p</option>. It is up to you
to make sure that these values are correct: 2.6 kernels simply do not provide enough
information for OProfile to get this information.
</para>
</sect2>
</sect1>

<sect1 id="interpreting-callgraph">
<title>Interpreting call-graph profiles</title>
<para>
Sometimes the results from call-graph profiles may be different to what
you expect to see. The first thing to check is whether the target
binaries where compiled with frame pointers enabled (if the binary was
compiled using <command>gcc</command>'s
<option>-fomit-frame-pointer</option> option, you will not get
meaningful results). Note that as of this writing, the GCC developers
plan to disable frame pointers by default. The Linux kernel is built
without frame pointers by default; there is a configuration option you
can use to turn it on under the "Kernel Hacking" menu.
</para>
<para>
Often you may see a caller of a function that does not actually directly
call the function you're looking at (e.g. if <function>a()</function>
calls <function>b()</function>, which in turn calls
<function>c()</function>, you may see an entry for
<function>a()->c()</function>).  What's actually occurring is that we
are taking samples at the very start (or the very end) of
<function>c()</function>; at these few instructions, we haven't yet
created the new function's frame, so it appears as if
<function>a()</function> is calling directly into
<function>c()</function>. Be careful not to be misled by these
entries.
</para>
<para>
Like the rest of OProfile, call-graph profiling uses a statistical
approach; this means that sometimes a backtrace sample is truncated, or
even partially wrong. Bear this in mind when examining results.
</para>
<!--  FIXME: what do we need here ? -->
</sect1>

<sect1 id="debug-info">
<title>Inaccuracies in annotated source</title>
<sect2 id="effect-of-optimizations">
<title>Side effects of optimizations</title>
<para>
The compiler can introduce some pitfalls in the annotated source output.
The optimizer can move pieces of code in such manner that two line of codes
are interlaced (instruction scheduling). Also debug info generated by the compiler 
can show strange behavior. This is especially true for complex expressions e.g. inside
an if statement:
</para>
<screen>
	if (a &amp;&amp; ..
	    b &amp;&amp; ..
	    c &amp;&amp;)
</screen>
<para>
here the problem come from the position of line number. The available debug
info does not give enough details for the if condition, so all samples are
accumulated at the position of the right brace of the expression. Using
<command>opannotate <option>-a</option></command> can help to show the real
samples at an assembly level.
</para>
</sect2>
<sect2 id="prologues">
<title>Prologues and epilogues</title>
<para>
The compiler generally needs to generate "glue" code across function calls, dependent
on the particular function call conventions used. Additionally other things
need to happen, like stack pointer adjustment for the local variables; this
code is known as the function prologue. Similar code is needed at function return,
and is known as the function epilogue. This will show up in annotations as
samples at the very start and end of a function, where there is no apparent
executable code in the source.
</para>
</sect2>
<sect2 id="inlined-function">
<title>Inlined functions</title>
<para>
You may see that a function is credited with a certain number of samples, but
the listing does not add up to the correct total. To pick a real example :
</para>
<screen>
               :internal_sk_buff_alloc_security(struct sk_buff *skb)
 353 2.342%    :{ /* internal_sk_buff_alloc_security total: 1882 12.48% */
               :
               :        sk_buff_security_t *sksec;
  15 0.0995%   :        int rc = 0;
               :
  10 0.06633%  :        sksec = skb-&gt;lsm_security;
 468 3.104%    :        if (sksec &amp;&amp; sksec-&gt;magic == DSI_MAGIC) {
               :                goto out;
               :        }
               :
               :        sksec = (sk_buff_security_t *) get_sk_buff_memory(skb);
   3 0.0199%   :        if (!sksec) {
  38 0.2521%   :                rc = -ENOMEM;
               :                goto out;
  10 0.06633%  :        }
               :        memset(sksec, 0, sizeof (sk_buff_security_t));
  44 0.2919%   :        sksec-&gt;magic = DSI_MAGIC;
  32 0.2123%   :        sksec-&gt;skb = skb;
  45 0.2985%   :        sksec-&gt;sid = DSI_SID_NORMAL;
  31 0.2056%   :        skb-&gt;lsm_security = sksec;
               :
               :      out:
               :
 146 0.9685%   :        return rc;
               :
  98 0.6501%   :}
</screen>
<para>
Here, the function is credited with 1,882 samples, but the annotations
below do not account for this. This is usually because of inline functions -
the compiler marks such code with debug entries for the inline function
definition, and this is where <command>opannotate</command> annotates
such samples. In the case above, <function>memset</function> is the most
likely candidate for this problem. Examining the mixed source/assembly
output can help identify such results.
</para>
<para>
This problem is more visible when there is no source file available, in the
following example it's trivially visible the sums of symbols samples is less
than the number of the samples for this file. The difference must be accounted
to inline functions.
</para>
<screen>
/*
 * Total samples for file : "arch/i386/kernel/process.c"
 *
 *    109  2.4616
 */

 /* default_idle total:     84  1.8970 */
 /* cpu_idle total:         21  0.4743 */
 /* flush_thread total:      1  0.0226 */
 /* prepare_to_copy total:   1  0.0226 */
 /* __switch_to total:      18  0.4065 */
</screen>
<para>
The missing samples are not lost, they will be credited to another source
location where the inlined function is defined. The inlined function will be
credited from multiple call site and merged in one place in the annotated
source file so there is no way to see from what call site are coming the
samples for an inlined function.
</para>
<para>
When running <command>opannotate</command>, you may get a warning
"some functions compiled without debug information may have incorrect source line attributions".
In some rare cases, OProfile is not able to verify that the derived source line
is correct (when some parts of the binary image are compiled without debugging
information). Be wary of results if this warning appears.
</para>
<para>
Furthermore, for some languages the compiler can implicitly generate functions,
such as default copy constructors. Such functions are labelled by the compiler
as having a line number of 0, which means the source annotation can be confusing.
</para>
<!-- FIXME so what *actually* happens to those samples ? ignored ? -->
</sect2>
<sect2 id="wrong-linenr-info">
<title>Inaccuracy in line number information</title>
<para>
Depending on your compiler you can fall into the following problem:
</para>
<screen>
struct big_object { int a[500]; };

int main()
{
	big_object a, b;
	for (int i = 0 ; i != 1000 * 1000; ++i)
		b = a;
	return 0;
}

</screen>
<para>
Compiled with <command>gcc</command> 3.0.4 the annotated source is clearly inaccurate:
</para>
<screen>
               :int main()
               :{  /* main total: 7871 100% */
               :        big_object a, b;
               :        for (int i = 0 ; i != 1000 * 1000; ++i)
               :                b = a;
 7871 100%     :        return 0;
               :}
</screen>
<para>
The problem here is distinct from the IRQ latency problem; the debug line number
information is not precise enough; again, looking at output of <command>opannoatate -as</command> can help.
</para>
<screen>
               :int main()
               :{
               :        big_object a, b;
               :        for (int i = 0 ; i != 1000 * 1000; ++i)
               : 80484c0:       push   %ebp
               : 80484c1:       mov    %esp,%ebp
               : 80484c3:       sub    $0xfac,%esp
               : 80484c9:       push   %edi
               : 80484ca:       push   %esi
               : 80484cb:       push   %ebx
               :                b = a;
               : 80484cc:       lea    0xfffff060(%ebp),%edx
               : 80484d2:       lea    0xfffff830(%ebp),%eax
               : 80484d8:       mov    $0xf423f,%ebx
               : 80484dd:       lea    0x0(%esi),%esi
               :        return 0;
    3 0.03811% : 80484e0:       mov    %edx,%edi
               : 80484e2:       mov    %eax,%esi
    1 0.0127%  : 80484e4:       cld
    8 0.1016%  : 80484e5:       mov    $0x1f4,%ecx
 7850 99.73%   : 80484ea:       repz movsl %ds:(%esi),%es:(%edi)
    9 0.1143%  : 80484ec:       dec    %ebx
               : 80484ed:       jns    80484e0
               : 80484ef:       xor    %eax,%eax
               : 80484f1:       pop    %ebx
               : 80484f2:       pop    %esi
               : 80484f3:       pop    %edi
               : 80484f4:       leave
               : 80484f5:       ret
</screen>
<para>
So here it's clear that copying is correctly credited with of all the samples, but the
line number information is misplaced. <command>objdump -dS</command> exposes the
same problem. Note that maintaining accurate debug information for compilers when optimizing is difficult, so this problem is not suprising.
The problem of debug information
accuracy is also dependent on the binutils version used; some BFD library versions
contain a work-around for known problems of <command>gcc</command>, some others do not. This is unfortunate but we must live with that,
since profiling is pointless when you disable optimisation (which would give better debugging entries).
</para>
</sect2>
</sect1>
<sect1 id="symbol-without-debug-info">
<title>Assembly functions</title>
<para>
Often the assembler cannot generate debug information automatically.
This means that you cannot get a source report unless 
you manually define the neccessary debug information; read your assembler documentation for how you might
do that. The only
debugging info needed currently by OProfile is the line-number/filename-VMA association. When profiling assembly
without debugging info you can always get report for symbols, and optionally for VMA, through <command>opreport -l</command>
or <command>opreport -d</command>, but this works only for symbols with the right attributes.
For <command>gas</command> you can get this by
</para>
<screen>
.globl foo
	.type	foo,@function
</screen>
<para> 
whilst for <command>nasm</command> you must use
</para>
<screen>
	  GLOBAL foo:function		; [1]
</screen>
<para>
Note that OProfile does not need the global attribute, only the function attribute.
</para>
</sect1>
<!-- 

FIXME: I commented this bit out until we've written something ...

improve this ? but look first why this file is special 
<sect2 id="small-functions">
<title>Small functions</title>
<para>
Very small functions can show strange behavior. The file in your source
directory of OProfile <filename>$SRC/test-oprofile/understanding/puzzle.c</filename>
show such example
</para>
</sect2>
--> 

<sect1 id="overlapping-symbols">
	<title>Overlapping symbols in JITed code</title>
	<para>
	Some virtual machines (e.g., Java) may re-JIT a method, resulting in previously
	allocated space for a piece of compiled code to be reused. This means that, at one distinct
	code address, multiple symbols/methods may be present during the run time of the application.
	</para>
	<para>
	Since OProfile samples are buffered and don&prime;t have timing information, there is no way
	to correlate samples with the (possibly) varying address ranges in which the code for a symbol
	may reside.
	An alternative would be flushing the OProfile sampling buffer when we get an unload event,
	but this could result in high overhead.
	</para>
	<para>
	To moderate the problem of overlapping symbols, OProfile tries to select the symbol that was
	present at this address range most of the time. Additionally, other overlapping symbols
	are truncated in the overlapping area.
	This gives reasonable results, because in reality, address reuse typically takes place
	during phase changes of the application -- in particular, during application  startup.
	Thus, for optimum profiling results, start the sampling session after application startup
	and burn in.
	</para>
</sect1>

<sect1 id="hidden-cost">
<title>Other discrepancies</title>
<para>
Another cause of apparent problems is the hidden cost of instructions. A very
common example is two memory reads: one from L1 cache and the other from memory:
the second memory read is likely to have more samples.
There are many other causes of hidden cost of instructions. A non-exhaustive
list: mis-predicted branch, TLB cache miss, partial register stall,
partial register dependencies, memory mismatch stall, re-executed µops. If you want to write
programs at the assembly level, be sure to take a look at the Intel and
AMD documentation at <ulink url="http://developer.intel.com/">http://developer.intel.com/</ulink>
and <ulink url="http://developer.amd.com/devguides.jsp/">http://developer.amd.com/devguides.jsp</ulink>.
</para>
</sect1>
</chapter>


<chapter id="ack">
<title>Acknowledgments</title>
<para>
Thanks to (in no particular order) : Arjan van de Ven, Rik van Riel, Juan Quintela, Philippe Elie,
Phillipp Rumpf, Tigran Aivazian, Alex Brown, Alisdair Rawsthorne, Bob Montgomery, Ray Bryant, H.J. Lu,
Jeff Esper, Will Cohen, Graydon Hoare, Cliff Woolley, Alex Tsariounov, Al Stone, Jason Yeh,
Randolph Chung, Anton Blanchard, Richard Henderson, Andries Brouwer, Bryan Rittmeyer,
Maynard P. Johnson,
Richard Reich (rreich@rdrtech.com), Zwane Mwaikambo, Dave Jones, Charles Filtness; and finally Pulp, for "Intro".
</para>
</chapter>

</book>