aboutsummaryrefslogtreecommitdiff
path: root/sse2neon.h
blob: b28a797037d08d2b0a2b7081efae58c98994ddba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
#ifndef SSE2NEON_H
#define SSE2NEON_H

// This header file provides a simple API translation layer
// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
//
// This header file does not yet translate all of the SSE intrinsics.
//
// Contributors to this work are:
//   John W. Ratcliff <jratcliffscarab@gmail.com>
//   Brandon Rowlett <browlett@nvidia.com>
//   Ken Fast <kfast@gdeb.com>
//   Eric van Beurden <evanbeurden@nvidia.com>
//   Alexander Potylitsin <apotylitsin@nvidia.com>
//   Hasindu Gamaarachchi <hasindu2008@gmail.com>
//   Jim Huang <jserv@biilabs.io>
//   Mark Cheng <marktwtn@biilabs.io>
//   Malcolm James MacLeod <malcolm@gulden.com>
//   Devin Hussey (easyaspi314) <husseydevin@gmail.com>
//   Sebastian Pop <spop@amazon.com>
//   Developer Ecosystem Engineering <DeveloperEcosystemEngineering@apple.com>
//   Danila Kutenin <danilak@google.com>
//   François Turban (JishinMaster) <francois.turban@gmail.com>
//   Pei-Hsuan Hung <afcidk@gmail.com>
//   Yang-Hao Yuan <yanghau@biilabs.io>

/*
 * sse2neon is freely redistributable under the MIT License.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/* Tunable configurations */

/* Enable precise implementation of _mm_min_ps and _mm_max_ps
 * This would slow down the computation a bit, but gives consistent result with
 * x86 SSE2. (e.g. would solve a hole or NaN pixel in the rendering result)
 */
#ifndef SSE2NEON_PRECISE_MINMAX
#define SSE2NEON_PRECISE_MINMAX (0)
#endif

#if defined(__GNUC__) || defined(__clang__)
#pragma push_macro("FORCE_INLINE")
#pragma push_macro("ALIGN_STRUCT")
#define FORCE_INLINE static inline __attribute__((always_inline))
#define ALIGN_STRUCT(x) __attribute__((aligned(x)))
#else
#error "Macro name collisions may happen with unsupported compiler."
#ifdef FORCE_INLINE
#undef FORCE_INLINE
#endif
#define FORCE_INLINE static inline
#ifndef ALIGN_STRUCT
#define ALIGN_STRUCT(x) __declspec(align(x))
#endif
#endif

#include <stdint.h>
#include <stdlib.h>

/* Architecture-specific build options */
/* FIXME: #pragma GCC push_options is only available on GCC */
#if defined(__GNUC__)
#if defined(__arm__) && __ARM_ARCH == 7
/* According to ARM C Language Extensions Architecture specification,
 * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
 * architecture supported.
 */
#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
#endif
#pragma GCC push_options
#pragma GCC target("fpu=neon")
#elif defined(__aarch64__)
#pragma GCC push_options
#pragma GCC target("+simd")
#else
#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
#endif
#endif

#include <arm_neon.h>

/* Rounding functions require either Aarch64 instructions or libm failback */
#if !defined(__aarch64__)
#include <math.h>
#endif

/* "__has_builtin" can be used to query support for built-in functions
 * provided by gcc/clang and other compilers that support it.
 */
#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
/* Compatibility with gcc <= 9 */
#if __GNUC__ <= 9
#define __has_builtin(x) HAS##x
#define HAS__builtin_popcount 1
#define HAS__builtin_popcountll 1
#else
#define __has_builtin(x) 0
#endif
#endif

/**
 * MACRO for shuffle parameter for _mm_shuffle_ps().
 * Argument fp3 is a digit[0123] that represents the fp from argument "b"
 * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
 * for fp2 in result. fp1 is a digit[0123] that represents the fp from
 * argument "a" of mm_shuffle_ps that will be places in fp1 of result.
 * fp0 is the same for fp0 of result.
 */
#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
    (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))

/* Rounding mode macros. */
#define _MM_FROUND_TO_NEAREST_INT 0x00
#define _MM_FROUND_TO_NEG_INF 0x01
#define _MM_FROUND_TO_POS_INF 0x02
#define _MM_FROUND_TO_ZERO 0x03
#define _MM_FROUND_CUR_DIRECTION 0x04
#define _MM_FROUND_NO_EXC 0x08

/* indicate immediate constant argument in a given range */
#define __constrange(a, b) const

/* A few intrinsics accept traditional data types like ints or floats, but
 * most operate on data types that are specific to SSE.
 * If a vector type ends in d, it contains doubles, and if it does not have
 * a suffix, it contains floats. An integer vector type can contain any type
 * of integer, from chars to shorts to unsigned long longs.
 */
typedef int64x1_t __m64;
typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
// On ARM 32-bit architecture, the float64x2_t is not supported.
// The data type __m128d should be represented in a different way for related
// intrinsic conversion.
#if defined(__aarch64__)
typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
#else
typedef float32x4_t __m128d;
#endif
typedef int64x2_t __m128i; /* 128-bit vector containing integers */

/* type-safe casting between types */

#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
#define vreinterpretq_m128_f32(x) (x)
#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)

#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)

#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)

#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
#define vreinterpretq_f32_m128(x) (x)
#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)

#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)

#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)

#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
#define vreinterpretq_m128i_s64(x) (x)

#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)

#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
#define vreinterpretq_s64_m128i(x) (x)

#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)

#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
#define vreinterpret_m64_s64(x) (x)

#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)

#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)

#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)

#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
#define vreinterpret_s64_m64(x) (x)

#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)

#if defined(__aarch64__)
#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)

#define vreinterpretq_m128d_f64(x) (x)

#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)

#define vreinterpretq_f64_m128d(x) (x)
#else
#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)

#define vreinterpretq_m128d_f32(x) (x)

#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)

#define vreinterpretq_f32_m128d(x) (x)
#endif

// A struct is defined in this header file called 'SIMDVec' which can be used
// by applications which attempt to access the contents of an _m128 struct
// directly.  It is important to note that accessing the __m128 struct directly
// is bad coding practice by Microsoft: @see:
// https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx
//
// However, some legacy source code may try to access the contents of an __m128
// struct directly so the developer can use the SIMDVec as an alias for it.  Any
// casting must be done manually by the developer, as you cannot cast or
// otherwise alias the base NEON data type for intrinsic operations.
//
// union intended to allow direct access to an __m128 variable using the names
// that the MSVC compiler provides.  This union should really only be used when
// trying to access the members of the vector as integer values.  GCC/clang
// allow native access to the float members through a simple array access
// operator (in C since 4.6, in C++ since 4.8).
//
// Ideally direct accesses to SIMD vectors should not be used since it can cause
// a performance hit.  If it really is needed however, the original __m128
// variable can be aliased with a pointer to this union and used to access
// individual components.  The use of this union should be hidden behind a macro
// that is used throughout the codebase to access the members instead of always
// declaring this type of variable.
typedef union ALIGN_STRUCT(16) SIMDVec {
    float m128_f32[4];     // as floats - DON'T USE. Added for convenience.
    int8_t m128_i8[16];    // as signed 8-bit integers.
    int16_t m128_i16[8];   // as signed 16-bit integers.
    int32_t m128_i32[4];   // as signed 32-bit integers.
    int64_t m128_i64[2];   // as signed 64-bit integers.
    uint8_t m128_u8[16];   // as unsigned 8-bit integers.
    uint16_t m128_u16[8];  // as unsigned 16-bit integers.
    uint32_t m128_u32[4];  // as unsigned 32-bit integers.
    uint64_t m128_u64[2];  // as unsigned 64-bit integers.
} SIMDVec;

// casting using SIMDVec
#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])

/* Backwards compatibility for compilers with lack of specific type support */

// Older gcc does not define vld1q_u8_x4 type
#if defined(__GNUC__) && !defined(__clang__)
#if __GNUC__ <= 9
FORCE_INLINE uint8x16x4_t vld1q_u8_x4(const uint8_t *p)
{
    uint8x16x4_t ret;
    ret.val[0] = vld1q_u8(p + 0);
    ret.val[1] = vld1q_u8(p + 16);
    ret.val[2] = vld1q_u8(p + 32);
    ret.val[3] = vld1q_u8(p + 48);
    return ret;
}
#endif
#endif

/* Function Naming Conventions
 * The naming convention of SSE intrinsics is straightforward. A generic SSE
 * intrinsic function is given as follows:
 *   _mm_<name>_<data_type>
 *
 * The parts of this format are given as follows:
 * 1. <name> describes the operation performed by the intrinsic
 * 2. <data_type> identifies the data type of the function's primary arguments
 *
 * This last part, <data_type>, is a little complicated. It identifies the
 * content of the input values, and can be set to any of the following values:
 * + ps - vectors contain floats (ps stands for packed single-precision)
 * + pd - vectors cantain doubles (pd stands for packed double-precision)
 * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
 *                            signed integers
 * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
 *                            unsigned integers
 * + si128 - unspecified 128-bit vector or 256-bit vector
 * + m128/m128i/m128d - identifies input vector types when they are different
 *                      than the type of the returned vector
 *
 * For example, _mm_setzero_ps. The _mm implies that the function returns
 * a 128-bit vector. The _ps at the end implies that the argument vectors
 * contain floats.
 *
 * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
 *   // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
 *   __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
 *   // Set packed 8-bit integers
 *   // 128 bits, 16 chars, per 8 bits
 *   __m128i v_perm = _mm_setr_epi8(1, 0,  2,  3, 8, 9, 10, 11,
 *                                  4, 5, 12, 13, 6, 7, 14, 15);
 *   // Shuffle packed 8-bit integers
 *   __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
 *
 * Data (Number, Binary, Byte Index):
    +------+------+-------------+------+------+-------------+
    |      1      |      2      |      3      |      4      | Number
    +------+------+------+------+------+------+------+------+
    | 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary
    +------+------+------+------+------+------+------+------+
    |    0 |    1 |    2 |    3 |    4 |    5 |    6 |    7 | Index
    +------+------+------+------+------+------+------+------+

    +------+------+------+------+------+------+------+------+
    |      5      |      6      |      7      |      8      | Number
    +------+------+------+------+------+------+------+------+
    | 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary
    +------+------+------+------+------+------+------+------+
    |    8 |    9 |   10 |   11 |   12 |   13 |   14 |   15 | Index
    +------+------+------+------+------+------+------+------+
 * Index (Byte Index):
    +------+------+------+------+------+------+------+------+
    |    1 |    0 |    2 |    3 |    8 |    9 |   10 |   11 |
    +------+------+------+------+------+------+------+------+

    +------+------+------+------+------+------+------+------+
    |    4 |    5 |   12 |   13 |    6 |    7 |   14 |   15 |
    +------+------+------+------+------+------+------+------+
 * Result:
    +------+------+------+------+------+------+------+------+
    |    1 |    0 |    2 |    3 |    8 |    9 |   10 |   11 | Index
    +------+------+------+------+------+------+------+------+
    | 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary
    +------+------+------+------+------+------+------+------+
    |     256     |      2      |      5      |      6      | Number
    +------+------+------+------+------+------+------+------+

    +------+------+------+------+------+------+------+------+
    |    4 |    5 |   12 |   13 |    6 |    7 |   14 |   15 | Index
    +------+------+------+------+------+------+------+------+
    | 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary
    +------+------+------+------+------+------+------+------+
    |      3      |      7      |      4      |      8      | Number
    +------+------+------+------+------+------+-------------+
 */

/* Set/get methods */

/* Constants for use with _mm_prefetch.  */
enum _mm_hint {
    _MM_HINT_NTA = 0,  /* load data to L1 and L2 cache, mark it as NTA */
    _MM_HINT_T0 = 1,   /* load data to L1 and L2 cache */
    _MM_HINT_T1 = 2,   /* load data to L2 cache only */
    _MM_HINT_T2 = 3,   /* load data to L2 cache only, mark it as NTA */
    _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */
    _MM_HINT_ET0 = 5,  /* exclusive version of _MM_HINT_T0 */
    _MM_HINT_ET1 = 6,  /* exclusive version of _MM_HINT_T1 */
    _MM_HINT_ET2 = 7   /* exclusive version of _MM_HINT_T2 */
};

// Loads one cache line of data from address p to a location closer to the
// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
FORCE_INLINE void _mm_prefetch(const void *p, int i)
{
    (void) i;
    __builtin_prefetch(p);
}

// Copy the lower single-precision (32-bit) floating-point element of a to dst.
//
//   dst[31:0] := a[31:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32
FORCE_INLINE float _mm_cvtss_f32(__m128 a)
{
    return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
}

// Sets the 128-bit value to zero
// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
FORCE_INLINE __m128i _mm_setzero_si128(void)
{
    return vreinterpretq_m128i_s32(vdupq_n_s32(0));
}

// Clears the four single-precision, floating-point values.
// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
FORCE_INLINE __m128 _mm_setzero_ps(void)
{
    return vreinterpretq_m128_f32(vdupq_n_f32(0));
}

// Sets the four single-precision, floating-point values to w.
//
//   r0 := r1 := r2 := r3 := w
//
// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
FORCE_INLINE __m128 _mm_set1_ps(float _w)
{
    return vreinterpretq_m128_f32(vdupq_n_f32(_w));
}

// Sets the four single-precision, floating-point values to w.
// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
FORCE_INLINE __m128 _mm_set_ps1(float _w)
{
    return vreinterpretq_m128_f32(vdupq_n_f32(_w));
}

// Sets the four single-precision, floating-point values to the four inputs.
// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
{
    float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
    return vreinterpretq_m128_f32(vld1q_f32(data));
}

// Copy single-precision (32-bit) floating-point element a to the lower element
// of dst, and zero the upper 3 elements.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss
FORCE_INLINE __m128 _mm_set_ss(float a)
{
    float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
    return vreinterpretq_m128_f32(vld1q_f32(data));
}

// Sets the four single-precision, floating-point values to the four inputs in
// reverse order.
// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
{
    float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
    return vreinterpretq_m128_f32(vld1q_f32(data));
}

// Sets the 8 signed 16-bit integer values in reverse order.
//
// Return Value
//   r0 := w0
//   r1 := w1
//   ...
//   r7 := w7
FORCE_INLINE __m128i _mm_setr_epi16(short w0,
                                    short w1,
                                    short w2,
                                    short w3,
                                    short w4,
                                    short w5,
                                    short w6,
                                    short w7)
{
    int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
    return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
}

// Sets the 4 signed 32-bit integer values in reverse order
// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
{
    int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
    return vreinterpretq_m128i_s32(vld1q_s32(data));
}

// Set packed 64-bit integers in dst with the supplied values in reverse order.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64
FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
{
    return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
}

// Sets the 16 signed 8-bit integer values to b.
//
//   r0 := b
//   r1 := b
//   ...
//   r15 := b
//
// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
{
    return vreinterpretq_m128i_s8(vdupq_n_s8(w));
}

// Sets the 8 signed 16-bit integer values to w.
//
//   r0 := w
//   r1 := w
//   ...
//   r7 := w
//
// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
FORCE_INLINE __m128i _mm_set1_epi16(short w)
{
    return vreinterpretq_m128i_s16(vdupq_n_s16(w));
}

// Sets the 16 signed 8-bit integer values.
// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
                                  signed char b14,
                                  signed char b13,
                                  signed char b12,
                                  signed char b11,
                                  signed char b10,
                                  signed char b9,
                                  signed char b8,
                                  signed char b7,
                                  signed char b6,
                                  signed char b5,
                                  signed char b4,
                                  signed char b3,
                                  signed char b2,
                                  signed char b1,
                                  signed char b0)
{
    int8_t ALIGN_STRUCT(16)
        data[16] = {(int8_t) b0,  (int8_t) b1,  (int8_t) b2,  (int8_t) b3,
                    (int8_t) b4,  (int8_t) b5,  (int8_t) b6,  (int8_t) b7,
                    (int8_t) b8,  (int8_t) b9,  (int8_t) b10, (int8_t) b11,
                    (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
    return (__m128i) vld1q_s8(data);
}

// Sets the 8 signed 16-bit integer values.
// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
FORCE_INLINE __m128i _mm_set_epi16(short i7,
                                   short i6,
                                   short i5,
                                   short i4,
                                   short i3,
                                   short i2,
                                   short i1,
                                   short i0)
{
    int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
    return vreinterpretq_m128i_s16(vld1q_s16(data));
}

// Sets the 16 signed 8-bit integer values in reverse order.
// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
                                   signed char b1,
                                   signed char b2,
                                   signed char b3,
                                   signed char b4,
                                   signed char b5,
                                   signed char b6,
                                   signed char b7,
                                   signed char b8,
                                   signed char b9,
                                   signed char b10,
                                   signed char b11,
                                   signed char b12,
                                   signed char b13,
                                   signed char b14,
                                   signed char b15)
{
    int8_t ALIGN_STRUCT(16)
        data[16] = {(int8_t) b0,  (int8_t) b1,  (int8_t) b2,  (int8_t) b3,
                    (int8_t) b4,  (int8_t) b5,  (int8_t) b6,  (int8_t) b7,
                    (int8_t) b8,  (int8_t) b9,  (int8_t) b10, (int8_t) b11,
                    (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
    return (__m128i) vld1q_s8(data);
}

// Sets the 4 signed 32-bit integer values to i.
//
//   r0 := i
//   r1 := i
//   r2 := i
//   r3 := I
//
// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
FORCE_INLINE __m128i _mm_set1_epi32(int _i)
{
    return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
}

// Sets the 2 signed 64-bit integer values to i.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
{
    return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i));
}

// Sets the 2 signed 64-bit integer values to i.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x
FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
{
    return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
}

// Sets the 4 signed 32-bit integer values.
// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
{
    int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
    return vreinterpretq_m128i_s32(vld1q_s32(data));
}

// Returns the __m128i structure with its two 64-bit integer values
// initialized to the values of the two 64-bit integers passed in.
// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
{
    int64_t ALIGN_STRUCT(16) data[2] = {i2, i1};
    return vreinterpretq_m128i_s64(vld1q_s64(data));
}

// Returns the __m128i structure with its two 64-bit integer values
// initialized to the values of the two 64-bit integers passed in.
// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
{
    return _mm_set_epi64x((int64_t) i1, (int64_t) i2);
}

// Set packed double-precision (64-bit) floating-point elements in dst with the
// supplied values.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd
FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
{
    double ALIGN_STRUCT(16) data[2] = {e0, e1};
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
#else
    return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
#endif
}

// Stores four single-precision, floating-point values.
// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
{
    vst1q_f32(p, vreinterpretq_f32_m128(a));
}

// Stores four single-precision, floating-point values.
// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
{
    vst1q_f32(p, vreinterpretq_f32_m128(a));
}

// Stores four 32-bit integer values as (as a __m128i value) at the address p.
// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
{
    vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
}

// Stores four 32-bit integer values as (as a __m128i value) at the address p.
// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
{
    vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
}

// Stores the lower single - precision, floating - point value.
// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
{
    vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
}

// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
// or a general-protection exception may be generated.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd
FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
{
#if defined(__aarch64__)
    vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
#else
    vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
#endif
}

// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
// elements) from a into memory. mem_addr does not need to be aligned on any
// particular boundary.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd
FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
{
    _mm_store_pd(mem_addr, a);
}

// Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
{
    uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
    uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
    *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
}

// Stores the lower two single-precision floating point values of a to the
// address p.
//
//   *p0 := a0
//   *p1 := a1
//
// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
{
    *p = vreinterpret_m64_f32(vget_low_f32(a));
}

// Stores the upper two single-precision, floating-point values of a to the
// address p.
//
//   *p0 := a2
//   *p1 := a3
//
// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx
FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
{
    *p = vreinterpret_m64_f32(vget_high_f32(a));
}

// Loads a single single-precision, floating-point value, copying it into all
// four words
// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
FORCE_INLINE __m128 _mm_load1_ps(const float *p)
{
    return vreinterpretq_m128_f32(vld1q_dup_f32(p));
}

// Load a single-precision (32-bit) floating-point element from memory into all
// elements of dst.
//
//   dst[31:0] := MEM[mem_addr+31:mem_addr]
//   dst[63:32] := MEM[mem_addr+31:mem_addr]
//   dst[95:64] := MEM[mem_addr+31:mem_addr]
//   dst[127:96] := MEM[mem_addr+31:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1
#define _mm_load_ps1 _mm_load1_ps

// Sets the lower two single-precision, floating-point values with 64
// bits of data loaded from the address p; the upper two values are passed
// through from a.
//
// Return Value
//   r0 := *p0
//   r1 := *p1
//   r2 := a2
//   r3 := a3
//
// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
{
    return vreinterpretq_m128_f32(
        vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
}

// Load 4 single-precision (32-bit) floating-point elements from memory into dst
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
// general-protection exception may be generated.
//
//   dst[31:0] := MEM[mem_addr+127:mem_addr+96]
//   dst[63:32] := MEM[mem_addr+95:mem_addr+64]
//   dst[95:64] := MEM[mem_addr+63:mem_addr+32]
//   dst[127:96] := MEM[mem_addr+31:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps
FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
{
    float32x4_t v = vrev64q_f32(vld1q_f32(p));
    return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
}

// Sets the upper two single-precision, floating-point values with 64
// bits of data loaded from the address p; the lower two values are passed
// through from a.
//
//   r0 := a0
//   r1 := a1
//   r2 := *p0
//   r3 := *p1
//
// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx
FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
{
    return vreinterpretq_m128_f32(
        vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
}

// Loads four single-precision, floating-point values.
// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
FORCE_INLINE __m128 _mm_load_ps(const float *p)
{
    return vreinterpretq_m128_f32(vld1q_f32(p));
}

// Loads four single-precision, floating-point values.
// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
{
    // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
    // equivalent for neon
    return vreinterpretq_m128_f32(vld1q_f32(p));
}

// Load unaligned 16-bit integer from memory into the first element of dst.
//
//   dst[15:0] := MEM[mem_addr+15:mem_addr]
//   dst[MAX:16] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16
FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
{
    return vreinterpretq_m128i_s16(
        vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
}

// Load unaligned 64-bit integer from memory into the first element of dst.
//
//   dst[63:0] := MEM[mem_addr+63:mem_addr]
//   dst[MAX:64] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64
FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
{
    return vreinterpretq_m128i_s64(
        vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
}

// Load a double-precision (64-bit) floating-point element from memory into the
// lower of dst, and zero the upper element. mem_addr does not need to be
// aligned on any particular boundary.
//
//   dst[63:0] := MEM[mem_addr+63:mem_addr]
//   dst[127:64] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd
FORCE_INLINE __m128d _mm_load_sd(const double *p)
{
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
#else
    const float *fp = (const float *) p;
    float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
    return vreinterpretq_m128d_f32(vld1q_f32(data));
#endif
}

// Loads two double-precision from 16-byte aligned memory, floating-point
// values.
//
//   dst[127:0] := MEM[mem_addr+127:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd
FORCE_INLINE __m128d _mm_load_pd(const double *p)
{
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(vld1q_f64(p));
#else
    const float *fp = (const float *) p;
    float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
    return vreinterpretq_m128d_f32(vld1q_f32(data));
#endif
}

// Loads two double-precision from unaligned memory, floating-point values.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd
FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
{
    return _mm_load_pd(p);
}

// Loads an single - precision, floating - point value into the low word and
// clears the upper three words.
// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
FORCE_INLINE __m128 _mm_load_ss(const float *p)
{
    return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
}

FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
{
    /* Load the lower 64 bits of the value pointed to by p into the
     * lower 64 bits of the result, zeroing the upper 64 bits of the result.
     */
    return vreinterpretq_m128i_s32(
        vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
}

// Load a double-precision (64-bit) floating-point element from memory into the
// lower element of dst, and copy the upper element from a to dst. mem_addr does
// not need to be aligned on any particular boundary.
//
//   dst[63:0] := MEM[mem_addr+63:mem_addr]
//   dst[127:64] := a[127:64]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd
FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
{
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(
        vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
#else
    return vreinterpretq_m128d_f32(
        vcombine_f32(vld1_f32((const float *) p),
                     vget_high_f32(vreinterpretq_f32_m128d(a))));
#endif
}

// Load 2 double-precision (64-bit) floating-point elements from memory into dst
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
// general-protection exception may be generated.
//
//   dst[63:0] := MEM[mem_addr+127:mem_addr+64]
//   dst[127:64] := MEM[mem_addr+63:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd
FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
{
#if defined(__aarch64__)
    float64x2_t v = vld1q_f64(p);
    return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
#else
    int64x2_t v = vld1q_s64((const int64_t *) p);
    return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
#endif
}

// Sets the low word to the single-precision, floating-point value of b
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100)
FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
{
    return vreinterpretq_m128_f32(
        vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
                       vreinterpretq_f32_m128(a), 0));
}

// Copy the lower 64-bit integer in a to the lower element of dst, and zero the
// upper element.
//
//   dst[63:0] := a[63:0]
//   dst[127:64] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64
FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
{
    return vreinterpretq_m128i_s64(
        vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
}

// Return vector of type __m128 with undefined elements.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps
FORCE_INLINE __m128 _mm_undefined_ps(void)
{
    __m128 a;
    return a;
}

/* Logic/Binary operations */

// Computes the bitwise AND-NOT of the four single-precision, floating-point
// values of a and b.
//
//   r0 := ~a0 & b0
//   r1 := ~a1 & b1
//   r2 := ~a2 & b2
//   r3 := ~a3 & b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_s32(
        vbicq_s32(vreinterpretq_s32_m128(b),
                  vreinterpretq_s32_m128(a)));  // *NOTE* argument swap
}

// Compute the bitwise NOT of packed double-precision (64-bit) floating-point
// elements in a and then AND with b, and store the results in dst.
//
//   FOR j := 0 to 1
// 	     i := j*64
// 	     dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd
FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
{
    // *NOTE* argument swap
    return vreinterpretq_m128d_s64(
        vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
}

// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
// 128-bit value in a.
//
//   r := (~a) & b
//
// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vbicq_s32(vreinterpretq_s32_m128i(b),
                  vreinterpretq_s32_m128i(a)));  // *NOTE* argument swap
}

// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
// b.
//
//   r := a & b
//
// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Computes the bitwise AND of the four single-precision, floating-point values
// of a and b.
//
//   r0 := a0 & b0
//   r1 := a1 & b1
//   r2 := a2 & b2
//   r3 := a3 & b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_s32(
        vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
}

// Compute the bitwise AND of packed double-precision (64-bit) floating-point
// elements in a and b, and store the results in dst.
//
//   FOR j := 0 to 1
//     i := j*64
//     dst[i+63:i] := a[i+63:i] AND b[i+63:i]
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd
FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
{
    return vreinterpretq_m128d_s64(
        vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
}

// Computes the bitwise OR of the four single-precision, floating-point values
// of a and b.
// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_s32(
        vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
}

// Computes bitwise EXOR (exclusive-or) of the four single-precision,
// floating-point values of a and b.
// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_s32(
        veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
}

// Compute the bitwise XOR of packed double-precision (64-bit) floating-point
// elements in a and b, and store the results in dst.
//
//   FOR j := 0 to 1
//      i := j*64
//      dst[i+63:i] := a[i+63:i] XOR b[i+63:i]
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd
FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
{
    return vreinterpretq_m128d_s64(
        veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
}

// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
//
//   r := a | b
//
// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
// b.  https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Duplicate odd-indexed single-precision (32-bit) floating-point elements
// from a, and store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps
FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
{
#if __has_builtin(__builtin_shufflevector)
    return vreinterpretq_m128_f32(__builtin_shufflevector(
        vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
#else
    float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
    float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
    float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
    return vreinterpretq_m128_f32(vld1q_f32(data));
#endif
}

// Duplicate even-indexed single-precision (32-bit) floating-point elements
// from a, and store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps
FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
{
#if __has_builtin(__builtin_shufflevector)
    return vreinterpretq_m128_f32(__builtin_shufflevector(
        vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
#else
    float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
    float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
    float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
    return vreinterpretq_m128_f32(vld1q_f32(data));
#endif
}

// Moves the upper two values of B into the lower two values of A.
//
//   r3 := a3
//   r2 := a2
//   r1 := b3
//   r0 := b2
FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B)
{
    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A));
    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B));
    return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
}

// Moves the lower two values of B into the upper two values of A.
//
//   r3 := b1
//   r2 := b0
//   r1 := a1
//   r0 := a0
FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
{
    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
    return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
}

// Compute the absolute value of packed signed 32-bit integers in a, and store
// the unsigned results in dst.
//
//   FOR j := 0 to 3
//     i := j*32
//     dst[i+31:i] := ABS(a[i+31:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32
FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
{
    return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
}

// Compute the absolute value of packed signed 16-bit integers in a, and store
// the unsigned results in dst.
//
//   FOR j := 0 to 7
//     i := j*16
//     dst[i+15:i] := ABS(a[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16
FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
{
    return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
}

// Compute the absolute value of packed signed 8-bit integers in a, and store
// the unsigned results in dst.
//
//   FOR j := 0 to 15
//     i := j*8
//     dst[i+7:i] := ABS(a[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8
FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
{
    return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
}

// Compute the absolute value of packed signed 32-bit integers in a, and store
// the unsigned results in dst.
//
//   FOR j := 0 to 1
//     i := j*32
//     dst[i+31:i] := ABS(a[i+31:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32
FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
{
    return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
}

// Compute the absolute value of packed signed 16-bit integers in a, and store
// the unsigned results in dst.
//
//   FOR j := 0 to 3
//     i := j*16
//     dst[i+15:i] := ABS(a[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16
FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
{
    return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
}

// Compute the absolute value of packed signed 8-bit integers in a, and store
// the unsigned results in dst.
//
//   FOR j := 0 to 7
//     i := j*8
//     dst[i+7:i] := ABS(a[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8
FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
{
    return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
}

// Takes the upper 64 bits of a and places it in the low end of the result
// Takes the lower 64 bits of b and places it into the high end of the result.
FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
{
    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
}

// takes the lower two 32-bit values from a and swaps them and places in high
// end of result takes the higher two 32 bit values from b and swaps them and
// places in low end of result.
FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
{
    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
    float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
    return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
}

FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
{
    float32x2_t a21 = vget_high_f32(
        vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
    float32x2_t b03 = vget_low_f32(
        vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
    return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
}

FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
{
    float32x2_t a03 = vget_low_f32(
        vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
    float32x2_t b21 = vget_high_f32(
        vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
    return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
}

FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
{
    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
}

FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
{
    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
}

FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
{
    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
    float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
    return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
}

// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
// high
FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
{
    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
}

FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
{
    float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
    return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
}

FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
{
    float32x2_t a22 =
        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
    return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
}

FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
{
    float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
    float32x2_t b22 =
        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
    return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
}

FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
{
    float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
    float32x2_t a22 =
        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
    float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
}

FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
{
    float32x2_t a33 =
        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
    float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
    return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
}

FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
{
    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
    float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
    float32x2_t b20 = vset_lane_f32(b2, b00, 1);
    return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
}

FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
{
    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
    float32_t b2 = vgetq_lane_f32(b, 2);
    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
    float32x2_t b20 = vset_lane_f32(b2, b00, 1);
    return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
}

FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
{
    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
    float32_t b2 = vgetq_lane_f32(b, 2);
    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
    float32x2_t b20 = vset_lane_f32(b2, b00, 1);
    return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
}

// NEON does not support a general purpose permute intrinsic
// Selects four specific single-precision, floating-point values from a and b,
// based on the mask i.
//
// C equivalent:
//   __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
//                                 __constrange(0, 255) int imm) {
//       __m128 ret;
//       ret[0] = a[imm        & 0x3];   ret[1] = a[(imm >> 2) & 0x3];
//       ret[2] = b[(imm >> 4) & 0x03];  ret[3] = b[(imm >> 6) & 0x03];
//       return ret;
//   }
//
// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
#define _mm_shuffle_ps_default(a, b, imm)                                  \
    __extension__({                                                        \
        float32x4_t ret;                                                   \
        ret = vmovq_n_f32(                                                 \
            vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3)));     \
        ret = vsetq_lane_f32(                                              \
            vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
            ret, 1);                                                       \
        ret = vsetq_lane_f32(                                              \
            vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
            ret, 2);                                                       \
        ret = vsetq_lane_f32(                                              \
            vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
            ret, 3);                                                       \
        vreinterpretq_m128_f32(ret);                                       \
    })

// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
// int imm)
#if __has_builtin(__builtin_shufflevector)
#define _mm_shuffle_ps(a, b, imm)                                \
    __extension__({                                              \
        float32x4_t _input1 = vreinterpretq_f32_m128(a);         \
        float32x4_t _input2 = vreinterpretq_f32_m128(b);         \
        float32x4_t _shuf = __builtin_shufflevector(             \
            _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
            (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
        vreinterpretq_m128_f32(_shuf);                           \
    })
#else  // generic
#define _mm_shuffle_ps(a, b, imm)                          \
    __extension__({                                        \
        __m128 ret;                                        \
        switch (imm) {                                     \
        case _MM_SHUFFLE(1, 0, 3, 2):                      \
            ret = _mm_shuffle_ps_1032((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(2, 3, 0, 1):                      \
            ret = _mm_shuffle_ps_2301((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(0, 3, 2, 1):                      \
            ret = _mm_shuffle_ps_0321((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(2, 1, 0, 3):                      \
            ret = _mm_shuffle_ps_2103((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(1, 0, 1, 0):                      \
            ret = _mm_movelh_ps((a), (b));                 \
            break;                                         \
        case _MM_SHUFFLE(1, 0, 0, 1):                      \
            ret = _mm_shuffle_ps_1001((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(0, 1, 0, 1):                      \
            ret = _mm_shuffle_ps_0101((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(3, 2, 1, 0):                      \
            ret = _mm_shuffle_ps_3210((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(0, 0, 1, 1):                      \
            ret = _mm_shuffle_ps_0011((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(0, 0, 2, 2):                      \
            ret = _mm_shuffle_ps_0022((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(2, 2, 0, 0):                      \
            ret = _mm_shuffle_ps_2200((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(3, 2, 0, 2):                      \
            ret = _mm_shuffle_ps_3202((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(3, 2, 3, 2):                      \
            ret = _mm_movehl_ps((b), (a));                 \
            break;                                         \
        case _MM_SHUFFLE(1, 1, 3, 3):                      \
            ret = _mm_shuffle_ps_1133((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(2, 0, 1, 0):                      \
            ret = _mm_shuffle_ps_2010((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(2, 0, 0, 1):                      \
            ret = _mm_shuffle_ps_2001((a), (b));           \
            break;                                         \
        case _MM_SHUFFLE(2, 0, 3, 2):                      \
            ret = _mm_shuffle_ps_2032((a), (b));           \
            break;                                         \
        default:                                           \
            ret = _mm_shuffle_ps_default((a), (b), (imm)); \
            break;                                         \
        }                                                  \
        ret;                                               \
    })
#endif

// Takes the upper 64 bits of a and places it in the low end of the result
// Takes the lower 64 bits of a and places it into the high end of the result.
FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
{
    int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
    int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
    return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
}

// takes the lower two 32-bit values from a and swaps them and places in low end
// of result takes the higher two 32 bit values from a and swaps them and places
// in high end of result.
FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
{
    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
    int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
    return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
}

// rotates the least significant 32 bits into the most signficant 32 bits, and
// shifts the rest down
FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
{
    return vreinterpretq_m128i_s32(
        vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
}

// rotates the most significant 32 bits into the least signficant 32 bits, and
// shifts the rest up
FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
{
    return vreinterpretq_m128i_s32(
        vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
}

// gets the lower 64 bits of a, and places it in the upper 64 bits
// gets the lower 64 bits of a and places it in the lower 64 bits
FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
{
    int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
    return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
}

// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
{
    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
    int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
    return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
}

// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
// places it in the lower 64 bits
FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
{
    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
    return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
}

FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
{
    int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
    int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
    return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
}

FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
{
    int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
    return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
}

FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
{
    int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
    int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
    return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
}

// Shuffle packed 8-bit integers in a according to shuffle control mask in the
// corresponding 8-bit element of b, and store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8
FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
{
    int8x16_t tbl = vreinterpretq_s8_m128i(a);   // input a
    uint8x16_t idx = vreinterpretq_u8_m128i(b);  // input b
    uint8x16_t idx_masked =
        vandq_u8(idx, vdupq_n_u8(0x8F));  // avoid using meaningless bits
#if defined(__aarch64__)
    return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
#elif defined(__GNUC__)
    int8x16_t ret;
    // %e and %f represent the even and odd D registers
    // respectively.
    __asm__ __volatile__(
        "vtbl.8  %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
        "vtbl.8  %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
        : [ret] "=&w"(ret)
        : [tbl] "w"(tbl), [idx] "w"(idx_masked));
    return vreinterpretq_m128i_s8(ret);
#else
    // use this line if testing on aarch64
    int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
    return vreinterpretq_m128i_s8(
        vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
                    vtbl2_s8(a_split, vget_high_u8(idx_masked))));
#endif
}

// C equivalent:
//   __m128i _mm_shuffle_epi32_default(__m128i a,
//                                     __constrange(0, 255) int imm) {
//       __m128i ret;
//       ret[0] = a[imm        & 0x3];   ret[1] = a[(imm >> 2) & 0x3];
//       ret[2] = a[(imm >> 4) & 0x03];  ret[3] = a[(imm >> 6) & 0x03];
//       return ret;
//   }
#define _mm_shuffle_epi32_default(a, imm)                                   \
    __extension__({                                                         \
        int32x4_t ret;                                                      \
        ret = vmovq_n_s32(                                                  \
            vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3)));     \
        ret = vsetq_lane_s32(                                               \
            vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
            ret, 1);                                                        \
        ret = vsetq_lane_s32(                                               \
            vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
            ret, 2);                                                        \
        ret = vsetq_lane_s32(                                               \
            vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
            ret, 3);                                                        \
        vreinterpretq_m128i_s32(ret);                                       \
    })

// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
// int imm)
#if defined(__aarch64__)
#define _mm_shuffle_epi32_splat(a, imm)                          \
    __extension__({                                              \
        vreinterpretq_m128i_s32(                                 \
            vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
    })
#else
#define _mm_shuffle_epi32_splat(a, imm)                                      \
    __extension__({                                                          \
        vreinterpretq_m128i_s32(                                             \
            vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
    })
#endif

// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
//                                        __constrange(0,255) int imm)
#if __has_builtin(__builtin_shufflevector)
#define _mm_shuffle_epi32(a, imm)                              \
    __extension__({                                            \
        int32x4_t _input = vreinterpretq_s32_m128i(a);         \
        int32x4_t _shuf = __builtin_shufflevector(             \
            _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
            ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3);           \
        vreinterpretq_m128i_s32(_shuf);                        \
    })
#else  // generic
#define _mm_shuffle_epi32(a, imm)                        \
    __extension__({                                      \
        __m128i ret;                                     \
        switch (imm) {                                   \
        case _MM_SHUFFLE(1, 0, 3, 2):                    \
            ret = _mm_shuffle_epi_1032((a));             \
            break;                                       \
        case _MM_SHUFFLE(2, 3, 0, 1):                    \
            ret = _mm_shuffle_epi_2301((a));             \
            break;                                       \
        case _MM_SHUFFLE(0, 3, 2, 1):                    \
            ret = _mm_shuffle_epi_0321((a));             \
            break;                                       \
        case _MM_SHUFFLE(2, 1, 0, 3):                    \
            ret = _mm_shuffle_epi_2103((a));             \
            break;                                       \
        case _MM_SHUFFLE(1, 0, 1, 0):                    \
            ret = _mm_shuffle_epi_1010((a));             \
            break;                                       \
        case _MM_SHUFFLE(1, 0, 0, 1):                    \
            ret = _mm_shuffle_epi_1001((a));             \
            break;                                       \
        case _MM_SHUFFLE(0, 1, 0, 1):                    \
            ret = _mm_shuffle_epi_0101((a));             \
            break;                                       \
        case _MM_SHUFFLE(2, 2, 1, 1):                    \
            ret = _mm_shuffle_epi_2211((a));             \
            break;                                       \
        case _MM_SHUFFLE(0, 1, 2, 2):                    \
            ret = _mm_shuffle_epi_0122((a));             \
            break;                                       \
        case _MM_SHUFFLE(3, 3, 3, 2):                    \
            ret = _mm_shuffle_epi_3332((a));             \
            break;                                       \
        case _MM_SHUFFLE(0, 0, 0, 0):                    \
            ret = _mm_shuffle_epi32_splat((a), 0);       \
            break;                                       \
        case _MM_SHUFFLE(1, 1, 1, 1):                    \
            ret = _mm_shuffle_epi32_splat((a), 1);       \
            break;                                       \
        case _MM_SHUFFLE(2, 2, 2, 2):                    \
            ret = _mm_shuffle_epi32_splat((a), 2);       \
            break;                                       \
        case _MM_SHUFFLE(3, 3, 3, 3):                    \
            ret = _mm_shuffle_epi32_splat((a), 3);       \
            break;                                       \
        default:                                         \
            ret = _mm_shuffle_epi32_default((a), (imm)); \
            break;                                       \
        }                                                \
        ret;                                             \
    })
#endif

// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
// by imm.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
//                                                   __constrange(0,255) int
//                                                   imm)
#define _mm_shufflelo_epi16_function(a, imm)                                  \
    __extension__({                                                           \
        int16x8_t ret = vreinterpretq_s16_m128i(a);                           \
        int16x4_t lowBits = vget_low_s16(ret);                                \
        ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0);  \
        ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
                             1);                                              \
        ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
                             2);                                              \
        ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
                             3);                                              \
        vreinterpretq_m128i_s16(ret);                                         \
    })

// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
//                                          __constrange(0,255) int imm)
#if __has_builtin(__builtin_shufflevector)
#define _mm_shufflelo_epi16(a, imm)                                  \
    __extension__({                                                  \
        int16x8_t _input = vreinterpretq_s16_m128i(a);               \
        int16x8_t _shuf = __builtin_shufflevector(                   \
            _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3),   \
            (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
        vreinterpretq_m128i_s16(_shuf);                              \
    })
#else  // generic
#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
#endif

// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
// by imm.
// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
//                                                   __constrange(0,255) int
//                                                   imm)
#define _mm_shufflehi_epi16_function(a, imm)                                   \
    __extension__({                                                            \
        int16x8_t ret = vreinterpretq_s16_m128i(a);                            \
        int16x4_t highBits = vget_high_s16(ret);                               \
        ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4);  \
        ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
                             5);                                               \
        ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
                             6);                                               \
        ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
                             7);                                               \
        vreinterpretq_m128i_s16(ret);                                          \
    })

// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
//                                          __constrange(0,255) int imm)
#if __has_builtin(__builtin_shufflevector)
#define _mm_shufflehi_epi16(a, imm)                             \
    __extension__({                                             \
        int16x8_t _input = vreinterpretq_s16_m128i(a);          \
        int16x8_t _shuf = __builtin_shufflevector(              \
            _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4,    \
            (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
            (((imm) >> 6) & 0x3) + 4);                          \
        vreinterpretq_m128i_s16(_shuf);                         \
    })
#else  // generic
#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
#endif

// Blend packed 16-bit integers from a and b using control mask imm8, and store
// the results in dst.
//
//   FOR j := 0 to 7
//       i := j*16
//       IF imm8[j]
//           dst[i+15:i] := b[i+15:i]
//       ELSE
//           dst[i+15:i] := a[i+15:i]
//       FI
//   ENDFOR
// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
//                                      __constrange(0,255) int imm)
#define _mm_blend_epi16(a, b, imm)                                        \
    __extension__({                                                       \
        const uint16_t _mask[8] = {((imm) & (1 << 0)) ? 0xFFFF : 0x0000,  \
                                   ((imm) & (1 << 1)) ? 0xFFFF : 0x0000,  \
                                   ((imm) & (1 << 2)) ? 0xFFFF : 0x0000,  \
                                   ((imm) & (1 << 3)) ? 0xFFFF : 0x0000,  \
                                   ((imm) & (1 << 4)) ? 0xFFFF : 0x0000,  \
                                   ((imm) & (1 << 5)) ? 0xFFFF : 0x0000,  \
                                   ((imm) & (1 << 6)) ? 0xFFFF : 0x0000,  \
                                   ((imm) & (1 << 7)) ? 0xFFFF : 0x0000}; \
        uint16x8_t _mask_vec = vld1q_u16(_mask);                          \
        uint16x8_t _a = vreinterpretq_u16_m128i(a);                       \
        uint16x8_t _b = vreinterpretq_u16_m128i(b);                       \
        vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a));            \
    })

// Blend packed 8-bit integers from a and b using mask, and store the results in
// dst.
//
//   FOR j := 0 to 15
//       i := j*8
//       IF mask[i+7]
//           dst[i+7:i] := b[i+7:i]
//       ELSE
//           dst[i+7:i] := a[i+7:i]
//       FI
//   ENDFOR
FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
{
    // Use a signed shift right to create a mask with the sign bit
    uint8x16_t mask =
        vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
    uint8x16_t a = vreinterpretq_u8_m128i(_a);
    uint8x16_t b = vreinterpretq_u8_m128i(_b);
    return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
}

/* Shifts */


// Shift packed 16-bit integers in a right by imm while shifting in sign
// bits, and store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16
FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
{
    const int count = (imm & ~15) ? 15 : imm;
    return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
}

// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
// shifting in zeros.
//
//   r0 := a0 << count
//   r1 := a1 << count
//   ...
//   r7 := a7 << count
//
// https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx
#define _mm_slli_epi16(a, imm)                                   \
    __extension__({                                              \
        __m128i ret;                                             \
        if ((imm) <= 0) {                                        \
            ret = a;                                             \
        } else if ((imm) > 15) {                                 \
            ret = _mm_setzero_si128();                           \
        } else {                                                 \
            ret = vreinterpretq_m128i_s16(                       \
                vshlq_n_s16(vreinterpretq_s16_m128i(a), (imm))); \
        }                                                        \
        ret;                                                     \
    })

// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
// shifting in zeros. :
// https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx
// FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm)
FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
{
    if (imm <= 0) /* TODO: add constant range macro: [0, 255] */
        return a;
    if (imm > 31) /* TODO: add unlikely macro */
        return _mm_setzero_si128();
    return vreinterpretq_m128i_s32(
        vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
}

// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
// store the results in dst.
FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
{
    if (imm <= 0) /* TODO: add constant range macro: [0, 255] */
        return a;
    if (imm > 63) /* TODO: add unlikely macro */
        return _mm_setzero_si128();
    return vreinterpretq_m128i_s64(
        vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
}

// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
// store the results in dst.
//
//   FOR j := 0 to 7
//     i := j*16
//     IF imm8[7:0] > 15
//       dst[i+15:i] := 0
//     ELSE
//       dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0])
//     FI
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16
#define _mm_srli_epi16(a, imm)                                             \
    __extension__({                                                        \
        __m128i ret;                                                       \
        if ((imm) == 0) {                                                  \
            ret = a;                                                       \
        } else if (0 < (imm) && (imm) < 16) {                              \
            ret = vreinterpretq_m128i_u16(                                 \
                vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \
        } else {                                                           \
            ret = _mm_setzero_si128();                                     \
        }                                                                  \
        ret;                                                               \
    })

// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
// store the results in dst.
//
//   FOR j := 0 to 3
//     i := j*32
//     IF imm8[7:0] > 31
//       dst[i+31:i] := 0
//     ELSE
//       dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0])
//     FI
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32
// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
#define _mm_srli_epi32(a, imm)                                             \
    __extension__({                                                        \
        __m128i ret;                                                       \
        if ((imm) == 0) {                                                  \
            ret = a;                                                       \
        } else if (0 < (imm) && (imm) < 32) {                              \
            ret = vreinterpretq_m128i_u32(                                 \
                vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \
        } else {                                                           \
            ret = _mm_setzero_si128();                                     \
        }                                                                  \
        ret;                                                               \
    })

// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
// store the results in dst.
//
//   FOR j := 0 to 1
//     i := j*64
//     IF imm8[7:0] > 63
//       dst[i+63:i] := 0
//     ELSE
//       dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0])
//     FI
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64
#define _mm_srli_epi64(a, imm)                                             \
    __extension__({                                                        \
        __m128i ret;                                                       \
        if ((imm) == 0) {                                                  \
            ret = a;                                                       \
        } else if (0 < (imm) && (imm) < 64) {                              \
            ret = vreinterpretq_m128i_u64(                                 \
                vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \
        } else {                                                           \
            ret = _mm_setzero_si128();                                     \
        }                                                                  \
        ret;                                                               \
    })

// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
// and store the results in dst.
//
//   FOR j := 0 to 3
//     i := j*32
//     IF imm8[7:0] > 31
//       dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
//     ELSE
//       dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0])
//     FI
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32
// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
#define _mm_srai_epi32(a, imm)                                             \
    __extension__({                                                        \
        __m128i ret;                                                       \
        if ((imm) == 0) {                                                  \
            ret = a;                                                       \
        } else if (0 < (imm) && (imm) < 32) {                              \
            ret = vreinterpretq_m128i_s32(                                 \
                vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \
        } else {                                                           \
            ret = vreinterpretq_m128i_s32(                                 \
                vshrq_n_s32(vreinterpretq_s32_m128i(a), 31));              \
        }                                                                  \
        ret;                                                               \
    })

// Shifts the 128 - bit value in a right by imm bytes while shifting in
// zeros.imm must be an immediate.
//
//   r := srl(a, imm*8)
//
// https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx
// FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm)
#define _mm_srli_si128(a, imm)                                              \
    __extension__({                                                         \
        __m128i ret;                                                        \
        if ((imm) <= 0) {                                                   \
            ret = a;                                                        \
        } else if ((imm) > 15) {                                            \
            ret = _mm_setzero_si128();                                      \
        } else {                                                            \
            ret = vreinterpretq_m128i_s8(                                   \
                vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \
        }                                                                   \
        ret;                                                                \
    })

// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm
// must be an immediate.
//
//   r := a << (imm * 8)
//
// https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx
// FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm)
#define _mm_slli_si128(a, imm)                                          \
    __extension__({                                                     \
        __m128i ret;                                                    \
        if ((imm) <= 0) {                                               \
            ret = a;                                                    \
        } else if ((imm) > 15) {                                        \
            ret = _mm_setzero_si128();                                  \
        } else {                                                        \
            ret = vreinterpretq_m128i_s8(vextq_s8(                      \
                vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \
        }                                                               \
        ret;                                                            \
    })

// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
// shifting in zeros.
//
//   r0 := a0 << count
//   r1 := a1 << count
//   ...
//   r7 := a7 << count
//
// https://msdn.microsoft.com/en-us/library/c79w388h(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
{
    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
    if (c > 15)
        return _mm_setzero_si128();

    int16x8_t vc = vdupq_n_s16((int16_t) c);
    return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
}

// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
// shifting in zeros.
//
// r0 := a0 << count
// r1 := a1 << count
// r2 := a2 << count
// r3 := a3 << count
//
// https://msdn.microsoft.com/en-us/library/6fe5a6s9(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
{
    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
    if (c > 31)
        return _mm_setzero_si128();

    int32x4_t vc = vdupq_n_s32((int32_t) c);
    return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
}

// Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
// shifting in zeros.
//
// r0 := a0 << count
// r1 := a1 << count
//
// https://msdn.microsoft.com/en-us/library/6ta9dffd(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
{
    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
    if (c > 63)
        return _mm_setzero_si128();

    int64x2_t vc = vdupq_n_s64((int64_t) c);
    return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
}

// Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
// while shifting in zeros.
//
// r0 := srl(a0, count)
// r1 := srl(a1, count)
// ...
// r7 := srl(a7, count)
//
// https://msdn.microsoft.com/en-us/library/wd5ax830(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
{
    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
    if (c > 15)
        return _mm_setzero_si128();

    int16x8_t vc = vdupq_n_s16(-(int16_t) c);
    return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
}

// Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
// while shifting in zeros.
//
// r0 := srl(a0, count)
// r1 := srl(a1, count)
// r2 := srl(a2, count)
// r3 := srl(a3, count)
//
// https://msdn.microsoft.com/en-us/library/a9cbttf4(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
{
    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
    if (c > 31)
        return _mm_setzero_si128();

    int32x4_t vc = vdupq_n_s32(-(int32_t) c);
    return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
}

// Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
// while shifting in zeros.
//
// r0 := srl(a0, count)
// r1 := srl(a1, count)
//
// https://msdn.microsoft.com/en-us/library/yf6cf9k8(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
{
    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
    if (c > 63)
        return _mm_setzero_si128();

    int64x2_t vc = vdupq_n_s64(-(int64_t) c);
    return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
}

// NEON does not provide a version of this function.
// Creates a 16-bit mask from the most significant bits of the 16 signed or
// unsigned 8-bit integers in a and zero extends the upper bits.
// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
FORCE_INLINE int _mm_movemask_epi8(__m128i a)
{
#if defined(__aarch64__)
    uint8x16_t input = vreinterpretq_u8_m128i(a);
    const int8_t ALIGN_STRUCT(16)
        xr[16] = {-7, -6, -5, -4, -3, -2, -1, 0, -7, -6, -5, -4, -3, -2, -1, 0};
    const uint8x16_t mask_and = vdupq_n_u8(0x80);
    const int8x16_t mask_shift = vld1q_s8(xr);
    const uint8x16_t mask_result =
        vshlq_u8(vandq_u8(input, mask_and), mask_shift);
    uint8x8_t lo = vget_low_u8(mask_result);
    uint8x8_t hi = vget_high_u8(mask_result);

    return vaddv_u8(lo) + (vaddv_u8(hi) << 8);
#else
    // Use increasingly wide shifts+adds to collect the sign bits
    // together.
    // Since the widening shifts would be rather confusing to follow in little
    // endian, everything will be illustrated in big endian order instead. This
    // has a different result - the bits would actually be reversed on a big
    // endian machine.

    // Starting input (only half the elements are shown):
    // 89 ff 1d c0 00 10 99 33
    uint8x16_t input = vreinterpretq_u8_m128i(a);

    // Shift out everything but the sign bits with an unsigned shift right.
    //
    // Bytes of the vector::
    // 89 ff 1d c0 00 10 99 33
    // \  \  \  \  \  \  \  \    high_bits = (uint16x4_t)(input >> 7)
    //  |  |  |  |  |  |  |  |
    // 01 01 00 01 00 00 01 00
    //
    // Bits of first important lane(s):
    // 10001001 (89)
    // \______
    //        |
    // 00000001 (01)
    uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));

    // Merge the even lanes together with a 16-bit unsigned shift right + add.
    // 'xx' represents garbage data which will be ignored in the final result.
    // In the important bytes, the add functions like a binary OR.
    //
    // 01 01 00 01 00 00 01 00
    //  \_ |  \_ |  \_ |  \_ |   paired16 = (uint32x4_t)(input + (input >> 7))
    //    \|    \|    \|    \|
    // xx 03 xx 01 xx 00 xx 02
    //
    // 00000001 00000001 (01 01)
    //        \_______ |
    //                \|
    // xxxxxxxx xxxxxx11 (xx 03)
    uint32x4_t paired16 =
        vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));

    // Repeat with a wider 32-bit shift + add.
    // xx 03 xx 01 xx 00 xx 02
    //     \____ |     \____ |  paired32 = (uint64x1_t)(paired16 + (paired16 >>
    //     14))
    //          \|          \|
    // xx xx xx 0d xx xx xx 02
    //
    // 00000011 00000001 (03 01)
    //        \\_____ ||
    //         '----.\||
    // xxxxxxxx xxxx1101 (xx 0d)
    uint64x2_t paired32 =
        vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));

    // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
    // lanes. xx xx xx 0d xx xx xx 02
    //            \_________ |   paired64 = (uint8x8_t)(paired32 + (paired32 >>
    //            28))
    //                      \|
    // xx xx xx xx xx xx xx d2
    //
    // 00001101 00000010 (0d 02)
    //     \   \___ |  |
    //      '---.  \|  |
    // xxxxxxxx 11010010 (xx d2)
    uint8x16_t paired64 =
        vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));

    // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
    // xx xx xx xx xx xx xx d2
    //                      ||  return paired64[0]
    //                      d2
    // Note: Little endian would return the correct value 4b (01001011) instead.
    return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
#endif
}

// Copy the lower 64-bit integer in a to dst.
//
//   dst[63:0] := a[63:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64
FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
{
    return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
}

// Copy the 64-bit integer a to the lower element of dst, and zero the upper
// element.
//
//   dst[63:0] := a[63:0]
//   dst[127:64] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64
FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
{
    return vreinterpretq_m128i_s64(
        vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
}

// NEON does not provide this method
// Creates a 4-bit mask from the most significant bits of the four
// single-precision, floating-point values.
// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
FORCE_INLINE int _mm_movemask_ps(__m128 a)
{
    uint32x4_t input = vreinterpretq_u32_m128(a);
#if defined(__aarch64__)
    static const int32x4_t shift = {0, 1, 2, 3};
    uint32x4_t tmp = vshrq_n_u32(input, 31);
    return vaddvq_u32(vshlq_u32(tmp, shift));
#else
    // Uses the exact same method as _mm_movemask_epi8, see that for details.
    // Shift out everything but the sign bits with a 32-bit unsigned shift
    // right.
    uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
    // Merge the two pairs together with a 64-bit unsigned shift right + add.
    uint8x16_t paired =
        vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
    // Extract the result.
    return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
#endif
}

// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
// all 1's, and return 1 if the result is zero, otherwise return 0.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones
FORCE_INLINE int _mm_test_all_ones(__m128i a)
{
    return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
           ~(uint64_t) 0;
}

// Compute the bitwise AND of 128 bits (representing integer data) in a and
// mask, and return 1 if the result is zero, otherwise return 0.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros
FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
{
    int64x2_t a_and_mask =
        vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
    return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)) ? 0
                                                                           : 1;
}

/* Math operations */

// Subtracts the four single-precision, floating-point values of a and b.
//
//   r0 := a0 - b0
//   r1 := a1 - b1
//   r2 := a2 - b2
//   r3 := a3 - b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_f32(
        vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Subtract the lower single-precision (32-bit) floating-point element in b from
// the lower single-precision (32-bit) floating-point element in a, store the
// result in the lower element of dst, and copy the upper 3 packed elements from
// a to the upper elements of dst.
//
//   dst[31:0] := a[31:0] - b[31:0]
//   dst[127:32] := a[127:32]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss
FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_sub_ps(a, b));
}

// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
// and store the results in dst.
//    r0 := a0 - b0
//    r1 := a1 - b1
FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s64(
        vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
}

// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
// unsigned 32-bit integers of a.
//
//   r0 := a0 - b0
//   r1 := a1 - b1
//   r2 := a2 - b2
//   r3 := a3 - b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s8(
        vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
//
//   dst[63:0] := a[63:0] - b[63:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64
FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
{
    return vreinterpret_m64_s64(
        vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
}

// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
// integers of a and saturates..
// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u16(
        vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
}

// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
// integers of a and saturates.
//
//   r0 := UnsignedSaturate(a0 - b0)
//   r1 := UnsignedSaturate(a1 - b1)
//   ...
//   r15 := UnsignedSaturate(a15 - b15)
//
// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}

// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers
// of a and saturates.
//
//   r0 := SignedSaturate(a0 - b0)
//   r1 := SignedSaturate(a1 - b1)
//   ...
//   r15 := SignedSaturate(a15 - b15)
//
// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90)
FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s8(
        vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
// of a and saturates.
//
//   r0 := SignedSaturate(a0 - b0)
//   r1 := SignedSaturate(a1 - b1)
//   ...
//   r7 := SignedSaturate(a7 - b7)
//
// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90)
FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u16(
        vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
}

// Negate packed 8-bit integers in a when the corresponding signed
// 8-bit integer in b is negative, and store the results in dst.
// Element in dst are zeroed out when the corresponding element
// in b is zero.
//
//   for i in 0..15
//     if b[i] < 0
//       r[i] := -a[i]
//     else if b[i] == 0
//       r[i] := 0
//     else
//       r[i] := a[i]
//     fi
//   done
FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
{
    int8x16_t a = vreinterpretq_s8_m128i(_a);
    int8x16_t b = vreinterpretq_s8_m128i(_b);

    // signed shift right: faster than vclt
    // (b < 0) ? 0xFF : 0
    uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));

    // (b == 0) ? 0xFF : 0
#if defined(__aarch64__)
    int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
#else
    int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
#endif

    // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a')
    // based on ltMask
    int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
    // res = masked & (~zeroMask)
    int8x16_t res = vbicq_s8(masked, zeroMask);

    return vreinterpretq_m128i_s8(res);
}

// Negate packed 16-bit integers in a when the corresponding signed
// 16-bit integer in b is negative, and store the results in dst.
// Element in dst are zeroed out when the corresponding element
// in b is zero.
//
//   for i in 0..7
//     if b[i] < 0
//       r[i] := -a[i]
//     else if b[i] == 0
//       r[i] := 0
//     else
//       r[i] := a[i]
//     fi
//   done
FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
{
    int16x8_t a = vreinterpretq_s16_m128i(_a);
    int16x8_t b = vreinterpretq_s16_m128i(_b);

    // signed shift right: faster than vclt
    // (b < 0) ? 0xFFFF : 0
    uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
    // (b == 0) ? 0xFFFF : 0
#if defined(__aarch64__)
    int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
#else
    int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
#endif

    // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
    // 'a') based on ltMask
    int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
    // res = masked & (~zeroMask)
    int16x8_t res = vbicq_s16(masked, zeroMask);
    return vreinterpretq_m128i_s16(res);
}

// Negate packed 32-bit integers in a when the corresponding signed
// 32-bit integer in b is negative, and store the results in dst.
// Element in dst are zeroed out when the corresponding element
// in b is zero.
//
//   for i in 0..3
//     if b[i] < 0
//       r[i] := -a[i]
//     else if b[i] == 0
//       r[i] := 0
//     else
//       r[i] := a[i]
//     fi
//   done
FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
{
    int32x4_t a = vreinterpretq_s32_m128i(_a);
    int32x4_t b = vreinterpretq_s32_m128i(_b);

    // signed shift right: faster than vclt
    // (b < 0) ? 0xFFFFFFFF : 0
    uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));

    // (b == 0) ? 0xFFFFFFFF : 0
#if defined(__aarch64__)
    int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
#else
    int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
#endif

    // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
    // 'a') based on ltMask
    int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
    // res = masked & (~zeroMask)
    int32x4_t res = vbicq_s32(masked, zeroMask);
    return vreinterpretq_m128i_s32(res);
}

// Negate packed 16-bit integers in a when the corresponding signed 16-bit
// integer in b is negative, and store the results in dst. Element in dst are
// zeroed out when the corresponding element in b is zero.
//
//   FOR j := 0 to 3
//      i := j*16
//      IF b[i+15:i] < 0
//        dst[i+15:i] := -(a[i+15:i])
//      ELSE IF b[i+15:i] == 0
//        dst[i+15:i] := 0
//      ELSE
//        dst[i+15:i] := a[i+15:i]
//      FI
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16
FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
{
    int16x4_t a = vreinterpret_s16_m64(_a);
    int16x4_t b = vreinterpret_s16_m64(_b);

    // signed shift right: faster than vclt
    // (b < 0) ? 0xFFFF : 0
    uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));

    // (b == 0) ? 0xFFFF : 0
#if defined(__aarch64__)
    int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
#else
    int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
#endif

    // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a')
    // based on ltMask
    int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
    // res = masked & (~zeroMask)
    int16x4_t res = vbic_s16(masked, zeroMask);

    return vreinterpret_m64_s16(res);
}

// Negate packed 32-bit integers in a when the corresponding signed 32-bit
// integer in b is negative, and store the results in dst. Element in dst are
// zeroed out when the corresponding element in b is zero.
//
//   FOR j := 0 to 1
//      i := j*32
//      IF b[i+31:i] < 0
//        dst[i+31:i] := -(a[i+31:i])
//      ELSE IF b[i+31:i] == 0
//        dst[i+31:i] := 0
//      ELSE
//        dst[i+31:i] := a[i+31:i]
//      FI
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32
FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
{
    int32x2_t a = vreinterpret_s32_m64(_a);
    int32x2_t b = vreinterpret_s32_m64(_b);

    // signed shift right: faster than vclt
    // (b < 0) ? 0xFFFFFFFF : 0
    uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));

    // (b == 0) ? 0xFFFFFFFF : 0
#if defined(__aarch64__)
    int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
#else
    int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
#endif

    // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a')
    // based on ltMask
    int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
    // res = masked & (~zeroMask)
    int32x2_t res = vbic_s32(masked, zeroMask);

    return vreinterpret_m64_s32(res);
}

// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
// in b is negative, and store the results in dst. Element in dst are zeroed out
// when the corresponding element in b is zero.
//
//   FOR j := 0 to 7
//      i := j*8
//      IF b[i+7:i] < 0
//        dst[i+7:i] := -(a[i+7:i])
//      ELSE IF b[i+7:i] == 0
//        dst[i+7:i] := 0
//      ELSE
//        dst[i+7:i] := a[i+7:i]
//      FI
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8
FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
{
    int8x8_t a = vreinterpret_s8_m64(_a);
    int8x8_t b = vreinterpret_s8_m64(_b);

    // signed shift right: faster than vclt
    // (b < 0) ? 0xFF : 0
    uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));

    // (b == 0) ? 0xFF : 0
#if defined(__aarch64__)
    int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
#else
    int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
#endif

    // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a')
    // based on ltMask
    int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
    // res = masked & (~zeroMask)
    int8x8_t res = vbic_s8(masked, zeroMask);

    return vreinterpret_m64_s8(res);
}

// Average packed unsigned 16-bit integers in a and b, and store the results in
// dst.
//
//   FOR j := 0 to 3
//     i := j*16
//     dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16
FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
{
    return vreinterpret_m64_u16(
        vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
}

// Average packed unsigned 8-bit integers in a and b, and store the results in
// dst.
//
//   FOR j := 0 to 7
//     i := j*8
//     dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8
FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
{
    return vreinterpret_m64_u8(
        vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
}

// Average packed unsigned 8-bit integers in a and b, and store the results in
// dst.
//
//   FOR j := 0 to 7
//     i := j*8
//     dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb
#define _m_pavgb(a, b) _mm_avg_pu8(a, b)

// Average packed unsigned 16-bit integers in a and b, and store the results in
// dst.
//
//   FOR j := 0 to 3
//     i := j*16
//     dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw
#define _m_pavgw(a, b) _mm_avg_pu16(a, b)

// Computes the average of the 16 unsigned 8-bit integers in a and the 16
// unsigned 8-bit integers in b and rounds.
//
//   r0 := (a0 + b0) / 2
//   r1 := (a1 + b1) / 2
//   ...
//   r15 := (a15 + b15) / 2
//
// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}

// Computes the average of the 8 unsigned 16-bit integers in a and the 8
// unsigned 16-bit integers in b and rounds.
//
//   r0 := (a0 + b0) / 2
//   r1 := (a1 + b1) / 2
//   ...
//   r7 := (a7 + b7) / 2
//
// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx
FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
{
    return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
                                 vreinterpretq_u16_m128i(b));
}

// Adds the four single-precision, floating-point values of a and b.
//
//   r0 := a0 + b0
//   r1 := a1 + b1
//   r2 := a2 + b2
//   r3 := a3 + b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_f32(
        vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Add packed double-precision (64-bit) floating-point elements in a and b, and
// store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd
FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(
        vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
#else
    double *da = (double *) &a;
    double *db = (double *) &b;
    double c[2];
    c[0] = da[0] + db[0];
    c[1] = da[1] + db[1];
    return vld1q_f32((float32_t *) c);
#endif
}

// Add 64-bit integers a and b, and store the result in dst.
//
//   dst[63:0] := a[63:0] + b[63:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64
FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
{
    return vreinterpret_m64_s64(
        vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
}

// adds the scalar single-precision floating point values of a and b.
// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
{
    float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
    float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
    // the upper values in the result must be the remnants of <a>.
    return vreinterpretq_m128_f32(vaddq_f32(a, value));
}

// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
// unsigned 32-bit integers in b.
// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s64(
        vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
}

// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
// unsigned 32-bit integers in b.
//
//   r0 := a0 + b0
//   r1 := a1 + b1
//   r2 := a2 + b2
//   r3 := a3 + b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
// unsigned 16-bit integers in b.
// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
// unsigned 8-bit integers in b.
// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s8(
        vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
// and saturates.
//
//   r0 := SignedSaturate(a0 + b0)
//   r1 := SignedSaturate(a1 + b1)
//   ...
//   r7 := SignedSaturate(a7 + b7)
//
// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

// Add packed signed 8-bit integers in a and b using saturation, and store the
// results in dst.
//
//   FOR j := 0 to 15
//     i := j*8
//     dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] )
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8
FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s8(
        vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
// b and saturates..
// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}

// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
// unsigned 16-bit integers from b.
//
//   r0 := (a0 * b0)[15:0]
//   r1 := (a1 * b1)[15:0]
//   ...
//   r7 := (a7 * b7)[15:0]
//
// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
// unsigned 32-bit integers from b.
// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Multiply the packed unsigned 16-bit integers in a and b, producing
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
// integers in dst.
//
//   FOR j := 0 to 3
//      i := j*16
//      tmp[31:0] := a[i+15:i] * b[i+15:i]
//      dst[i+15:i] := tmp[31:16]
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw
#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)

// Multiplies the four single-precision, floating-point values of a and b.
//
//   r0 := a0 * b0
//   r1 := a1 * b1
//   r2 := a2 * b2
//   r3 := a3 * b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_f32(
        vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Multiply the lower single-precision (32-bit) floating-point element in a and
// b, store the result in the lower element of dst, and copy the upper 3 packed
// elements from a to the upper elements of dst.
//
//   dst[31:0] := a[31:0] * b[31:0]
//   dst[127:32] := a[127:32]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss
FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_mul_ps(a, b));
}

// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
// a and b, and store the unsigned 64-bit results in dst.
//
//   r0 :=  (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
//   r1 :=  (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
{
    // vmull_u32 upcasts instead of masking, so we downcast.
    uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
    uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
    return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
}

// Multiply the low unsigned 32-bit integers from a and b, and store the
// unsigned 64-bit result in dst.
//
//   dst[63:0] := a[31:0] * b[31:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32
FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
{
    return vreinterpret_m64_u64(vget_low_u64(
        vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
}

// Multiply the low signed 32-bit integers from each packed 64-bit element in
// a and b, and store the signed 64-bit results in dst.
//
//   r0 :=  (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
//   r1 :=  (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
{
    // vmull_s32 upcasts instead of masking, so we downcast.
    int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
    int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
    return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
}

// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
// integers from b.
//
//   r0 := (a0 * b0) + (a1 * b1)
//   r1 := (a2 * b2) + (a3 * b3)
//   r2 := (a4 * b4) + (a5 * b5)
//   r3 := (a6 * b6) + (a7 * b7)
// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
{
    int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
                              vget_low_s16(vreinterpretq_s16_m128i(b)));
    int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
                               vget_high_s16(vreinterpretq_s16_m128i(b)));

    int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
    int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));

    return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
}

// Multiply packed signed 16-bit integers in a and b, producing intermediate
// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
// the packed 16-bit integers in dst.
//
//   r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
//   r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
//   r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
//   ...
//   r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
{
    // Has issues due to saturation
    // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));

    // Multiply
    int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
                                 vget_low_s16(vreinterpretq_s16_m128i(b)));
    int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
                                 vget_high_s16(vreinterpretq_s16_m128i(b)));

    // Rounding narrowing shift right
    // narrow = (int16_t)((mul + 16384) >> 15);
    int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
    int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);

    // Join together
    return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
}

// Vertically multiply each unsigned 8-bit integer from a with the corresponding
// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
// and pack the saturated results in dst.
//
//   FOR j := 0 to 7
//      i := j*16
//      dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
//      a[i+7:i]*b[i+7:i] )
//   ENDFOR
FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
{
#if defined(__aarch64__)
    uint8x16_t a = vreinterpretq_u8_m128i(_a);
    int8x16_t b = vreinterpretq_s8_m128i(_b);
    int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
                             vmovl_s8(vget_low_s8(b)));
    int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
                             vmovl_s8(vget_high_s8(b)));
    return vreinterpretq_m128i_s16(
        vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
#else
    // This would be much simpler if x86 would choose to zero extend OR sign
    // extend, not both. This could probably be optimized better.
    uint16x8_t a = vreinterpretq_u16_m128i(_a);
    int16x8_t b = vreinterpretq_s16_m128i(_b);

    // Zero extend a
    int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
    int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));

    // Sign extend by shifting left then shifting right.
    int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
    int16x8_t b_odd = vshrq_n_s16(b, 8);

    // multiply
    int16x8_t prod1 = vmulq_s16(a_even, b_even);
    int16x8_t prod2 = vmulq_s16(a_odd, b_odd);

    // saturated add
    return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
#endif
}

// Computes the fused multiple add product of 32-bit floating point numbers.
//
// Return Value
// Multiplies A and B, and adds C to the temporary result before returning it.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd
FORCE_INLINE __m128 _mm_fmadd_ps(__m128 a, __m128 b, __m128 c)
{
#if defined(__aarch64__)
    return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(c),
                                            vreinterpretq_f32_m128(b),
                                            vreinterpretq_f32_m128(a)));
#else
    return _mm_add_ps(_mm_mul_ps(a, b), c);
#endif
}

// Alternatively add and subtract packed single-precision (32-bit)
// floating-point elements in a to/from packed elements in b, and store the
// results in dst.
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps
FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
{
    __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f};
    return _mm_fmadd_ps(b, mask, a);
}

// Compute the absolute differences of packed unsigned 8-bit integers in a and
// b, then horizontally sum each consecutive 8 differences to produce two
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
// 16 bits of 64-bit elements in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8
FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
{
    uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
    uint16_t r0 = t[0] + t[1] + t[2] + t[3];
    uint16_t r4 = t[4] + t[5] + t[6] + t[7];
    uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0);
    return (__m128i) vsetq_lane_u16(r4, r, 4);
}

// Compute the absolute differences of packed unsigned 8-bit integers in a and
// b, then horizontally sum each consecutive 8 differences to produce four
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
// 16 bits of dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8
FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
{
    uint16x4_t t =
        vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
    uint16_t r0 = t[0] + t[1] + t[2] + t[3];
    return vreinterpret_m64_u16(vset_lane_u16(r0, vdup_n_u16(0), 0));
}

// Compute the absolute differences of packed unsigned 8-bit integers in a and
// b, then horizontally sum each consecutive 8 differences to produce four
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
// 16 bits of dst.
//
//   FOR j := 0 to 7
//      i := j*8
//      tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i])
//   ENDFOR
//   dst[15:0] := tmp[7:0] + tmp[15:8] + tmp[23:16] + tmp[31:24] + tmp[39:32] +
//   tmp[47:40] + tmp[55:48] + tmp[63:56] dst[63:16] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_psadbw
#define _m_psadbw(a, b) _mm_sad_pu8(a, b)

// Divides the four single-precision, floating-point values of a and b.
//
//   r0 := a0 / b0
//   r1 := a1 / b1
//   r2 := a2 / b2
//   r3 := a3 / b3
//
// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128_f32(
        vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#else
    float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b));
    float32x4_t recip1 =
        vmulq_f32(recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b)));
    return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip1));
#endif
}

// Divides the scalar single-precision floating point value of a by b.
// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
{
    float32_t value =
        vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
    return vreinterpretq_m128_f32(
        vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
}

// Computes the approximations of reciprocals of the four single-precision,
// floating-point values of a.
// https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
{
    float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
    recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
    return vreinterpretq_m128_f32(recip);
}

// Compute the approximate reciprocal of the lower single-precision (32-bit)
// floating-point element in a, store the result in the lower element of dst,
// and copy the upper 3 packed elements from a to the upper elements of dst. The
// maximum relative error for this approximation is less than 1.5*2^-12.
//
//   dst[31:0] := (1.0 / a[31:0])
//   dst[127:32] := a[127:32]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss
FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
{
    return _mm_move_ss(a, _mm_rcp_ps(a));
}

// Computes the approximations of square roots of the four single-precision,
// floating-point values of a. First computes reciprocal square roots and then
// reciprocals of the four values.
//
//   r0 := sqrt(a0)
//   r1 := sqrt(a1)
//   r2 := sqrt(a2)
//   r3 := sqrt(a3)
//
// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
{
#if defined(__aarch64__)
    return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
#else
    float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
    float32x4_t sq = vrecpeq_f32(recipsq);
    // ??? use step versions of both sqrt and recip for better accuracy?
    return vreinterpretq_m128_f32(sq);
#endif
}

// Computes the approximation of the square root of the scalar single-precision
// floating point value of in.
// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
{
    float32_t value =
        vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
    return vreinterpretq_m128_f32(
        vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
}

// Computes the approximations of the reciprocal square roots of the four
// single-precision floating point values of in.
// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
{
    return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in)));
}

// Compute the approximate reciprocal square root of the lower single-precision
// (32-bit) floating-point element in a, store the result in the lower element
// of dst, and copy the upper 3 packed elements from a to the upper elements of
// dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
{
    return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
}

// Compare packed signed 16-bit integers in a and b, and store packed maximum
// values in dst.
//
//   FOR j := 0 to 3
//      i := j*16
//      dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
{
    return vreinterpret_m64_s16(
        vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
}

// Compare packed signed 16-bit integers in a and b, and store packed maximum
// values in dst.
//
//   FOR j := 0 to 3
//      i := j*16
//      dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)

// Computes the maximums of the four single-precision, floating-point values of
// a and b.
// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
{
#if SSE2NEON_PRECISE_MINMAX
    float32x4_t _a = vreinterpretq_f32_m128(a);
    float32x4_t _b = vreinterpretq_f32_m128(b);
    return vbslq_f32(vcltq_f32(_b, _a), _a, _b);
#else
    return vreinterpretq_m128_f32(
        vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#endif
}

// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
// values in dst.
//
//   FOR j := 0 to 7
//      i := j*8
//      dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
{
    return vreinterpret_m64_u8(
        vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
}

// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
// values in dst.
//
//   FOR j := 0 to 7
//      i := j*8
//      dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
#define _m_pmaxub(a, b) _mm_max_pu8(a, b)

// Compare packed signed 16-bit integers in a and b, and store packed minimum
// values in dst.
//
//   FOR j := 0 to 3
//      i := j*16
//      dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
{
    return vreinterpret_m64_s16(
        vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
}

// Compare packed signed 16-bit integers in a and b, and store packed minimum
// values in dst.
//
//   FOR j := 0 to 3
//      i := j*16
//      dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
#define _m_pminsw(a, b) _mm_min_pi16(a, b)

// Computes the minima of the four single-precision, floating-point values of a
// and b.
// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
{
#if SSE2NEON_PRECISE_MINMAX
    float32x4_t _a = vreinterpretq_f32_m128(a);
    float32x4_t _b = vreinterpretq_f32_m128(b);
    return vbslq_f32(vcltq_f32(_a, _b), _a, _b);
#else
    return vreinterpretq_m128_f32(
        vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#endif
}

// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
// values in dst.
//
//   FOR j := 0 to 7
//      i := j*8
//      dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
{
    return vreinterpret_m64_u8(
        vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
}

// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
// values in dst.
//
//   FOR j := 0 to 7
//      i := j*8
//      dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
#define _m_pminub(a, b) _mm_min_pu8(a, b)

// Computes the maximum of the two lower scalar single-precision floating point
// values of a and b.
// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
{
    float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
    return vreinterpretq_m128_f32(
        vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
}

// Computes the minimum of the two lower scalar single-precision floating point
// values of a and b.
// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
{
    float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
    return vreinterpretq_m128_f32(
        vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
}

// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
// 16 unsigned 8-bit integers from b.
// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx
FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}

// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
// 16 unsigned 8-bit integers from b.
// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
}

// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
// signed 16-bit integers from b.
// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

// Compare packed signed 8-bit integers in a and b, and store packed maximum
// values in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8
FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s8(
        vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
// signed 16-bit integers from b.
// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

// epi versions of min/max
// Computes the pariwise maximums of the four signed 32-bit integer values of a
// and b.
//
// A 128-bit parameter that can be defined with the following equations:
//   r0 := (a0 > b0) ? a0 : b0
//   r1 := (a1 > b1) ? a1 : b1
//   r2 := (a2 > b2) ? a2 : b2
//   r3 := (a3 > b3) ? a3 : b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Computes the pariwise minima of the four signed 32-bit integer values of a
// and b.
//
// A 128-bit parameter that can be defined with the following equations:
//   r0 := (a0 < b0) ? a0 : b0
//   r1 := (a1 < b1) ? a1 : b1
//   r2 := (a2 < b2) ? a2 : b2
//   r3 := (a3 < b3) ? a3 : b3
//
// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s32(
        vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
// values in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u32(
        vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
}

// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
// values in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u32(
        vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
}

// Multiply the packed unsigned 16-bit integers in a and b, producing
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
// integers in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16
FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
{
    return vreinterpret_m64_u16(vshrn_n_u32(
        vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
}

// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
// integers from b.
//
//   r0 := (a0 * b0)[31:16]
//   r1 := (a1 * b1)[31:16]
//   ...
//   r7 := (a7 * b7)[31:16]
//
// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
{
    /* FIXME: issue with large values because of result saturation */
    // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
    // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
    // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
    int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
    int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
    int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
    int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
    int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
    int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
    uint16x8x2_t r =
        vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
    return vreinterpretq_m128i_u16(r.val[1]);
}

// Computes pairwise add of each argument as single-precision, floating-point
// values a and b.
// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128_f32(
        vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#else
    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_f32(
        vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
#endif
}

// Computes pairwise add of each argument as a 16-bit signed or unsigned integer
// values a and b.
FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
{
    int16x8_t a = vreinterpretq_s16_m128i(_a);
    int16x8_t b = vreinterpretq_s16_m128i(_b);
#if defined(__aarch64__)
    return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
#else
    return vreinterpretq_m128i_s16(
        vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
                     vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
#endif
}

// Horizontally substract adjacent pairs of single-precision (32-bit)
// floating-point elements in a and b, and pack the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps
FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128_f32(vsubq_f32(
        vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)),
        vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b))));
#else
    float32x4x2_t c =
        vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b));
    return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
#endif
}

// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
// signed 16-bit results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16
FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
{
    return vreinterpret_m64_s16(
        vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
}

// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
// signed 32-bit results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32
FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
{
    return vreinterpret_m64_s32(
        vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
}

// Computes pairwise difference of each argument as a 16-bit signed or unsigned
// integer values a and b.
FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
{
    int32x4_t a = vreinterpretq_s32_m128i(_a);
    int32x4_t b = vreinterpretq_s32_m128i(_b);
    // Interleave using vshrn/vmovn
    // [a0|a2|a4|a6|b0|b2|b4|b6]
    // [a1|a3|a5|a7|b1|b3|b5|b7]
    int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
    int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
    // Subtract
    return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
}

// Computes saturated pairwise sub of each argument as a 16-bit signed
// integer values a and b.
FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
{
#if defined(__aarch64__)
    int16x8_t a = vreinterpretq_s16_m128i(_a);
    int16x8_t b = vreinterpretq_s16_m128i(_b);
    return vreinterpretq_s64_s16(
        vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
#else
    int32x4_t a = vreinterpretq_s32_m128i(_a);
    int32x4_t b = vreinterpretq_s32_m128i(_b);
    // Interleave using vshrn/vmovn
    // [a0|a2|a4|a6|b0|b2|b4|b6]
    // [a1|a3|a5|a7|b1|b3|b5|b7]
    int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
    int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
    // Saturated add
    return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
#endif
}

// Computes saturated pairwise difference of each argument as a 16-bit signed
// integer values a and b.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16
FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
{
#if defined(__aarch64__)
    int16x8_t a = vreinterpretq_s16_m128i(_a);
    int16x8_t b = vreinterpretq_s16_m128i(_b);
    return vreinterpretq_s64_s16(
        vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
#else
    int32x4_t a = vreinterpretq_s32_m128i(_a);
    int32x4_t b = vreinterpretq_s32_m128i(_b);
    // Interleave using vshrn/vmovn
    // [a0|a2|a4|a6|b0|b2|b4|b6]
    // [a1|a3|a5|a7|b1|b3|b5|b7]
    int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
    int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
    // Saturated subtract
    return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
#endif
}

// Computes pairwise add of each argument as a 32-bit signed or unsigned integer
// values a and b.
FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
{
    int32x4_t a = vreinterpretq_s32_m128i(_a);
    int32x4_t b = vreinterpretq_s32_m128i(_b);
    return vreinterpretq_m128i_s32(
        vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
                     vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
}

// Computes pairwise difference of each argument as a 32-bit signed or unsigned
// integer values a and b.
FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
{
    int64x2_t a = vreinterpretq_s64_m128i(_a);
    int64x2_t b = vreinterpretq_s64_m128i(_b);
    // Interleave using vshrn/vmovn
    // [a0|a2|b0|b2]
    // [a1|a2|b1|b3]
    int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
    int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
    // Subtract
    return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
}

// Kahan summation for accurate summation of floating-point numbers.
// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html
FORCE_INLINE void sse2neon_kadd_f32(float *sum, float *c, float y)
{
    y -= *c;
    float t = *sum + y;
    *c = (t - *sum) - y;
    *sum = t;
}

// Conditionally multiply the packed single-precision (32-bit) floating-point
// elements in a and b using the high 4 bits in imm8, sum the four products,
// and conditionally store the sum in dst using the low 4 bits of imm.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps
FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
{
#if defined(__aarch64__)
    /* shortcuts */
    if (imm == 0xFF) {
        return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b)));
    }
    if (imm == 0x7F) {
        float32x4_t m = _mm_mul_ps(a, b);
        m[3] = 0;
        return _mm_set1_ps(vaddvq_f32(m));
    }
#endif

    float s = 0, c = 0;
    float32x4_t f32a = vreinterpretq_f32_m128(a);
    float32x4_t f32b = vreinterpretq_f32_m128(b);

    /* To improve the accuracy of floating-point summation, Kahan algorithm
     * is used for each operation.
     */
    if (imm & (1 << 4))
        sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]);
    if (imm & (1 << 5))
        sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]);
    if (imm & (1 << 6))
        sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]);
    if (imm & (1 << 7))
        sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]);
    s += c;

    float32x4_t res = {
        (imm & 0x1) ? s : 0,
        (imm & 0x2) ? s : 0,
        (imm & 0x4) ? s : 0,
        (imm & 0x8) ? s : 0,
    };
    return vreinterpretq_m128_f32(res);
}

/* Compare operations */

// Compares for less than
// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_u32(
        vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Compares for less than
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100)
FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmplt_ps(a, b));
}

// Compares for greater than.
//
//   r0 := (a0 > b0) ? 0xffffffff : 0x0
//   r1 := (a1 > b1) ? 0xffffffff : 0x0
//   r2 := (a2 > b2) ? 0xffffffff : 0x0
//   r3 := (a3 > b3) ? 0xffffffff : 0x0
//
// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_u32(
        vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Compares for greater than.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100)
FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
}

// Compares for greater than or equal.
// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_u32(
        vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Compares for greater than or equal.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100)
FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmpge_ps(a, b));
}

// Compares for less than or equal.
//
//   r0 := (a0 <= b0) ? 0xffffffff : 0x0
//   r1 := (a1 <= b1) ? 0xffffffff : 0x0
//   r2 := (a2 <= b2) ? 0xffffffff : 0x0
//   r3 := (a3 <= b3) ? 0xffffffff : 0x0
//
// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_u32(
        vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Compares for less than or equal.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100)
FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmple_ps(a, b));
}

// Compares for equality.
// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_u32(
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
}

// Compares for equality.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100)
FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
}

// Compares for inequality.
// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
{
    return vreinterpretq_m128_u32(vmvnq_u32(
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
}

// Compares for inequality.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100)
FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
}

// Compares for not greater than or equal.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100)
FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
{
    return _mm_cmplt_ps(a, b);
}

// Compares for not greater than or equal.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100)
FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
{
    return _mm_cmplt_ss(a, b);
}

// Compares for not greater than.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100)
FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
{
    return _mm_cmple_ps(a, b);
}

// Compares for not greater than.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
{
    return _mm_cmple_ss(a, b);
}

// Compares for not less than or equal.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100)
FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
{
    return _mm_cmpgt_ps(a, b);
}

// Compares for not less than or equal.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
{
    return _mm_cmpgt_ss(a, b);
}

// Compares for not less than.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100)
FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
{
    return _mm_cmpge_ps(a, b);
}

// Compares for not less than.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100)
FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
{
    return _mm_cmpge_ss(a, b);
}

// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
// unsigned 8-bit integers in b for equality.
// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
// unsigned 16-bit integers in b for equality.
// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u16(
        vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

// Compare packed 32-bit integers in a and b for equality, and store the results
// in dst
FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u32(
        vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Compare packed 64-bit integers in a and b for equality, and store the results
// in dst
FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_u64(
        vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
#else
    // ARMv7 lacks vceqq_u64
    // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
    uint32x4_t cmp =
        vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
    uint32x4_t swapped = vrev64q_u32(cmp);
    return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
#endif
}

// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
// in b for lesser than.
// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
// in b for greater than.
//
//   r0 := (a0 > b0) ? 0xff : 0x0
//   r1 := (a1 > b1) ? 0xff : 0x0
//   ...
//   r15 := (a15 > b15) ? 0xff : 0x0
//
// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
}

// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
// in b for less than.
//
//   r0 := (a0 < b0) ? 0xffff : 0x0
//   r1 := (a1 < b1) ? 0xffff : 0x0
//   ...
//   r7 := (a7 < b7) ? 0xffff : 0x0
//
// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx
FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u16(
        vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}

// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
// in b for greater than.
//
//   r0 := (a0 > b0) ? 0xffff : 0x0
//   r1 := (a1 > b1) ? 0xffff : 0x0
//   ...
//   r7 := (a7 > b7) ? 0xffff : 0x0
//
// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u16(
        vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
}


// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
// in b for less than.
// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u32(
        vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
// in b for greater than.
// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u32(
        vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
}

// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
// in b for greater than.
FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_u64(
        vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
#else
    // ARMv7 lacks vcgtq_s64.
    // This is based off of Clang's SSE2 polyfill:
    // (a > b) -> ((a_hi > b_hi) || (a_lo > b_lo && a_hi == b_hi))

    // Mask the sign bit out since we need a signed AND an unsigned comparison
    // and it is ugly to try and split them.
    int32x4_t mask = vreinterpretq_s32_s64(vdupq_n_s64(0x80000000ull));
    int32x4_t a_mask = veorq_s32(vreinterpretq_s32_m128i(a), mask);
    int32x4_t b_mask = veorq_s32(vreinterpretq_s32_m128i(b), mask);
    // Check if a > b
    int64x2_t greater = vreinterpretq_s64_u32(vcgtq_s32(a_mask, b_mask));
    // Copy upper mask to lower mask
    // a_hi > b_hi
    int64x2_t gt_hi = vshrq_n_s64(greater, 63);
    // Copy lower mask to upper mask
    // a_lo > b_lo
    int64x2_t gt_lo = vsliq_n_s64(greater, greater, 32);
    // Compare for equality
    int64x2_t equal = vreinterpretq_s64_u32(vceqq_s32(a_mask, b_mask));
    // Copy upper mask to lower mask
    // a_hi == b_hi
    int64x2_t eq_hi = vshrq_n_s64(equal, 63);
    // a_hi > b_hi || (a_lo > b_lo && a_hi == b_hi)
    int64x2_t ret = vorrq_s64(gt_hi, vandq_s64(gt_lo, eq_hi));
    return vreinterpretq_m128i_s64(ret);
#endif
}

// Compares the four 32-bit floats in a and b to check if any values are NaN.
// Ordered compare between each value returns true for "orderable" and false for
// "not orderable" (NaN).
// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
// also:
// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
{
    // Note: NEON does not have ordered compare builtin
    // Need to compare a eq a and b eq b to check for NaN
    // Do AND of results to get final
    uint32x4_t ceqaa =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t ceqbb =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
}

// Compares for ordered.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100)
FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmpord_ps(a, b));
}

// Compares for unordered.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100)
FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
{
    uint32x4_t f32a =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t f32b =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
}

// Compares for unordered.
// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100)
FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
{
    return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
}

// Compares the lower single-precision floating point scalar values of a and b
// using a less than operation. :
// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
// note!! The documentation on MSDN is incorrect!  If either of the values is a
// NAN the docs say you will get a one, but in fact, it will return a zero!!
FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
{
    uint32x4_t a_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t b_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
    uint32x4_t a_lt_b =
        vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
    return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1 : 0;
}

// Compares the lower single-precision floating point scalar values of a and b
// using a greater than operation. :
// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
{
    // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a),
    // vreinterpretq_f32_m128(b)), 0);
    uint32x4_t a_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t b_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
    uint32x4_t a_gt_b =
        vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
    return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0;
}

// Compares the lower single-precision floating point scalar values of a and b
// using a less than or equal operation. :
// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
{
    // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a),
    // vreinterpretq_f32_m128(b)), 0);
    uint32x4_t a_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t b_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
    uint32x4_t a_le_b =
        vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
    return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1 : 0;
}

// Compares the lower single-precision floating point scalar values of a and b
// using a greater than or equal operation. :
// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
{
    // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a),
    // vreinterpretq_f32_m128(b)), 0);
    uint32x4_t a_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t b_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
    uint32x4_t a_ge_b =
        vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
    return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0;
}

// Compares the lower single-precision floating point scalar values of a and b
// using an equality operation. :
// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
{
    // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
    // vreinterpretq_f32_m128(b)), 0);
    uint32x4_t a_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t b_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
    uint32x4_t a_eq_b =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
    return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1 : 0;
}

// Compares the lower single-precision floating point scalar values of a and b
// using an inequality operation. :
// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
{
    // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
    // vreinterpretq_f32_m128(b)), 0);
    uint32x4_t a_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
    uint32x4_t b_not_nan =
        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
    uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
    uint32x4_t a_neq_b = vmvnq_u32(
        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
    return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0;
}

// according to the documentation, these intrinsics behave the same as the
// non-'u' versions.  We'll just alias them here.
#define _mm_ucomilt_ss _mm_comilt_ss
#define _mm_ucomile_ss _mm_comile_ss
#define _mm_ucomigt_ss _mm_comigt_ss
#define _mm_ucomige_ss _mm_comige_ss
#define _mm_ucomieq_ss _mm_comieq_ss
#define _mm_ucomineq_ss _mm_comineq_ss

/* Conversions */

// Convert packed signed 32-bit integers in b to packed single-precision
// (32-bit) floating-point elements, store the results in the lower 2 elements
// of dst, and copy the upper 2 packed elements from a to the upper elements of
// dst.
//
//   dst[31:0] := Convert_Int32_To_FP32(b[31:0])
//   dst[63:32] := Convert_Int32_To_FP32(b[63:32])
//   dst[95:64] := a[95:64]
//   dst[127:96] := a[127:96]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps
FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
{
    return vreinterpretq_m128_f32(
        vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
                     vget_high_f32(vreinterpretq_f32_m128(a))));
}

// Convert the signed 32-bit integer b to a single-precision (32-bit)
// floating-point element, store the result in the lower element of dst, and
// copy the upper 3 packed elements from a to the upper elements of dst.
//
//   dst[31:0] := Convert_Int32_To_FP32(b[31:0])
//   dst[127:32] := a[127:32]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss
FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
{
    __m128 ret = a;
    return vreinterpretq_m128_f32(
        vsetq_lane_f32((float) b, vreinterpretq_f32_m128(ret), 0));
}

// Convert the lower single-precision (32-bit) floating-point element in a to a
// 32-bit integer, and store the result in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si
FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
{
#if defined(__aarch64__)
    return vgetq_lane_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a)), 0);
#else
    float32_t data = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
    float32_t diff = data - floor(data);
    if (diff > 0.5)
        return (int32_t) ceil(data);
    if (diff == 0.5) {
        int32_t f = (int32_t) floor(data);
        int32_t c = (int32_t) ceil(data);
        return c & 1 ? f : c;
    }
    return (int32_t) floor(data);
#endif
}

// Convert packed 16-bit integers in a to packed single-precision (32-bit)
// floating-point elements, and store the results in dst.
//
//   FOR j := 0 to 3
//      i := j*16
//      m := j*32
//      dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps
FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
{
    return vreinterpretq_m128_f32(
        vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
}

// Convert packed 32-bit integers in b to packed single-precision (32-bit)
// floating-point elements, store the results in the lower 2 elements of dst,
// and copy the upper 2 packed elements from a to the upper elements of dst.
//
//   dst[31:0] := Convert_Int32_To_FP32(b[31:0])
//   dst[63:32] := Convert_Int32_To_FP32(b[63:32])
//   dst[95:64] := a[95:64]
//   dst[127:96] := a[127:96]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps
FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
{
    return vreinterpretq_m128_f32(
        vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
                     vget_high_f32(vreinterpretq_f32_m128(a))));
}

// Convert packed signed 32-bit integers in a to packed single-precision
// (32-bit) floating-point elements, store the results in the lower 2 elements
// of dst, then covert the packed signed 32-bit integers in b to
// single-precision (32-bit) floating-point element, and store the results in
// the upper 2 elements of dst.
//
//   dst[31:0] := Convert_Int32_To_FP32(a[31:0])
//   dst[63:32] := Convert_Int32_To_FP32(a[63:32])
//   dst[95:64] := Convert_Int32_To_FP32(b[31:0])
//   dst[127:96] := Convert_Int32_To_FP32(b[63:32])
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps
FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
{
    return vreinterpretq_m128_f32(vcvtq_f32_s32(
        vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
}

// Convert the lower packed 8-bit integers in a to packed single-precision
// (32-bit) floating-point elements, and store the results in dst.
//
//   FOR j := 0 to 3
//      i := j*8
//      m := j*32
//      dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps
FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
{
    return vreinterpretq_m128_f32(vcvtq_f32_s32(
        vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
}

// Convert packed unsigned 16-bit integers in a to packed single-precision
// (32-bit) floating-point elements, and store the results in dst.
//
//   FOR j := 0 to 3
//      i := j*16
//      m := j*32
//      dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps
FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
{
    return vreinterpretq_m128_f32(
        vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
}

// Convert the lower packed unsigned 8-bit integers in a to packed
// single-precision (32-bit) floating-point elements, and store the results in
// dst.
//
//   FOR j := 0 to 3
//      i := j*8
//      m := j*32
//      dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps
FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
{
    return vreinterpretq_m128_f32(vcvtq_f32_u32(
        vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
}

// Converts the four single-precision, floating-point values of a to signed
// 32-bit integer values using truncate.
// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
{
    return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
}

// Converts the four signed 32-bit integer values of a to single-precision,
// floating-point values
// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
{
    return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
}

// Converts the four unsigned 8-bit integers in the lower 16 bits to four
// unsigned 32-bit integers.
FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
{
    uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);    /* xxxx xxxx xxxx DCBA */
    uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
    return vreinterpretq_m128i_u16(u16x8);
}

// Converts the four unsigned 8-bit integers in the lower 32 bits to four
// unsigned 32-bit integers.
// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
{
    uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx DCBA */
    uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0D0C 0B0A */
    uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
    return vreinterpretq_m128i_u32(u32x4);
}

// Converts the two unsigned 8-bit integers in the lower 16 bits to two
// unsigned 64-bit integers.
FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
{
    uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx xxBA */
    uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0x0x 0B0A */
    uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
    uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
    return vreinterpretq_m128i_u64(u64x2);
}

// Converts the four unsigned 8-bit integers in the lower 16 bits to four
// unsigned 32-bit integers.
FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
{
    int8x16_t s8x16 = vreinterpretq_s8_m128i(a);    /* xxxx xxxx xxxx DCBA */
    int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
    return vreinterpretq_m128i_s16(s16x8);
}

// Converts the four unsigned 8-bit integers in the lower 32 bits to four
// unsigned 32-bit integers.
FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
{
    int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx DCBA */
    int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0D0C 0B0A */
    int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
    return vreinterpretq_m128i_s32(s32x4);
}

// Converts the two signed 8-bit integers in the lower 32 bits to four
// signed 64-bit integers.
FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
{
    int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx xxBA */
    int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0x0x 0B0A */
    int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
    int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
    return vreinterpretq_m128i_s64(s64x2);
}

// Converts the four signed 16-bit integers in the lower 64 bits to four signed
// 32-bit integers.
FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
{
    return vreinterpretq_m128i_s32(
        vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
}

// Converts the two signed 16-bit integers in the lower 32 bits two signed
// 32-bit integers.
FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
{
    int16x8_t s16x8 = vreinterpretq_s16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
    int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
    int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
    return vreinterpretq_m128i_s64(s64x2);
}

// Converts the four unsigned 16-bit integers in the lower 64 bits to four
// unsigned 32-bit integers.
FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
{
    return vreinterpretq_m128i_u32(
        vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
}

// Converts the two unsigned 16-bit integers in the lower 32 bits to two
// unsigned 64-bit integers.
FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
{
    uint16x8_t u16x8 = vreinterpretq_u16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
    uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
    uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
    return vreinterpretq_m128i_u64(u64x2);
}

// Converts the two unsigned 32-bit integers in the lower 64 bits to two
// unsigned 64-bit integers.
FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
{
    return vreinterpretq_m128i_u64(
        vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
}

// Converts the two signed 32-bit integers in the lower 64 bits to two signed
// 64-bit integers.
FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
{
    return vreinterpretq_m128i_s64(
        vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
}

// Converts the four single-precision, floating-point values of a to signed
// 32-bit integer values.
//
//   r0 := (int) a0
//   r1 := (int) a1
//   r2 := (int) a2
//   r3 := (int) a3
//
// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
// does not support! It is supported on ARMv8-A however.
FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
#else
    uint32x4_t signmask = vdupq_n_u32(0x80000000);
    float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
                                 vdupq_n_f32(0.5f)); /* +/- 0.5 */
    int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
        vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
    int32x4_t r_trunc =
        vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
    int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
        vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
    int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
                                 vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
    float32x4_t delta = vsubq_f32(
        vreinterpretq_f32_m128(a),
        vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
    uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */
    return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal));
#endif
}

// Copy the lower 32-bit integer in a to dst.
//
//   dst[31:0] := a[31:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32
FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
{
    return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
}

// Copy the lower 64-bit integer in a to dst.
//
//   dst[63:0] := a[63:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64
FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
{
    return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
}

// Copy the lower 64-bit integer in a to dst.
//
//   dst[63:0] := a[63:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)

// Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
// zero extending the upper bits.
//
//   r0 := a
//   r1 := 0x0
//   r2 := 0x0
//   r3 := 0x0
//
// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
{
    return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
}

// Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
// zero extending the upper bits.
//
//   r0 := a
//   r1 := 0x0
FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
{
    return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
}

// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
// compilation and does not generate any instructions, thus it has zero latency.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd
FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
{
    return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
}

// Applies a type cast to reinterpret four 32-bit floating point values passed
// in as a 128-bit parameter as packed 32-bit integers.
// https://msdn.microsoft.com/en-us/library/bb514099.aspx
FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
{
    return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
}

// Applies a type cast to reinterpret four 32-bit integers passed in as a
// 128-bit parameter as packed 32-bit floating point values.
// https://msdn.microsoft.com/en-us/library/bb514029.aspx
FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
{
    return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
}

// Loads 128-bit value. :
// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
{
    return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
}

// Load a double-precision (64-bit) floating-point element from memory into both
// elements of dst.
//
//   dst[63:0] := MEM[mem_addr+63:mem_addr]
//   dst[127:64] := MEM[mem_addr+63:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd
FORCE_INLINE __m128d _mm_load1_pd(const double *p)
{
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
#else
    return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
#endif
}

// Load a double-precision (64-bit) floating-point element from memory into the
// upper element of dst, and copy the lower element from a to dst. mem_addr does
// not need to be aligned on any particular boundary.
//
//   dst[63:0] := a[63:0]
//   dst[127:64] := MEM[mem_addr+63:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd
FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
{
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(
        vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
#else
    return vreinterpretq_m128d_f32(vcombine_f32(
        vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
#endif
}

// Load a double-precision (64-bit) floating-point element from memory into both
// elements of dst.
//
//   dst[63:0] := MEM[mem_addr+63:mem_addr]
//   dst[127:64] := MEM[mem_addr+63:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
#define _mm_load_pd1 _mm_load1_pd

// Load a double-precision (64-bit) floating-point element from memory into both
// elements of dst.
//
//   dst[63:0] := MEM[mem_addr+63:mem_addr]
//   dst[127:64] := MEM[mem_addr+63:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd
#define _mm_loaddup_pd _mm_load1_pd

// Loads 128-bit value. :
// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
{
    return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
}

// Load unaligned 32-bit integer from memory into the first element of dst.
//
//   dst[31:0] := MEM[mem_addr+31:mem_addr]
//   dst[MAX:32] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32
FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
{
    return vreinterpretq_m128i_s32(
        vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
}

// Convert packed double-precision (64-bit) floating-point elements in a to
// packed single-precision (32-bit) floating-point elements, and store the
// results in dst.
//
//   FOR j := 0 to 1
//     i := 32*j
//     k := 64*j
//     dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k])
//   ENDFOR
//   dst[127:64] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps
FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
{
#if defined(__aarch64__)
    float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
    return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
#else
    float a0 = (float) ((double *) &a)[0];
    float a1 = (float) ((double *) &a)[1];
    return _mm_set_ps(0, 0, a1, a0);
#endif
}

// Copy the lower double-precision (64-bit) floating-point element of a to dst.
//
//   dst[63:0] := a[63:0]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64
FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
{
#if defined(__aarch64__)
    return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
#else
    return ((double *) &a)[0];
#endif
}

// Convert packed single-precision (32-bit) floating-point elements in a to
// packed double-precision (64-bit) floating-point elements, and store the
// results in dst.
//
//   FOR j := 0 to 1
//     i := 64*j
//     k := 32*j
//     dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k])
//   ENDFOR
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd
FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
{
#if defined(__aarch64__)
    return vreinterpretq_m128d_f64(
        vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
#else
    double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
    double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
    return _mm_set_pd(a1, a0);
#endif
}

// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
// compilation and does not generate any instructions, thus it has zero latency.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128
FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
{
    return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
}

// Blend packed single-precision (32-bit) floating-point elements from a and b
// using mask, and store the results in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps
FORCE_INLINE __m128 _mm_blendv_ps(__m128 a, __m128 b, __m128 mask)
{
    return vreinterpretq_m128_f32(vbslq_f32(vreinterpretq_u32_m128(mask),
                                            vreinterpretq_f32_m128(b),
                                            vreinterpretq_f32_m128(a)));
}

// Round the packed single-precision (32-bit) floating-point elements in a using
// the rounding parameter, and store the results as packed single-precision
// floating-point elements in dst.
// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
{
#if defined(__aarch64__)
    switch (rounding) {
    case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
        return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
    case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
        return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
    case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
        return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
    case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
        return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
    default:  //_MM_FROUND_CUR_DIRECTION
        return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
    }
#else
    float *v_float = (float *) &a;
    __m128 zero, neg_inf, pos_inf;

    switch (rounding) {
    case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
        return _mm_cvtepi32_ps(_mm_cvtps_epi32(a));
    case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
        return (__m128){floorf(v_float[0]), floorf(v_float[1]),
                        floorf(v_float[2]), floorf(v_float[3])};
    case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
        return (__m128){ceilf(v_float[0]), ceilf(v_float[1]), ceilf(v_float[2]),
                        ceilf(v_float[3])};
    case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
        zero = _mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f);
        neg_inf = _mm_set_ps(floorf(v_float[0]), floorf(v_float[1]),
                             floorf(v_float[2]), floorf(v_float[3]));
        pos_inf = _mm_set_ps(ceilf(v_float[0]), ceilf(v_float[1]),
                             ceilf(v_float[2]), ceilf(v_float[3]));
        return _mm_blendv_ps(pos_inf, neg_inf, _mm_cmple_ps(a, zero));
    default:  //_MM_FROUND_CUR_DIRECTION
        return (__m128){roundf(v_float[0]), roundf(v_float[1]),
                        roundf(v_float[2]), roundf(v_float[3])};
    }
#endif
}

// Round the packed single-precision (32-bit) floating-point elements in a up to
// an integer value, and store the results as packed single-precision
// floating-point elements in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps
FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
{
    return _mm_round_ps(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC);
}

// Round the packed single-precision (32-bit) floating-point elements in a down
// to an integer value, and store the results as packed single-precision
// floating-point elements in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps
FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
{
    return _mm_round_ps(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC);
}


// Load 128-bits of integer data from unaligned memory into dst. This intrinsic
// may perform better than _mm_loadu_si128 when the data crosses a cache line
// boundary.
//
//   dst[127:0] := MEM[mem_addr+127:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128
#define _mm_lddqu_si128 _mm_loadu_si128

/* Miscellaneous Operations */

// Shifts the 8 signed 16-bit integers in a right by count bits while shifting
// in the sign bit.
//
//   r0 := a0 >> count
//   r1 := a1 >> count
//   ...
//   r7 := a7 >> count
//
// https://msdn.microsoft.com/en-us/library/3c9997dk(v%3dvs.90).aspx
FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
{
    int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
    if (c > 15)
        return _mm_cmplt_epi16(a, _mm_setzero_si128());
    return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c)));
}

// Shifts the 4 signed 32-bit integers in a right by count bits while shifting
// in the sign bit.
//
//   r0 := a0 >> count
//   r1 := a1 >> count
//   r2 := a2 >> count
//   r3 := a3 >> count
//
// https://msdn.microsoft.com/en-us/library/ce40009e(v%3dvs.100).aspx
FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
{
    int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
    if (c > 31)
        return _mm_cmplt_epi32(a, _mm_setzero_si128());
    return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c)));
}

// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
// saturates.
// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s8(
        vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
                    vqmovn_s16(vreinterpretq_s16_m128i(b))));
}

// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
// integers and saturates.
//
//   r0 := UnsignedSaturate(a0)
//   r1 := UnsignedSaturate(a1)
//   ...
//   r7 := UnsignedSaturate(a7)
//   r8 := UnsignedSaturate(b0)
//   r9 := UnsignedSaturate(b1)
//   ...
//   r15 := UnsignedSaturate(b7)
//
// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
{
    return vreinterpretq_m128i_u8(
        vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
                    vqmovun_s16(vreinterpretq_s16_m128i(b))));
}

// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
// and saturates.
//
//   r0 := SignedSaturate(a0)
//   r1 := SignedSaturate(a1)
//   r2 := SignedSaturate(a2)
//   r3 := SignedSaturate(a3)
//   r4 := SignedSaturate(b0)
//   r5 := SignedSaturate(b1)
//   r6 := SignedSaturate(b2)
//   r7 := SignedSaturate(b3)
//
// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_s16(
        vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
                     vqmovn_s32(vreinterpretq_s32_m128i(b))));
}

// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
// integers and saturates.
//
//   r0 := UnsignedSaturate(a0)
//   r1 := UnsignedSaturate(a1)
//   r2 := UnsignedSaturate(a2)
//   r3 := UnsignedSaturate(a3)
//   r4 := UnsignedSaturate(b0)
//   r5 := UnsignedSaturate(b1)
//   r6 := UnsignedSaturate(b2)
//   r7 := UnsignedSaturate(b3)
FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u16(
        vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
                     vqmovun_s32(vreinterpretq_s32_m128i(b))));
}

// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
// 8 signed or unsigned 8-bit integers in b.
//
//   r0 := a0
//   r1 := b0
//   r2 := a1
//   r3 := b1
//   ...
//   r14 := a7
//   r15 := b7
//
// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_s8(
        vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
#else
    int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
    int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
    int8x8x2_t result = vzip_s8(a1, b1);
    return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
#endif
}

// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
// lower 4 signed or unsigned 16-bit integers in b.
//
//   r0 := a0
//   r1 := b0
//   r2 := a1
//   r3 := b1
//   r4 := a2
//   r5 := b2
//   r6 := a3
//   r7 := b3
//
// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_s16(
        vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
#else
    int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
    int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
    int16x4x2_t result = vzip_s16(a1, b1);
    return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
#endif
}

// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
// lower 2 signed or unsigned 32 - bit integers in b.
//
//   r0 := a0
//   r1 := b0
//   r2 := a1
//   r3 := b1
//
// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_s32(
        vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
#else
    int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
    int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
    int32x2x2_t result = vzip_s32(a1, b1);
    return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
#endif
}

FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
{
    int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
    int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
    return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
}

// Selects and interleaves the lower two single-precision, floating-point values
// from a and b.
//
//   r0 := a0
//   r1 := b0
//   r2 := a1
//   r3 := b1
//
// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128_f32(
        vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#else
    float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
    float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
    float32x2x2_t result = vzip_f32(a1, b1);
    return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
#endif
}

// Selects and interleaves the upper two single-precision, floating-point values
// from a and b.
//
//   r0 := a2
//   r1 := b2
//   r2 := a3
//   r3 := b3
//
// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128_f32(
        vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
#else
    float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
    float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
    float32x2x2_t result = vzip_f32(a1, b1);
    return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
#endif
}

// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
// 8 signed or unsigned 8-bit integers in b.
//
//   r0 := a8
//   r1 := b8
//   r2 := a9
//   r3 := b9
//   ...
//   r14 := a15
//   r15 := b15
//
// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_s8(
        vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
#else
    int8x8_t a1 =
        vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
    int8x8_t b1 =
        vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
    int8x8x2_t result = vzip_s8(a1, b1);
    return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
#endif
}

// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
// upper 4 signed or unsigned 16-bit integers in b.
//
//   r0 := a4
//   r1 := b4
//   r2 := a5
//   r3 := b5
//   r4 := a6
//   r5 := b6
//   r6 := a7
//   r7 := b7
//
// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_s16(
        vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
#else
    int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
    int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
    int16x4x2_t result = vzip_s16(a1, b1);
    return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
#endif
}

// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
// upper 2 signed or unsigned 32-bit integers in b.
// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
{
#if defined(__aarch64__)
    return vreinterpretq_m128i_s32(
        vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
#else
    int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
    int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
    int32x2x2_t result = vzip_s32(a1, b1);
    return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
#endif
}

// Interleaves the upper signed or unsigned 64-bit integer in a with the
// upper signed or unsigned 64-bit integer in b.
//
//   r0 := a1
//   r1 := b1
FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
{
    int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
    int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
    return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
}

// Horizontally compute the minimum amongst the packed unsigned 16-bit integers
// in a, store the minimum and index in dst, and zero the remaining bits in dst.
//
//   index[2:0] := 0
//   min[15:0] := a[15:0]
//   FOR j := 0 to 7
//       i := j*16
//       IF a[i+15:i] < min[15:0]
//           index[2:0] := j
//           min[15:0] := a[i+15:i]
//       FI
//   ENDFOR
//   dst[15:0] := min[15:0]
//   dst[18:16] := index[2:0]
//   dst[127:19] := 0
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16
FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
{
    __m128i dst;
    uint16_t min, idx = 0;
    // Find the minimum value
#if defined(__aarch64__)
    min = vminvq_u16(vreinterpretq_u16_m128i(a));
#else
    __m64 tmp;
    tmp = vreinterpret_m64_u16(
        vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
                 vget_high_u16(vreinterpretq_u16_m128i(a))));
    tmp = vreinterpret_m64_u16(
        vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
    tmp = vreinterpret_m64_u16(
        vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
    min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
#endif
    // Get the index of the minimum value
    int i;
    for (i = 0; i < 8; i++) {
        if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
            idx = (uint16_t) i;
            break;
        }
        a = _mm_srli_si128(a, 2);
    }
    // Generate result
    dst = _mm_setzero_si128();
    dst = vreinterpretq_m128i_u16(
        vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
    dst = vreinterpretq_m128i_u16(
        vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
    return dst;
}

// shift to right
// https://msdn.microsoft.com/en-us/library/bb514041(v=vs.120).aspx
// http://blog.csdn.net/hemmingway/article/details/44828303
// Clang requires a macro here, as it is extremely picky about c being a
// literal.
#define _mm_alignr_epi8(a, b, c) \
    ((__m128i) vextq_s8((int8x16_t)(b), (int8x16_t)(a), (c)))

// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
// otherwise set CF to 0. Return the CF value.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128
FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
{
    int64x2_t s64 =
        vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))),
                  vreinterpretq_s64_m128i(b));
    return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
}

// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
// otherwise set CF to 0. Return the ZF value.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128
FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
{
    int64x2_t s64 =
        vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
    return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
}

// Extracts the selected signed or unsigned 8-bit integer from a and zero
// extends.
// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))

// Inserts the least significant 8 bits of b into the selected 8-bit integer
// of a.
// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
//                                      __constrange(0,16) int imm)
#define _mm_insert_epi8(a, b, imm)                                 \
    __extension__({                                                \
        vreinterpretq_m128i_s8(                                    \
            vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
    })

// Extracts the selected signed or unsigned 16-bit integer from a and zero
// extends.
// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
#define _mm_extract_epi16(a, imm) \
    vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))

// Inserts the least significant 16 bits of b into the selected 16-bit integer
// of a.
// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
//                                       __constrange(0,8) int imm)
#define _mm_insert_epi16(a, b, imm)                                  \
    __extension__({                                                  \
        vreinterpretq_m128i_s16(                                     \
            vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
    })

// Extracts the selected signed or unsigned 32-bit integer from a and zero
// extends.
// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
#define _mm_extract_epi32(a, imm) \
    vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))

// Extracts the selected single-precision (32-bit) floating-point from a.
// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))

// Inserts the least significant 32 bits of b into the selected 32-bit integer
// of a.
// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
//                                       __constrange(0,4) int imm)
#define _mm_insert_epi32(a, b, imm)                                  \
    __extension__({                                                  \
        vreinterpretq_m128i_s32(                                     \
            vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
    })

// Extracts the selected signed or unsigned 64-bit integer from a and zero
// extends.
// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
#define _mm_extract_epi64(a, imm) \
    vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))

// Inserts the least significant 64 bits of b into the selected 64-bit integer
// of a.
// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
//                                       __constrange(0,2) int imm)
#define _mm_insert_epi64(a, b, imm)                                  \
    __extension__({                                                  \
        vreinterpretq_m128i_s64(                                     \
            vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
    })

// Count the number of bits set to 1 in unsigned 32-bit integer a, and
// return that count in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
{
#if defined(__aarch64__)
#if __has_builtin(__builtin_popcount)
    return __builtin_popcount(a);
#else
    return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
#endif
#else
    uint32_t count = 0;
    uint8x8_t input_val, count8x8_val;
    uint16x4_t count16x4_val;
    uint32x2_t count32x2_val;

    input_val = vld1_u8((uint8_t *) &a);
    count8x8_val = vcnt_u8(input_val);
    count16x4_val = vpaddl_u8(count8x8_val);
    count32x2_val = vpaddl_u16(count16x4_val);

    vst1_u32(&count, count32x2_val);
    return count;
#endif
}

// Count the number of bits set to 1 in unsigned 64-bit integer a, and
// return that count in dst.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
{
#if defined(__aarch64__)
#if __has_builtin(__builtin_popcountll)
    return __builtin_popcountll(a);
#else
    return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
#endif
#else
    uint64_t count = 0;
    uint8x8_t input_val, count8x8_val;
    uint16x4_t count16x4_val;
    uint32x2_t count32x2_val;
    uint64x1_t count64x1_val;

    input_val = vld1_u8((uint8_t *) &a);
    count8x8_val = vcnt_u8(input_val);
    count16x4_val = vpaddl_u8(count8x8_val);
    count32x2_val = vpaddl_u16(count16x4_val);
    count64x1_val = vpaddl_u32(count32x2_val);
    vst1_u64(&count, count64x1_val);
    return count;
#endif
}

// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
// transposed matrix in these vectors (row0 now contains column 0, etc.).
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3)         \
    do {                                                  \
        float32x4x2_t ROW01 = vtrnq_f32(row0, row1);      \
        float32x4x2_t ROW23 = vtrnq_f32(row2, row3);      \
        row0 = vcombine_f32(vget_low_f32(ROW01.val[0]),   \
                            vget_low_f32(ROW23.val[0]));  \
        row1 = vcombine_f32(vget_low_f32(ROW01.val[1]),   \
                            vget_low_f32(ROW23.val[1]));  \
        row2 = vcombine_f32(vget_high_f32(ROW01.val[0]),  \
                            vget_high_f32(ROW23.val[0])); \
        row3 = vcombine_f32(vget_high_f32(ROW01.val[1]),  \
                            vget_high_f32(ROW23.val[1])); \
    } while (0)

/* Crypto Extensions */

#if defined(__ARM_FEATURE_CRYPTO)
// Wraps vmull_p64
FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
{
    poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
    poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
    return vreinterpretq_u64_p128(vmull_p64(a, b));
}
#else  // ARMv7 polyfill
// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
//
// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
// 64-bit->128-bit polynomial multiply.
//
// It needs some work and is somewhat slow, but it is still faster than all
// known scalar methods.
//
// Algorithm adapted to C from
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
// from "Fast Software Polynomial Multiplication on ARM Processors Using the
// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
// (https://hal.inria.fr/hal-01506572)
static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
{
    poly8x8_t a = vreinterpret_p8_u64(_a);
    poly8x8_t b = vreinterpret_p8_u64(_b);

    // Masks
    uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
                                    vcreate_u8(0x00000000ffffffff));
    uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
                                    vcreate_u8(0x0000000000000000));

    // Do the multiplies, rotating with vext to get all combinations
    uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b));  // D = A0 * B0
    uint8x16_t e =
        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1)));  // E = A0 * B1
    uint8x16_t f =
        vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b));  // F = A1 * B0
    uint8x16_t g =
        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2)));  // G = A0 * B2
    uint8x16_t h =
        vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b));  // H = A2 * B0
    uint8x16_t i =
        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3)));  // I = A0 * B3
    uint8x16_t j =
        vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b));  // J = A3 * B0
    uint8x16_t k =
        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4)));  // L = A0 * B4

    // Add cross products
    uint8x16_t l = veorq_u8(e, f);  // L = E + F
    uint8x16_t m = veorq_u8(g, h);  // M = G + H
    uint8x16_t n = veorq_u8(i, j);  // N = I + J

    // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
    // instructions.
#if defined(__aarch64__)
    uint8x16_t lm_p0 = vreinterpretq_u8_u64(
        vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
    uint8x16_t lm_p1 = vreinterpretq_u8_u64(
        vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
    uint8x16_t nk_p0 = vreinterpretq_u8_u64(
        vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
    uint8x16_t nk_p1 = vreinterpretq_u8_u64(
        vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
#else
    uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
    uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
    uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
    uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
#endif
    // t0 = (L) (P0 + P1) << 8
    // t1 = (M) (P2 + P3) << 16
    uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
    uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
    uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);

    // t2 = (N) (P4 + P5) << 24
    // t3 = (K) (P6 + P7) << 32
    uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
    uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
    uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);

    // De-interleave
#if defined(__aarch64__)
    uint8x16_t t0 = vreinterpretq_u8_u64(
        vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
    uint8x16_t t1 = vreinterpretq_u8_u64(
        vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
    uint8x16_t t2 = vreinterpretq_u8_u64(
        vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
    uint8x16_t t3 = vreinterpretq_u8_u64(
        vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
#else
    uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
    uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
    uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
    uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
#endif
    // Shift the cross products
    uint8x16_t t0_shift = vextq_u8(t0, t0, 15);  // t0 << 8
    uint8x16_t t1_shift = vextq_u8(t1, t1, 14);  // t1 << 16
    uint8x16_t t2_shift = vextq_u8(t2, t2, 13);  // t2 << 24
    uint8x16_t t3_shift = vextq_u8(t3, t3, 12);  // t3 << 32

    // Accumulate the products
    uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
    uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
    uint8x16_t mix = veorq_u8(d, cross1);
    uint8x16_t r = veorq_u8(mix, cross2);
    return vreinterpretq_u64_u8(r);
}
#endif  // ARMv7 polyfill

FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
{
    uint64x2_t a = vreinterpretq_u64_m128i(_a);
    uint64x2_t b = vreinterpretq_u64_m128i(_b);
    switch (imm & 0x11) {
    case 0x00:
        return vreinterpretq_m128i_u64(
            _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
    case 0x01:
        return vreinterpretq_m128i_u64(
            _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
    case 0x10:
        return vreinterpretq_m128i_u64(
            _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
    case 0x11:
        return vreinterpretq_m128i_u64(
            _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
    default:
        abort();
    }
}

#if !defined(__ARM_FEATURE_CRYPTO)
/* clang-format off */
#define SSE2NEON_AES_DATA(w)                                           \
    {                                                                  \
        w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
        w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
        w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
        w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
        w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
        w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
        w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
        w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
        w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
        w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
        w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
        w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
        w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
        w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
        w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
        w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
        w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
        w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
        w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
        w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
        w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
        w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
        w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
        w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
        w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
        w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
        w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
        w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
        w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
        w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
        w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
        w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
        w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
        w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
        w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
        w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
        w(0xb0), w(0x54), w(0xbb), w(0x16)                             \
    }
/* clang-format on */

/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
#define SSE2NEON_AES_H0(x) (x)
static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0);
#undef SSE2NEON_AES_H0

// In the absence of crypto extensions, implement aesenc using regular neon
// intrinsics instead. See:
// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
// for more information Reproduced with permission of the author.
FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
{
#if defined(__aarch64__)
    static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9,
                                         0xe, 0x3, 0x8, 0xd, 0x2, 0x7,
                                         0xc, 0x1, 0x6, 0xb};
    static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
                                       0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc};

    uint8x16_t v;
    uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);

    // shift rows
    w = vqtbl1q_u8(w, vld1q_u8(shift_rows));

    // sub bytes
    v = vqtbl4q_u8(vld1q_u8_x4(SSE2NEON_sbox), w);
    v = vqtbx4q_u8(v, vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40);
    v = vqtbx4q_u8(v, vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80);
    v = vqtbx4q_u8(v, vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0);

    // mix columns
    w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b);
    w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
    w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));

    //  add round key
    return vreinterpretq_m128i_u8(w) ^ RoundKey;

#else /* ARMv7-A NEON implementation */
#define SSE2NEON_AES_B2W(b0, b1, b2, b3)                                       \
    (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | \
     (b0))
#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
#define SSE2NEON_AES_U0(p) \
    SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
#define SSE2NEON_AES_U1(p) \
    SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
#define SSE2NEON_AES_U2(p) \
    SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
#define SSE2NEON_AES_U3(p) \
    SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
    static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
        SSE2NEON_AES_DATA(SSE2NEON_AES_U0),
        SSE2NEON_AES_DATA(SSE2NEON_AES_U1),
        SSE2NEON_AES_DATA(SSE2NEON_AES_U2),
        SSE2NEON_AES_DATA(SSE2NEON_AES_U3),
    };
#undef SSE2NEON_AES_B2W
#undef SSE2NEON_AES_F2
#undef SSE2NEON_AES_F3
#undef SSE2NEON_AES_U0
#undef SSE2NEON_AES_U1
#undef SSE2NEON_AES_U2
#undef SSE2NEON_AES_U3

    uint32_t x0 = _mm_cvtsi128_si32(EncBlock);
    uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55));
    uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA));
    uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF));

    __m128i out = _mm_set_epi32(
        (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
         aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
        (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
         aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
        (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
         aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
        (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
         aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));

    return _mm_xor_si128(out, RoundKey);
#endif
}

FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
{
    /* FIXME: optimized for NEON */
    uint8_t v[4][4] = {
        [0] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]},
        [1] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]},
        [2] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]},
        [3] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)],
               SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]},
    };
    for (int i = 0; i < 16; i++)
        vreinterpretq_nth_u8_m128i(a, i) =
            v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i);
    return a;
}

// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
// This instruction generates a round key for AES encryption. See
// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
// for details.
//
// https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx
FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon)
{
    uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55));
    uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF));
    for (int i = 0; i < 4; ++i) {
        ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]];
        ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]];
    }
    return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
                         ((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
}
#undef SSE2NEON_AES_DATA

#else /* __ARM_FEATURE_CRYPTO */
// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
// AESMC and then manually applying the real key as an xor operation. This
// unfortunately means an additional xor op; the compiler should be able to
// optimize this away for repeated calls however. See
// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
// for more details.
FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
{
    return vreinterpretq_m128i_u8(
        vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
        vreinterpretq_u8_m128i(b));
}

// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
{
    return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
                             vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
                         RoundKey);
}

FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
{
    // AESE does ShiftRows and SubBytes on A
    uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));

    uint8x16_t dest = {
        // Undo ShiftRows step from AESE and extract X1 and X3
        u8[0x4], u8[0x1], u8[0xE], u8[0xB],  // SubBytes(X1)
        u8[0x1], u8[0xE], u8[0xB], u8[0x4],  // ROT(SubBytes(X1))
        u8[0xC], u8[0x9], u8[0x6], u8[0x3],  // SubBytes(X3)
        u8[0x9], u8[0x6], u8[0x3], u8[0xC],  // ROT(SubBytes(X3))
    };
    uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
    return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
}
#endif

/* Streaming Extensions */

// Guarantees that every preceding store is globally visible before any
// subsequent store.
// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
FORCE_INLINE void _mm_sfence(void)
{
    __sync_synchronize();
}

// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
// point elements) from a into memory using a non-temporal memory hint.
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps
FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
{
#if __has_builtin(__builtin_nontemporal_store)
    __builtin_nontemporal_store(a, (float32x4_t *) p);
#else
    vst1q_f32(p, vreinterpretq_f32_m128(a));
#endif
}

// Stores the data in a to the address p without polluting the caches.  If the
// cache line containing address p is already in the cache, the cache will be
// updated.
// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
{
#if __has_builtin(__builtin_nontemporal_store)
    __builtin_nontemporal_store(a, p);
#else
    vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
#endif
}

// Load 128-bits of integer data from memory into dst using a non-temporal
// memory hint. mem_addr must be aligned on a 16-byte boundary or a
// general-protection exception may be generated.
//
//   dst[127:0] := MEM[mem_addr+127:mem_addr]
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128
FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
{
#if __has_builtin(__builtin_nontemporal_store)
    return __builtin_nontemporal_load(p);
#else
    return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
#endif
}

// Cache line containing p is flushed and invalidated from all caches in the
// coherency domain. :
// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
FORCE_INLINE void _mm_clflush(void const *p)
{
    (void) p;
    // no corollary for Neon?
}

// Allocate aligned blocks of memory.
// https://software.intel.com/en-us/
//         cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
{
    void *ptr;
    if (align == 1)
        return malloc(size);
    if (align == 2 || (sizeof(void *) == 8 && align == 4))
        align = sizeof(void *);
    if (!posix_memalign(&ptr, align, size))
        return ptr;
    return NULL;
}

FORCE_INLINE void _mm_free(void *addr)
{
    free(addr);
}

// Starting with the initial value in crc, accumulates a CRC32 value for
// unsigned 8-bit integer v.
// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100)
FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
{
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
    __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
                         : [c] "+r"(crc)
                         : [v] "r"(v));
#else
    crc ^= v;
    for (int bit = 0; bit < 8; bit++) {
        if (crc & 1)
            crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
        else
            crc = (crc >> 1);
    }
#endif
    return crc;
}

// Starting with the initial value in crc, accumulates a CRC32 value for
// unsigned 16-bit integer v.
// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100)
FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
{
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
    __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
                         : [c] "+r"(crc)
                         : [v] "r"(v));
#else
    crc = _mm_crc32_u8(crc, v & 0xff);
    crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
#endif
    return crc;
}

// Starting with the initial value in crc, accumulates a CRC32 value for
// unsigned 32-bit integer v.
// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100)
FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
{
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
    __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
                         : [c] "+r"(crc)
                         : [v] "r"(v));
#else
    crc = _mm_crc32_u16(crc, v & 0xffff);
    crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
#endif
    return crc;
}

// Starting with the initial value in crc, accumulates a CRC32 value for
// unsigned 64-bit integer v.
// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100)
FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
{
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
    __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
                         : [c] "+r"(crc)
                         : [v] "r"(v));
#else
    crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff);
    crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff);
#endif
    return crc;
}

#if defined(__GNUC__) || defined(__clang__)
#pragma pop_macro("ALIGN_STRUCT")
#pragma pop_macro("FORCE_INLINE")
#endif

#if defined(__GNUC__)
#pragma GCC pop_options
#endif

#endif