/* Copyright (c) 2013 Julien Pommier. Small test & bench for PFFFT, comparing its performance with the scalar FFTPACK, FFTW, and Apple vDSP How to build: on linux, with fftw3: gcc -o test_pffftd -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffftd.c test_pffftd.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm on macos, without fftw3: clang -o test_pffftd -DHAVE_VECLIB -O3 -Wall -W pffftd.c test_pffftd.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -framework Accelerate on macos, with fftw3: clang -o test_pffftd -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffftd.c test_pffftd.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework Accelerate as alternative: replace clang by gcc. on windows, with visual c++: cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffftd.c pffftd.c fftpack.c build without SIMD instructions: gcc -o test_pffftd -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffftd.c test_pffftd.c fftpack.c -lm */ /* Note: adapted for double precision dynamic range version. */ #include "pffft_double.h" #include #include #include #include #include #include #define EXPECTED_DYN_RANGE 215.0 /* maximum allowed phase error in degree */ #define DEG_ERR_LIMIT 1E-4 /* maximum allowed magnitude error in amplitude (of 1.0 or 1.1) */ #define MAG_ERR_LIMIT 1E-6 #define PRINT_SPEC 0 #define PWR2LOG(PWR) ( (PWR) < 1E-30 ? 10.0*log10(1E-30) : 10.0*log10(PWR) ) int test(int N, int cplx, int useOrdered) { int Ndouble = (cplx ? N*2 : N); double *X = pffftd_aligned_malloc((unsigned)Ndouble * sizeof(double)); double *Y = pffftd_aligned_malloc((unsigned)Ndouble * sizeof(double)); double *Z = pffftd_aligned_malloc((unsigned)Ndouble * sizeof(double)); double *W = pffftd_aligned_malloc((unsigned)Ndouble * sizeof(double)); int k, j, m, iter, kmaxOther, retError = 0; double freq, dPhi, phi, phi0; double pwr, pwrCar, pwrOther, err, errSum, mag, expextedMag; double amp = 1.0F; assert( pffftd_is_power_of_two(N) ); PFFFTD_Setup *s = pffftd_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL); assert(s); if (!s) { printf("Error setting up PFFFT!\n"); return 1; } for ( k = m = 0; k < (cplx? N : (1 + N/2) ); k += N/16, ++m ) { amp = ( (m % 3) == 0 ) ? 1.0 : 1.1; freq = (k < N/2) ? ((double)k / N) : ((double)(k-N) / N); dPhi = 2.0 * M_PI * freq; if ( dPhi < 0.0 ) dPhi += 2.0 * M_PI; iter = -1; while (1) { ++iter; if (iter) printf("bin %d: dphi = %f for freq %f\n", k, dPhi, freq); /* generate cosine carrier as time signal - start at defined phase phi0 */ phi = phi0 = (m % 4) * 0.125 * M_PI; /* have phi0 < 90 deg to be normalized */ for ( j = 0; j < N; ++j ) { if (cplx) { X[2*j] = amp * (double)cos(phi); /* real part */ X[2*j+1] = amp * (double)sin(phi); /* imag part */ } else X[j] = amp * (double)cos(phi); /* only real part */ /* phase increment .. stay normalized - cos()/sin() might degrade! */ phi += dPhi; if ( phi >= M_PI ) phi -= 2.0 * M_PI; } /* forward transform from X --> Y .. using work buffer W */ if ( useOrdered ) pffftd_transform_ordered(s, X, Y, W, PFFFT_FORWARD ); else { pffftd_transform(s, X, Z, W, PFFFT_FORWARD ); /* temporarily use Z for reordering */ pffftd_zreorder(s, Z, Y, PFFFT_FORWARD ); } pwrOther = -1.0; pwrCar = 0; /* for positive frequencies: 0 to 0.5 * samplerate */ /* and also for negative frequencies: -0.5 * samplerate to 0 */ for ( j = 0; j < ( cplx ? N : (1 + N/2) ); ++j ) { if (!cplx && !j) /* special treatment for DC for real input */ pwr = Y[j]*Y[j]; else if (!cplx && j == N/2) /* treat 0.5 * samplerate */ pwr = Y[1] * Y[1]; /* despite j (for freq calculation) we have index 1 */ else pwr = Y[2*j] * Y[2*j] + Y[2*j+1] * Y[2*j+1]; if (iter || PRINT_SPEC) printf("%s fft %d: pwr[j = %d] = %g == %f dB\n", (cplx ? "cplx":"real"), N, j, pwr, PWR2LOG(pwr) ); if (k == j) pwrCar = pwr; else if ( pwr > pwrOther ) { pwrOther = pwr; kmaxOther = j; } } if ( PWR2LOG(pwrCar) - PWR2LOG(pwrOther) < EXPECTED_DYN_RANGE ) { printf("%s fft %d amp %f iter %d:\n", (cplx ? "cplx":"real"), N, amp, iter); printf(" carrier power at bin %d: %g == %f dB\n", k, pwrCar, PWR2LOG(pwrCar) ); printf(" carrier mag || at bin %d: %g\n", k, sqrt(pwrCar) ); printf(" max other pwr at bin %d: %g == %f dB\n", kmaxOther, pwrOther, PWR2LOG(pwrOther) ); printf(" dynamic range: %f dB\n\n", PWR2LOG(pwrCar) - PWR2LOG(pwrOther) ); retError = 1; if ( iter == 0 ) continue; } if ( k > 0 && k != N/2 ) { phi = atan2( Y[2*k+1], Y[2*k] ); if ( fabs( phi - phi0) > DEG_ERR_LIMIT * M_PI / 180.0 ) { retError = 1; printf("%s fft %d bin %d amp %f : phase mismatch! phase = %f deg expected = %f deg\n", (cplx ? "cplx":"real"), N, k, amp, phi * 180.0 / M_PI, phi0 * 180.0 / M_PI ); } } expextedMag = cplx ? amp : ( (k == 0 || k == N/2) ? amp : (amp/2) ); mag = sqrt(pwrCar) / N; if ( fabs(mag - expextedMag) > MAG_ERR_LIMIT ) { retError = 1; printf("%s fft %d bin %d amp %f : mag = %g expected = %g\n", (cplx ? "cplx":"real"), N, k, amp, mag, expextedMag ); } /* now convert spectrum back */ pffftd_transform_ordered(s, Y, Z, W, PFFFT_BACKWARD); errSum = 0.0; for ( j = 0; j < (cplx ? (2*N) : N); ++j ) { /* scale back */ Z[j] /= N; /* square sum errors over real (and imag parts) */ err = (X[j]-Z[j]) * (X[j]-Z[j]); errSum += err; } if ( errSum > N * 1E-7 ) { retError = 1; printf("%s fft %d bin %d : inverse FFT doesn't match original signal! errSum = %g ; mean err = %g\n", (cplx ? "cplx":"real"), N, k, errSum, errSum / N); } break; } } pffftd_destroy_setup(s); pffftd_aligned_free(X); pffftd_aligned_free(Y); pffftd_aligned_free(Z); pffftd_aligned_free(W); return retError; } int main(int argc, char **argv) { int N, result, resN, resAll, k, resNextPw2, resIsPw2, resFFT; int inp_power_of_two[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 511, 512, 513 }; int ref_power_of_two[] = { 1, 2, 4, 4, 8, 8, 8, 8, 16, 512, 512, 1024 }; resNextPw2 = 0; resIsPw2 = 0; for ( k = 0; k < (sizeof(inp_power_of_two)/sizeof(inp_power_of_two[0])); ++k) { N = pffftd_next_power_of_two(inp_power_of_two[k]); if (N != ref_power_of_two[k]) { resNextPw2 = 1; printf("pffftd_next_power_of_two(%d) does deliver %d, which is not reference result %d!\n", inp_power_of_two[k], N, ref_power_of_two[k] ); } result = pffftd_is_power_of_two(inp_power_of_two[k]); if (inp_power_of_two[k] == ref_power_of_two[k]) { if (!result) { resIsPw2 = 1; printf("pffftd_is_power_of_two(%d) delivers false; expected true!\n", inp_power_of_two[k]); } } else { if (result) { resIsPw2 = 1; printf("pffftd_is_power_of_two(%d) delivers true; expected false!\n", inp_power_of_two[k]); } } } if (!resNextPw2) printf("tests for pffftd_next_power_of_two() succeeded successfully.\n"); if (!resIsPw2) printf("tests for pffftd_is_power_of_two() succeeded successfully.\n"); resFFT = 0; for ( N = 32; N <= 65536; N *= 2 ) { result = test(N, 1 /* cplx fft */, 1 /* useOrdered */); resN = result; resFFT |= result; result = test(N, 0 /* cplx fft */, 1 /* useOrdered */); resN |= result; resFFT |= result; result = test(N, 1 /* cplx fft */, 0 /* useOrdered */); resN |= result; resFFT |= result; result = test(N, 0 /* cplx fft */, 0 /* useOrdered */); resN |= result; resFFT |= result; if (!resN) printf("tests for size %d succeeded successfully.\n", N); } if (!resFFT) printf("all pffftd transform tests (FORWARD/BACKWARD, REAL/COMPLEX) succeeded successfully.\n"); resAll = resNextPw2 | resIsPw2 | resFFT; if (!resAll) printf("all tests succeeded successfully.\n"); else printf("there are failed tests!\n"); return resAll; }