/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com ) Copyright (c) 2020 Dario Mambro ( dario.mambro@gmail.com ) Copyright (c) 2020 Hayati Ayguen ( h_ayguen@web.de ) Small test & bench for PFFFT, comparing its performance with the scalar FFTPACK, FFTW, and Apple vDSP How to build: on linux, with fftw3: gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm on macos, without fftw3: clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -framework Accelerate on macos, with fftw3: clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework Accelerate as alternative: replace clang by gcc. on windows, with visual c++: cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c build without SIMD instructions: gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c fftpack.c -lm */ #include "pffft.hpp" #include #include #include #include #include #include /* define own constants required to turn off g++ extensions .. */ #ifndef M_PI #define M_PI 3.14159265358979323846 /* pi */ #endif /* maximum allowed phase error in degree */ #define DEG_ERR_LIMIT 1E-4 /* maximum allowed magnitude error in amplitude (of 1.0 or 1.1) */ #define MAG_ERR_LIMIT 1E-6 #define PRINT_SPEC 0 #define PWR2LOG(PWR) ((PWR) < 1E-30 ? 10.0 * log10(1E-30) : 10.0 * log10(PWR)) template bool Ttest(int N, bool useOrdered) { typedef pffft::Fft Fft; typedef typename pffft::Fft::Scalar FftScalar; typedef typename Fft::Complex FftComplex; const bool cplx = pffft::Fft::isComplexTransform(); const double EXPECTED_DYN_RANGE = Fft::isDoubleScalar() ? 215.0 : 140.0; assert(Fft::isPowerOfTwo(N)); Fft fft = Fft(N); // instantiate and prepareLength() for length N #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900) // possible ways to declare/instatiate aligned vectors with C++11 // some lines require a typedef of above auto X = fft.valueVector(); // for X = input vector pffft::AlignedVector Y = fft.spectrumVector(); // for Y = forward(X) pffft::AlignedVector R = fft.internalLayoutVector(); // for R = forwardInternalLayout(X) pffft::AlignedVector Z = fft.valueVector(); // for Z = inverse(Y) = inverse( forward(X) ) // or Z = inverseInternalLayout(R) #else // possible ways to declare/instatiate aligned vectors with C++98 pffft::AlignedVector X = fft.valueVector(); // for X = input vector pffft::AlignedVector Y = fft.spectrumVector(); // for Y = forward(X) pffft::AlignedVector R = fft.internalLayoutVector(); // for R = forwardInternalLayout(X) pffft::AlignedVector Z = fft.valueVector(); // for Z = inverse(Y) = inverse( forward(X) ) // or Z = inverseInternalLayout(R) #endif // work with complex - without the capabilities of a higher c++ standard FftScalar* Xs = reinterpret_cast(X.data()); // for X = input vector FftScalar* Ys = reinterpret_cast(Y.data()); // for Y = forward(X) FftScalar* Zs = reinterpret_cast(Z.data()); // for Z = inverse(Y) = inverse( forward(X) ) int k, j, m, iter, kmaxOther; bool retError = false; double freq, dPhi, phi, phi0; double pwr, pwrCar, pwrOther, err, errSum, mag, expextedMag; double amp = 1.0; for (k = m = 0; k < (cplx ? N : (1 + N / 2)); k += N / 16, ++m) { amp = ((m % 3) == 0) ? 1.0F : 1.1F; freq = (k < N / 2) ? ((double)k / N) : ((double)(k - N) / N); dPhi = 2.0 * M_PI * freq; if (dPhi < 0.0) dPhi += 2.0 * M_PI; iter = -1; while (1) { ++iter; if (iter) printf("bin %d: dphi = %f for freq %f\n", k, dPhi, freq); /* generate cosine carrier as time signal - start at defined phase phi0 */ phi = phi0 = (m % 4) * 0.125 * M_PI; /* have phi0 < 90 deg to be normalized */ for (j = 0; j < N; ++j) { if (cplx) { Xs[2 * j] = (FftScalar)( amp * cos(phi) ); /* real part */ Xs[2 * j + 1] = (FftScalar)( amp * sin(phi) ); /* imag part */ } else Xs[j] = (FftScalar)( amp * cos(phi) ); /* only real part */ /* phase increment .. stay normalized - cos()/sin() might degrade! */ phi += dPhi; if (phi >= M_PI) phi -= 2.0 * M_PI; } /* forward transform from X --> Y .. using work buffer W */ if (useOrdered) fft.forward(X, Y); else { fft.forwardToInternalLayout(X, R); /* use R for reordering */ fft.reorderSpectrum(R, Y); /* have canonical order in Y[] for power calculations */ } pwrOther = -1.0; pwrCar = 0; /* for positive frequencies: 0 to 0.5 * samplerate */ /* and also for negative frequencies: -0.5 * samplerate to 0 */ for (j = 0; j < (cplx ? N : (1 + N / 2)); ++j) { if (!cplx && !j) /* special treatment for DC for real input */ pwr = Ys[j] * Ys[j]; else if (!cplx && j == N / 2) /* treat 0.5 * samplerate */ pwr = Ys[1] * Ys[1]; /* despite j (for freq calculation) we have index 1 */ else pwr = Ys[2 * j] * Ys[2 * j] + Ys[2 * j + 1] * Ys[2 * j + 1]; if (iter || PRINT_SPEC) printf("%s fft %d: pwr[j = %d] = %g == %f dB\n", (cplx ? "cplx" : "real"), N, j, pwr, PWR2LOG(pwr)); if (k == j) pwrCar = pwr; else if (pwr > pwrOther) { pwrOther = pwr; kmaxOther = j; } } if (PWR2LOG(pwrCar) - PWR2LOG(pwrOther) < EXPECTED_DYN_RANGE) { printf("%s fft %d amp %f iter %d:\n", (cplx ? "cplx" : "real"), N, amp, iter); printf(" carrier power at bin %d: %g == %f dB\n", k, pwrCar, PWR2LOG(pwrCar)); printf(" carrier mag || at bin %d: %g\n", k, sqrt(pwrCar)); printf(" max other pwr at bin %d: %g == %f dB\n", kmaxOther, pwrOther, PWR2LOG(pwrOther)); printf(" dynamic range: %f dB\n\n", PWR2LOG(pwrCar) - PWR2LOG(pwrOther)); retError = true; if (iter == 0) continue; } if (k > 0 && k != N / 2) { phi = atan2(Ys[2 * k + 1], Ys[2 * k]); if (fabs(phi - phi0) > DEG_ERR_LIMIT * M_PI / 180.0) { retError = true; printf("%s fft %d bin %d amp %f : phase mismatch! phase = %f deg " "expected = %f deg\n", (cplx ? "cplx" : "real"), N, k, amp, phi * 180.0 / M_PI, phi0 * 180.0 / M_PI); } } expextedMag = cplx ? amp : ((k == 0 || k == N / 2) ? amp : (amp / 2)); mag = sqrt(pwrCar) / N; if (fabs(mag - expextedMag) > MAG_ERR_LIMIT) { retError = true; printf("%s fft %d bin %d amp %f : mag = %g expected = %g\n", (cplx ? "cplx" : "real"), N, k, amp, mag, expextedMag); } /* now convert spectrum back */ if (useOrdered) fft.inverse(Y, Z); else fft.inverseFromInternalLayout(R, Z); /* inverse() from internal Layout */ errSum = 0.0; for (j = 0; j < (cplx ? (2 * N) : N); ++j) { /* scale back */ Zs[j] /= N; /* square sum errors over real (and imag parts) */ err = (Xs[j] - Zs[j]) * (Xs[j] - Zs[j]); errSum += err; } if (errSum > N * 1E-7) { retError = true; printf("%s fft %d bin %d : inverse FFT doesn't match original signal! " "errSum = %g ; mean err = %g\n", (cplx ? "cplx" : "real"), N, k, errSum, errSum / N); } break; } } // using the std::vector<> base classes .. no need for alignedFree() for X, Y, Z and R return retError; } bool test(int N, bool useComplex, bool useOrdered) { if (useComplex) { return #ifdef PFFFT_ENABLE_FLOAT Ttest< std::complex >(N, useOrdered) #endif #if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE) && #endif #ifdef PFFFT_ENABLE_DOUBLE Ttest< std::complex >(N, useOrdered) #endif ; } else { return #ifdef PFFFT_ENABLE_FLOAT Ttest(N, useOrdered) #endif #if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE) && #endif #ifdef PFFFT_ENABLE_DOUBLE Ttest(N, useOrdered) #endif ; } } int main(int argc, char** argv) { int N, result, resN, resAll, k, resNextPw2, resIsPw2, resFFT; int inp_power_of_two[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 511, 512, 513 }; int ref_power_of_two[] = { 1, 2, 4, 4, 8, 8, 8, 8, 16, 512, 512, 1024 }; resNextPw2 = 0; resIsPw2 = 0; for (k = 0; k < (sizeof(inp_power_of_two) / sizeof(inp_power_of_two[0])); ++k) { #ifdef PFFFT_ENABLE_FLOAT N = pffft::Fft::nextPowerOfTwo(inp_power_of_two[k]); #else N = pffft::Fft::nextPowerOfTwo(inp_power_of_two[k]); #endif if (N != ref_power_of_two[k]) { resNextPw2 = 1; printf("pffft_next_power_of_two(%d) does deliver %d, which is not " "reference result %d!\n", inp_power_of_two[k], N, ref_power_of_two[k]); } #ifdef PFFFT_ENABLE_FLOAT result = pffft::Fft::isPowerOfTwo(inp_power_of_two[k]); #else result = pffft::Fft::isPowerOfTwo(inp_power_of_two[k]); #endif if (inp_power_of_two[k] == ref_power_of_two[k]) { if (!result) { resIsPw2 = 1; printf("pffft_is_power_of_two(%d) delivers false; expected true!\n", inp_power_of_two[k]); } } else { if (result) { resIsPw2 = 1; printf("pffft_is_power_of_two(%d) delivers true; expected false!\n", inp_power_of_two[k]); } } } if (!resNextPw2) printf("tests for pffft_next_power_of_two() succeeded successfully.\n"); if (!resIsPw2) printf("tests for pffft_is_power_of_two() succeeded successfully.\n"); resFFT = 0; for (N = 32; N <= 65536; N *= 2) { result = test(N, 1 /* cplx fft */, 1 /* useOrdered */); resN = result; resFFT |= result; result = test(N, 0 /* cplx fft */, 1 /* useOrdered */); resN |= result; resFFT |= result; result = test(N, 1 /* cplx fft */, 0 /* useOrdered */); resN |= result; resFFT |= result; result = test(N, 0 /* cplx fft */, 0 /* useOrdered */); resN |= result; resFFT |= result; if (!resN) printf("tests for size %d succeeded successfully.\n", N); } if (!resFFT) printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX, " #ifdef PFFFT_ENABLE_FLOAT "float" #endif #if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE) "/" #endif #ifdef PFFFT_ENABLE_DOUBLE "double" #endif ") succeeded successfully.\n"); resAll = resNextPw2 | resIsPw2 | resFFT; if (!resAll) printf("all tests succeeded successfully.\n"); else printf("there are failed tests!\n"); return resAll; }