aboutsummaryrefslogtreecommitdiff
path: root/src/protozero/filtering/message_filter.cc
blob: ff283f869ff9f56f6167e4e67ffc0ad102d1ccb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*
 * Copyright (C) 2021 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "src/protozero/filtering/message_filter.h"

#include "perfetto/base/logging.h"
#include "perfetto/protozero/proto_utils.h"

namespace protozero {

namespace {

// Inline helpers to append proto fields in output. They are the equivalent of
// the protozero::Message::AppendXXX() fields but don't require building and
// maintaining a full protozero::Message object or dealing with scattered
// output slices.
// All these functions assume there is enough space in the output buffer, which
// should be always the case assuming that we don't end up generating more
// output than input.

inline void AppendVarInt(uint32_t field_id, uint64_t value, uint8_t** out) {
  *out = proto_utils::WriteVarInt(proto_utils::MakeTagVarInt(field_id), *out);
  *out = proto_utils::WriteVarInt(value, *out);
}

// For fixed32 / fixed64.
template <typename INT_T /* uint32_t | uint64_t*/>
inline void AppendFixed(uint32_t field_id, INT_T value, uint8_t** out) {
  *out = proto_utils::WriteVarInt(proto_utils::MakeTagFixed<INT_T>(field_id),
                                  *out);
  memcpy(*out, &value, sizeof(value));
  *out += sizeof(value);
}

// For length-delimited (string, bytes) fields. Note: this function appends only
// the proto preamble and the varint field that states the length of the payload
// not the payload itself.
// In the case of submessages, the caller needs to re-write the length at the
// end in the in the returned memory area.
// The problem here is that, because of filtering, the length of a submessage
// might be < original length (the original length is still an upper-bound).
// Returns a pair with: (1) the pointer where the final length should be written
// into, (2) the length of the size field.
// The caller must write a redundant varint to match the original size (i.e.
// needs to use WriteRedundantVarInt()).
inline std::pair<uint8_t*, uint32_t> AppendLenDelim(uint32_t field_id,
                                                    uint32_t len,
                                                    uint8_t** out) {
  *out = proto_utils::WriteVarInt(proto_utils::MakeTagLengthDelimited(field_id),
                                  *out);
  uint8_t* size_field_start = *out;
  *out = proto_utils::WriteVarInt(len, *out);
  const size_t size_field_len = static_cast<size_t>(*out - size_field_start);
  return std::make_pair(size_field_start, size_field_len);
}
}  // namespace

MessageFilter::MessageFilter() {
  // Push a state on the stack for the implicit root message.
  stack_.emplace_back();
}

MessageFilter::MessageFilter(const MessageFilter& other)
    : root_msg_index_(other.root_msg_index_), filter_(other.filter_) {
  stack_.emplace_back();
}

MessageFilter::~MessageFilter() = default;

bool MessageFilter::LoadFilterBytecode(const void* filter_data, size_t len) {
  return filter_.Load(filter_data, len);
}

bool MessageFilter::SetFilterRoot(const uint32_t* field_ids,
                                  size_t num_fields) {
  uint32_t root_msg_idx = 0;
  for (const uint32_t* it = field_ids; it < field_ids + num_fields; ++it) {
    uint32_t field_id = *it;
    auto res = filter_.Query(root_msg_idx, field_id);
    if (!res.allowed || !res.nested_msg_field())
      return false;
    root_msg_idx = res.nested_msg_index;
  }
  root_msg_index_ = root_msg_idx;
  return true;
}

MessageFilter::FilteredMessage MessageFilter::FilterMessageFragments(
    const InputSlice* slices,
    size_t num_slices) {
  // First compute the upper bound for the output. The filtered message cannot
  // be > the original message.
  uint32_t total_len = 0;
  for (size_t i = 0; i < num_slices; ++i)
    total_len += slices[i].len;
  out_buf_.reset(new uint8_t[total_len]);
  out_ = out_buf_.get();
  out_end_ = out_ + total_len;

  // Reset the parser state.
  tokenizer_ = MessageTokenizer();
  error_ = false;
  stack_.clear();
  stack_.resize(2);
  // stack_[0] is a sentinel and should never be hit in nominal cases. If we
  // end up there we will just keep consuming the input stream and detecting
  // at the end, without hurting the fastpath.
  stack_[0].in_bytes_limit = UINT32_MAX;
  stack_[0].eat_next_bytes = UINT32_MAX;
  // stack_[1] is the actual root message.
  stack_[1].in_bytes_limit = total_len;
  stack_[1].msg_index = root_msg_index_;

  // Process the input data and write the output.
  for (size_t slice_idx = 0; slice_idx < num_slices; ++slice_idx) {
    const InputSlice& slice = slices[slice_idx];
    const uint8_t* data = static_cast<const uint8_t*>(slice.data);
    for (size_t i = 0; i < slice.len; ++i)
      FilterOneByte(data[i]);
  }

  // Construct the output object.
  PERFETTO_CHECK(out_ >= out_buf_.get() && out_ <= out_end_);
  auto used_size = static_cast<size_t>(out_ - out_buf_.get());
  FilteredMessage res{std::move(out_buf_), used_size};
  res.error = error_;
  if (stack_.size() != 1 || !tokenizer_.idle() ||
      stack_[0].in_bytes != total_len) {
    res.error = true;
  }
  return res;
}

void MessageFilter::FilterOneByte(uint8_t octet) {
  PERFETTO_DCHECK(!stack_.empty());

  auto* state = &stack_.back();
  StackState next_state{};
  bool push_next_state = false;

  if (state->eat_next_bytes > 0) {
    // This is the case where the previous tokenizer_.Push() call returned a
    // length delimited message which is NOT a submessage (a string or a bytes
    // field). We just want to consume it, and pass it through/filter strings
    // if the field was allowed.
    --state->eat_next_bytes;
    if (state->action == StackState::kPassthrough) {
      *(out_++) = octet;
    } else if (state->action == StackState::kFilterString) {
      *(out_++) = octet;
      if (state->eat_next_bytes == 0) {
        // TODO(lalitm): do the filtering using |filter_string_ptr|.
      }
    }
  } else {
    MessageTokenizer::Token token = tokenizer_.Push(octet);
    // |token| will not be valid() in most cases and this is WAI. When pushing
    // a varint field, only the last byte yields a token, all the other bytes
    // return an invalid token, they just update the internal tokenizer state.
    if (token.valid()) {
      auto filter = filter_.Query(state->msg_index, token.field_id);
      switch (token.type) {
        case proto_utils::ProtoWireType::kVarInt:
          if (filter.allowed && filter.simple_field())
            AppendVarInt(token.field_id, token.value, &out_);
          break;
        case proto_utils::ProtoWireType::kFixed32:
          if (filter.allowed && filter.simple_field())
            AppendFixed(token.field_id, static_cast<uint32_t>(token.value),
                        &out_);
          break;
        case proto_utils::ProtoWireType::kFixed64:
          if (filter.allowed && filter.simple_field())
            AppendFixed(token.field_id, static_cast<uint64_t>(token.value),
                        &out_);
          break;
        case proto_utils::ProtoWireType::kLengthDelimited:
          // Here we have two cases:
          // A. A simple string/bytes field: we just want to consume the next
          //    bytes (the string payload), optionally passing them through in
          //    output if the field is allowed.
          // B. This is a nested submessage. In this case we want to recurse and
          //    push a new state on the stack.
          // Note that we can't tell the difference between a
          // "non-allowed string" and a "non-allowed submessage". But it doesn't
          // matter because in both cases we just want to skip the next N bytes.
          const auto submessage_len = static_cast<uint32_t>(token.value);
          auto in_bytes_left = state->in_bytes_limit - state->in_bytes - 1;
          if (PERFETTO_UNLIKELY(submessage_len > in_bytes_left)) {
            // This is a malicious / malformed string/bytes/submessage that
            // claims to be larger than the outer message that contains it.
            return SetUnrecoverableErrorState();
          }

          if (filter.allowed && filter.nested_msg_field() &&
              submessage_len > 0) {
            // submessage_len == 0 is the edge case of a message with a 0-len
            // (but present) submessage. In this case, if allowed, we don't want
            // to push any further state (doing so would desync the FSM) but we
            // still want to emit it.
            // At this point |submessage_len| is only an upper bound. The
            // final message written in output can be <= the one in input,
            // only some of its fields might be allowed (also remember that
            // this class implicitly removes redundancy varint encoding of
            // len-delimited field lengths). The final length varint (the
            // return value of AppendLenDelim()) will be filled when popping
            // from |stack_|.
            auto size_field =
                AppendLenDelim(token.field_id, submessage_len, &out_);
            push_next_state = true;
            next_state.field_id = token.field_id;
            next_state.msg_index = filter.nested_msg_index;
            next_state.in_bytes_limit = submessage_len;
            next_state.size_field = size_field.first;
            next_state.size_field_len = size_field.second;
            next_state.out_bytes_written_at_start = out_written();
          } else {
            // A string or bytes field, or a 0 length submessage.
            state->eat_next_bytes = submessage_len;
            if (filter.allowed && filter.filter_string_field()) {
              state->action = StackState::kFilterString;
              AppendLenDelim(token.field_id, submessage_len, &out_);
              state->filter_string_ptr = out_;
            } else if (filter.allowed) {
              state->action = StackState::kPassthrough;
              AppendLenDelim(token.field_id, submessage_len, &out_);
            } else {
              state->action = StackState::kDrop;
            }
          }
          break;
      }  // switch(type)

      if (PERFETTO_UNLIKELY(track_field_usage_)) {
        IncrementCurrentFieldUsage(token.field_id, filter.allowed);
      }
    }  // if (token.valid)
  }    // if (eat_next_bytes == 0)

  ++state->in_bytes;
  while (state->in_bytes >= state->in_bytes_limit) {
    PERFETTO_DCHECK(state->in_bytes == state->in_bytes_limit);
    push_next_state = false;

    // We can't possibly write more than we read.
    const uint32_t msg_bytes_written = static_cast<uint32_t>(
        out_written() - state->out_bytes_written_at_start);
    PERFETTO_DCHECK(msg_bytes_written <= state->in_bytes_limit);

    // Backfill the length field of the
    proto_utils::WriteRedundantVarInt(msg_bytes_written, state->size_field,
                                      state->size_field_len);

    const uint32_t in_bytes_processes_for_last_msg = state->in_bytes;
    stack_.pop_back();
    PERFETTO_CHECK(!stack_.empty());
    state = &stack_.back();
    state->in_bytes += in_bytes_processes_for_last_msg;
    if (PERFETTO_UNLIKELY(!tokenizer_.idle())) {
      // If we hit this case, it means that we got to the end of a submessage
      // while decoding a field. We can't recover from this and we don't want to
      // propagate a broken sub-message.
      return SetUnrecoverableErrorState();
    }
  }

  if (push_next_state) {
    PERFETTO_DCHECK(tokenizer_.idle());
    stack_.emplace_back(std::move(next_state));
    state = &stack_.back();
  }
}

void MessageFilter::SetUnrecoverableErrorState() {
  error_ = true;
  stack_.clear();
  stack_.resize(1);
  auto& state = stack_[0];
  state.eat_next_bytes = UINT32_MAX;
  state.in_bytes_limit = UINT32_MAX;
  state.action = StackState::kDrop;
  out_ = out_buf_.get();  // Reset the write pointer.
}

void MessageFilter::IncrementCurrentFieldUsage(uint32_t field_id,
                                               bool allowed) {
  // Slowpath. Used mainly in offline tools and tests to workout used fields in
  // a proto.
  PERFETTO_DCHECK(track_field_usage_);

  // Field path contains a concatenation of varints, one for each nesting level.
  // e.g. y in message Root { Sub x = 2; }; message Sub { SubSub y = 7; }
  // is encoded as [varint(2) + varint(7)].
  // We use varint to take the most out of SSO (small string opt). In most cases
  // the path will fit in the on-stack 22 bytes, requiring no heap.
  std::string field_path;

  auto append_field_id = [&field_path](uint32_t id) {
    uint8_t buf[10];
    uint8_t* end = proto_utils::WriteVarInt(id, buf);
    field_path.append(reinterpret_cast<char*>(buf),
                      static_cast<size_t>(end - buf));
  };

  // Append all the ancestors IDs from the state stack.
  // The first entry of the stack has always ID 0 and we skip it (we don't know
  // the ID of the root message itself).
  PERFETTO_DCHECK(stack_.size() >= 2 && stack_[1].field_id == 0);
  for (size_t i = 2; i < stack_.size(); ++i)
    append_field_id(stack_[i].field_id);
  // Append the id of the field in the current message.
  append_field_id(field_id);
  field_usage_[field_path] += allowed ? 1 : -1;
}

}  // namespace protozero