// Copyright 2021 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. syntax = "proto3"; package pw.log; import "pw_protobuf_protos/common.proto"; import "pw_tokenizer/proto/options.proto"; option java_outer_classname = "Log"; // A log message and metadata. Logs come in a few different forms: // // 1. A tokenized log message (recommended for production) // 2. A non-tokenized log message (good for development) // 3. A "log missed" tombstone, indicating that some logs were dropped // // Size analysis for tokenized log messages, including each field's proto tag: // // - message - 6-12 bytes; depending on number and value of arguments // - line_level - 3 bytes; 4 bytes if line > 2048 (uncommon) // - timestamp - 3 bytes; assuming delta encoding // - thread - 2-6 bytes; depending on whether value is a token or string // // Adding the fields gives the total proto message size: // // 6-12 bytes - log // 9-15 bytes - log + level + line // 12-18 bytes - log + level + line + timestamp // // An analysis of a project's log token database revealed the following // distribution of the number of arguments to log messages: // // # args # messages // 0 2,700 // 1 2,400 // 2 1,200 // 3+ 1,000 // // Note: The below proto makes some compromises compared to what one might // expect for a "clean" proto design, in order to shave bytes off of the // messages. It is critical that the log messages are as small as possible to // enable storing more logs in limited memory. This is why, for example, there // is no separate "DroppedLog" type, or a "TokenizedLog" and "StringLog", which // would add at least 2 extra bytes per message message LogEntry { // The log message, which may be tokenized. // // If tokenized logging is used, implementations may encode metadata in the // log message rather than as separate proto fields. This reduces the size of // the protobuf with no overhead. // // The standard format for encoding metadata in the log message is defined by // the pw_log_tokenized module. The message and metadata are encoded as // key-value pairs using ■ and ♦ as delimiters. For example: // // ■msg♦This is the log message: %d■module♦wifi■file♦../path/to/file.cc // // See http://pigweed.dev/pw_log_tokenized for full details. When // pw_log_tokenized is used, this metadata is automatically included as // described. // // The level and flags are not included since they may be runtime values and // thus cannot always be tokenized. The line number is not included because // line numbers change frequently and a new token is created for each line. // // Size analysis when tokenized: // // tag+wire = 1 byte // size = 1 byte; payload will almost always be < 127 bytes // payload = N bytes; typically 4-10 in practice // // Total: 2 + N ~= 6-12 bytes optional bytes message = 1 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; // Packed log level and line number. Structure: // // Level: Bottom 3 bits; level = line_level & 0x7 // Line: Remaining bits; line = (line_level >> 3) // // Note: This packing saves two bytes per log message in most cases compared // to having line and level separately; and is zero-cost if the log backend // omits the line number. uint32 line_level = 2; // Some log messages have flags to indicate attributes such as whether they // are from an assert or if they contain PII. The particular flags are // product- and implementation-dependent. uint32 flags = 3; // Timestamps are either specified with an absolute timestamp or relative to // the previous log entry. oneof time { // The absolute timestamp in implementation-defined ticks. Applications // determine how to interpret this on the receiving end. In the simplest // case, these ticks might be milliseconds or microseconds since boot. // Applications could also access clock information out-of-band with a // ClockParameters protobuf. int64 timestamp = 4; // Time since the last entry in implementation-defined ticks, as for the // timestamp field. This enables delta encoding when batching entries // together. // // Size analysis for this field including tag and varint, assuming 1 kHz // ticks: // // < 127 ms gap == 127 ms == 7 bits == 2 bytes // < 16,000 ms gap == 16 seconds == 14 bits == 3 bytes // < 2,000,000 ms gap == 35 minutes == 21 bits == 4 bytes // < 300,000,000 ms gap == 74 hours == 28 bits == 5 bytes // // Log bursts will thus consume just 2 bytes (tag + up to 127ms delta) for // the timestamp, which is a good improvement over an absolute timestamp. int64 time_since_last_entry = 5; } // When the log buffers are full but more logs come in, the logs are counted // and a special log message is omitted with only counts for the number of // messages dropped. uint32 dropped = 6; // The PW_LOG_MODULE_NAME for this log message. bytes module = 7 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; // The file path where this log was created, if not encoded in the message. bytes file = 8 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; // The task or thread name that created the log message. If the log was not // created on a thread, it should use a name appropriate to that context. bytes thread = 9 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; // The following fields are planned but will not be added until they are // needed. Protobuf field numbers over 15 use an extra byte, so these fields // are left out for now to avoid reserving field numbers unnecessarily. // Represents the device from which the log originated. The meaning of this // field is implementation defined // uint32 source_id = ?; // Some messages are associated with trace events, which may carry additional // contextual data. This is a tuple of a data format string which could be // used by the decoder to identify the data (e.g. printf-style tokens) and the // data itself in bytes. // bytes data_format = ? // [(tokenizer.format) = TOKENIZATION_OPTIONAL]; // bytes data = ?; } message LogRequest {} message LogEntries { repeated LogEntry entries = 1; uint32 first_entry_sequence_id = 2; } // RPC service for accessing logs. service Logs { rpc Listen(LogRequest) returns (stream LogEntries); } message FilterRule { // Log level values match pw_log/levels.h. Enum names avoid collissions with // possible macros. enum Level { ANY_LEVEL = 0; DEBUG_LEVEL = 1; INFO_LEVEL = 2; WARN_LEVEL = 3; ERROR_LEVEL = 4; CRITICAL_LEVEL = 5; FATAL_LEVEL = 7; }; // Condition 1: log.level >= level_greater_than_or_equal. Level level_greater_than_or_equal = 1; // Condition 2: (module_equals.size() == 0) || (log.module == module_equals); bytes module_equals = 2 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; // Condition 3: (any_flags_set == 0) || (log.flags & any_flags_set) != 0)) uint32 any_flags_set = 3; // Action to take if all conditions are met and rule is not inactive. enum Action { INACTIVE = 0; // Ignore the rule entirely. KEEP = 1; // Keep the log entry if all conditions are met. DROP = 2; // Drop the log entry if all conditions are met }; Action action = 4; // Condition 4: (thread_equals.size() == 0 || log.thread == thread_equals). bytes thread_equals = 5 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; } // A filter is a series of rules. First matching rule wins. message Filter { repeated FilterRule rule = 1; } message SetFilterRequest { // A filter can be identified by a human readable string, token, or number. bytes filter_id = 1 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; Filter filter = 2; } message GetFilterRequest { bytes filter_id = 1 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; } message FilterIdListRequest {} message FilterIdListResponse { repeated bytes filter_id = 1 [(tokenizer.format) = TOKENIZATION_OPTIONAL]; } // RPC service for retrieving and modifying log filters. service Filters { rpc SetFilter(SetFilterRequest) returns (pw.protobuf.Empty); rpc GetFilter(GetFilterRequest) returns (Filter); rpc ListFilterIds(FilterIdListRequest) returns (FilterIdListResponse); }