// Copyright 2020 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #include #include "gtest/gtest.h" #include "pw_chrono/system_clock.h" #include "pw_thread/id.h" #include "pw_thread/sleep.h" using pw::chrono::SystemClock; using namespace std::chrono_literals; namespace pw::this_thread { namespace { extern "C" { // Functions defined in sleep_facade_test_c.c which call the API from C. void pw_this_thread_CallSleepFor(pw_chrono_SystemClock_Duration sleep_duration); void pw_this_thread_CallSleepUntil(pw_chrono_SystemClock_TimePoint wakeup_time); } // extern "C" // We can't control the SystemClock's period configuration, so just in case // duration cannot be accurately expressed in integer ticks, round the // duration up. constexpr SystemClock::duration kRoundedArbitraryDuration = SystemClock::for_at_least(42ms); constexpr pw_chrono_SystemClock_Duration kRoundedArbitraryDurationInC = PW_SYSTEM_CLOCK_MS(42); TEST(Sleep, SleepForPositiveDuration) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); SystemClock::time_point before = SystemClock::now(); sleep_for(kRoundedArbitraryDuration); SystemClock::duration time_elapsed = SystemClock::now() - before; EXPECT_GE(time_elapsed, kRoundedArbitraryDuration); } TEST(Sleep, SleepForZeroLengthDuration) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when a zero length duration is used. SystemClock::time_point before = SystemClock::now(); sleep_for(SystemClock::duration::zero()); SystemClock::duration time_elapsed = SystemClock::now() - before; EXPECT_LT(time_elapsed, kRoundedArbitraryDuration); } TEST(Sleep, SleepForNegativeDuration) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when a negative duration is used. SystemClock::time_point before = SystemClock::now(); sleep_for(-kRoundedArbitraryDuration); SystemClock::duration time_elapsed = SystemClock::now() - before; EXPECT_LT(time_elapsed, kRoundedArbitraryDuration); } TEST(Sleep, SleepUntilFutureWakeupTime) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); SystemClock::time_point deadline = SystemClock::now() + kRoundedArbitraryDuration; sleep_until(deadline); EXPECT_GE(SystemClock::now(), deadline); } TEST(Sleep, SleepUntilCurrentWakeupTime) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when now is used. SystemClock::time_point deadline = SystemClock::now() + kRoundedArbitraryDuration; sleep_until(SystemClock::now()); EXPECT_LT(SystemClock::now(), deadline); } TEST(Sleep, SleepUntilPastWakeupTime) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when a timestamp in the past is used. SystemClock::time_point deadline = SystemClock::now() + kRoundedArbitraryDuration; sleep_until(SystemClock::now() - kRoundedArbitraryDuration); EXPECT_LT(SystemClock::now(), deadline); } TEST(Sleep, SleepForPositiveDurationInC) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now(); pw_this_thread_SleepFor(kRoundedArbitraryDurationInC); pw_chrono_SystemClock_Duration time_elapsed = pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now()); EXPECT_GE(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks); } TEST(Sleep, SleepForZeroLengthDurationInC) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when a zero length duration is used. pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now(); pw_this_thread_SleepFor(PW_SYSTEM_CLOCK_MS(0)); pw_chrono_SystemClock_Duration time_elapsed = pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now()); EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks); } TEST(Sleep, SleepForNegativeDurationInC) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when a negative duration is used. pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now(); pw_this_thread_SleepFor( PW_SYSTEM_CLOCK_MS(-kRoundedArbitraryDurationInC.ticks)); pw_chrono_SystemClock_Duration time_elapsed = pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now()); EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks); } TEST(Sleep, SleepUntilFutureWakeupTimeInC) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); pw_chrono_SystemClock_TimePoint deadline; deadline.duration_since_epoch.ticks = pw_chrono_SystemClock_Now().duration_since_epoch.ticks + kRoundedArbitraryDurationInC.ticks; pw_this_thread_CallSleepUntil(deadline); EXPECT_GE(pw_chrono_SystemClock_Now().duration_since_epoch.ticks, deadline.duration_since_epoch.ticks); } TEST(Sleep, SleepUntilCurrentWakeupTimeInC) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when now is used. pw_chrono_SystemClock_TimePoint deadline; deadline.duration_since_epoch.ticks = pw_chrono_SystemClock_Now().duration_since_epoch.ticks + kRoundedArbitraryDurationInC.ticks; pw_this_thread_CallSleepUntil(pw_chrono_SystemClock_Now()); EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks, deadline.duration_since_epoch.ticks); } TEST(Sleep, SleepUntilPastWakeupTimeInC) { // Ensure we are in a thread context, meaning we are permitted to sleep. ASSERT_NE(get_id(), thread::Id()); // Ensure it doesn't sleep when a timestamp in the past is used. pw_chrono_SystemClock_TimePoint deadline; deadline.duration_since_epoch.ticks = pw_chrono_SystemClock_Now().duration_since_epoch.ticks + kRoundedArbitraryDurationInC.ticks; pw_chrono_SystemClock_TimePoint old_timestamp; old_timestamp.duration_since_epoch.ticks = pw_chrono_SystemClock_Now().duration_since_epoch.ticks - kRoundedArbitraryDurationInC.ticks; pw_this_thread_CallSleepUntil(old_timestamp); EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks, deadline.duration_since_epoch.ticks); } } // namespace } // namespace pw::this_thread