// Copyright 2018 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "pffft.h" namespace { #if defined(TRANSFORM_REAL) // Real FFT. constexpr pffft_transform_t kTransform = PFFFT_REAL; constexpr size_t kSizeOfOneSample = sizeof(float); #elif defined(TRANSFORM_COMPLEX) // Complex FFT. constexpr pffft_transform_t kTransform = PFFFT_COMPLEX; constexpr size_t kSizeOfOneSample = 2 * sizeof(float); // Real plus imaginary. #else #error FFT transform type not defined. #endif bool IsValidSize(size_t n) { if (n == 0) { return false; } // PFFFT only supports transforms for inputs of length N of the form // N = (2^a)*(3^b)*(5^c) where a >= 5, b >=0, c >= 0. constexpr std::array kFactors = {2, 3, 5}; std::array factorization{}; for (size_t i = 0; i < kFactors.size(); ++i) { const int factor = kFactors[i]; while (n % factor == 0) { n /= factor; factorization[i]++; } } return factorization[0] >= 5 && n == 1; } float* AllocatePffftBuffer(size_t number_of_bytes) { return static_cast(pffft_aligned_malloc(number_of_bytes)); } } // namespace // Entry point for LibFuzzer. extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) { // Set the number of FFT points to use |data| as input vector. // The latter is truncated if the number of bytes is not an integer // multiple of the size of one sample (which is either a real or a complex // floating point number). const size_t fft_size = size / kSizeOfOneSample; if (!IsValidSize(fft_size)) { return 0; } const size_t number_of_bytes = fft_size * kSizeOfOneSample; assert(number_of_bytes <= size); // Allocate input and output buffers. float* in = AllocatePffftBuffer(number_of_bytes); float* out = AllocatePffftBuffer(number_of_bytes); // Copy input data. std::memcpy(in, reinterpret_cast(data), number_of_bytes); // Setup FFT. PFFFT_Setup* pffft_setup = pffft_new_setup(fft_size, kTransform); // Call different PFFFT functions to maximize the coverage. pffft_transform(pffft_setup, in, out, nullptr, PFFFT_FORWARD); pffft_zconvolve_accumulate(pffft_setup, out, out, out, 1.f); pffft_transform_ordered(pffft_setup, in, out, nullptr, PFFFT_BACKWARD); // Release memory. pffft_aligned_free(in); pffft_aligned_free(out); pffft_destroy_setup(pffft_setup); return 0; }