aboutsummaryrefslogtreecommitdiff
path: root/pw_kvs/key_value_store_test.cc
blob: 345a56baccf2144212e156329d1d01b32be47807 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

#define DUMP_KVS_STATE_TO_FILE 0
#define USE_MEMORY_BUFFER 1
#define PW_LOG_USE_ULTRA_SHORT_NAMES 1

#include "pw_kvs/key_value_store.h"

#include <array>
#include <cstdio>
#include <cstring>

#if DUMP_KVS_STATE_TO_FILE
#include <vector>
#endif  // DUMP_KVS_STATE_TO_FILE

#include "gtest/gtest.h"
#include "pw_checksum/ccitt_crc16.h"
#include "pw_kvs/crc16_checksum.h"
#include "pw_kvs/flash_memory.h"
#include "pw_kvs/internal/entry.h"
#include "pw_kvs_private/byte_utils.h"
#include "pw_kvs_private/macros.h"
#include "pw_log/log.h"
#include "pw_span/span.h"
#include "pw_status/status.h"
#include "pw_string/string_builder.h"

#if USE_MEMORY_BUFFER
#include "pw_kvs/fake_flash_memory.h"
#endif  // USE_MEMORY_BUFFER

namespace pw::kvs {
namespace {

using internal::EntryHeader;
using std::byte;

constexpr size_t kMaxEntries = 256;
constexpr size_t kMaxUsableSectors = 256;

// Test the functions in byte_utils.h. Create a byte array with AsBytes and
// ByteStr and check that its contents are correct.
constexpr std::array<char, 2> kTestArray = {'a', 'b'};

constexpr auto kAsBytesTest = AsBytes(
    'a', uint16_t(1), uint8_t(23), kTestArray, ByteStr("c"), uint64_t(-1));

static_assert(kAsBytesTest.size() == 15);
static_assert(kAsBytesTest[0] == std::byte{'a'});
static_assert(kAsBytesTest[1] == std::byte{1});
static_assert(kAsBytesTest[2] == std::byte{0});
static_assert(kAsBytesTest[3] == std::byte{23});
static_assert(kAsBytesTest[4] == std::byte{'a'});
static_assert(kAsBytesTest[5] == std::byte{'b'});
static_assert(kAsBytesTest[6] == std::byte{'c'});
static_assert(kAsBytesTest[7] == std::byte{0xff});
static_assert(kAsBytesTest[8] == std::byte{0xff});
static_assert(kAsBytesTest[9] == std::byte{0xff});
static_assert(kAsBytesTest[10] == std::byte{0xff});
static_assert(kAsBytesTest[11] == std::byte{0xff});
static_assert(kAsBytesTest[12] == std::byte{0xff});
static_assert(kAsBytesTest[13] == std::byte{0xff});
static_assert(kAsBytesTest[14] == std::byte{0xff});

// Test that the ConvertsToSpan trait correctly idenitifies types that convert
// to span.
static_assert(!ConvertsToSpan<int>());
static_assert(!ConvertsToSpan<void>());
static_assert(!ConvertsToSpan<std::byte>());
static_assert(!ConvertsToSpan<std::byte*>());

static_assert(ConvertsToSpan<std::array<int, 5>>());
static_assert(ConvertsToSpan<decltype("Hello!")>());

static_assert(ConvertsToSpan<std::string_view>());
static_assert(ConvertsToSpan<std::string_view&>());
static_assert(ConvertsToSpan<std::string_view&&>());

static_assert(ConvertsToSpan<const std::string_view>());
static_assert(ConvertsToSpan<const std::string_view&>());
static_assert(ConvertsToSpan<const std::string_view&&>());

static_assert(ConvertsToSpan<bool[1]>());
static_assert(ConvertsToSpan<char[35]>());
static_assert(ConvertsToSpan<const int[35]>());

static_assert(ConvertsToSpan<span<int>>());
static_assert(ConvertsToSpan<span<byte>>());
static_assert(ConvertsToSpan<span<const int*>>());
static_assert(ConvertsToSpan<span<bool>&&>());
static_assert(ConvertsToSpan<const span<bool>&>());
static_assert(ConvertsToSpan<span<bool>&&>());

// This is a self contained flash unit with both memory and a single partition.
template <uint32_t sector_size_bytes, uint16_t sector_count>
struct FlashWithPartitionFake {
  // Default to 16 byte alignment, which is common in practice.
  FlashWithPartitionFake() : FlashWithPartitionFake(16) {}
  FlashWithPartitionFake(size_t alignment_bytes)
      : memory(alignment_bytes), partition(&memory, 0, memory.sector_count()) {}

  FakeFlashMemoryBuffer<sector_size_bytes, sector_count> memory;
  FlashPartition partition;

 public:
#if DUMP_KVS_STATE_TO_FILE
  Status Dump(const char* filename) {
    std::FILE* out_file = std::fopen(filename, "w+");
    if (out_file == nullptr) {
      PW_LOG_ERROR("Failed to dump to %s", filename);
      return Status::DATA_LOSS;
    }
    std::vector<std::byte> out_vec(memory.size_bytes());
    Status status =
        memory.Read(0, pw::span<std::byte>(out_vec.data(), out_vec.size()));
    if (status != Status::OK) {
      fclose(out_file);
      return status;
    }

    size_t written =
        std::fwrite(out_vec.data(), 1, memory.size_bytes(), out_file);
    if (written != memory.size_bytes()) {
      PW_LOG_ERROR("Failed to dump to %s, written=%u",
                   filename,
                   static_cast<unsigned>(written));
      status = Status::DATA_LOSS;
    } else {
      PW_LOG_INFO("Dumped to %s", filename);
      status = Status::OK;
    }

    fclose(out_file);
    return status;
  }
#else
  Status Dump(const char*) { return Status::OK; }
#endif  // DUMP_KVS_STATE_TO_FILE
};

typedef FlashWithPartitionFake<4 * 128 /*sector size*/, 6 /*sectors*/> Flash;

#if USE_MEMORY_BUFFER
// Although it might be useful to test other configurations, some tests require
// at least 3 sectors; therfore it should have this when checked in.
FakeFlashMemoryBuffer<4 * 1024, 6> test_flash(
    16);  // 4 x 4k sectors, 16 byte alignment
FlashPartition test_partition(&test_flash, 0, test_flash.sector_count());
FakeFlashMemoryBuffer<1024, 60> large_test_flash(8);
FlashPartition large_test_partition(&large_test_flash,
                                    0,
                                    large_test_flash.sector_count());
#else  // TODO: Test with real flash
FlashPartition& test_partition = FlashExternalTestPartition();
#endif  // USE_MEMORY_BUFFER

std::array<byte, 512> buffer;
constexpr std::array<const char*, 3> keys{"TestKey1", "Key2", "TestKey3"};

ChecksumCrc16 checksum;
constexpr EntryFormat default_format{.magic = 0xBAD'C0D3,
                                     .checksum = &checksum};

size_t RoundUpForAlignment(size_t size) {
  return AlignUp(size, test_partition.alignment_bytes());
}

// This class gives attributes of KVS that we are testing against
class KvsAttributes {
 public:
  KvsAttributes(size_t key_size, size_t data_size)
      : chunk_header_size_(RoundUpForAlignment(sizeof(EntryHeader))),
        data_size_(RoundUpForAlignment(data_size)),
        key_size_(RoundUpForAlignment(key_size)),
        erase_size_(chunk_header_size_ + key_size_),
        min_put_size_(
            RoundUpForAlignment(chunk_header_size_ + key_size_ + data_size_)) {}

  size_t ChunkHeaderSize() { return chunk_header_size_; }
  size_t DataSize() { return data_size_; }
  size_t KeySize() { return key_size_; }
  size_t EraseSize() { return erase_size_; }
  size_t MinPutSize() { return min_put_size_; }

 private:
  const size_t chunk_header_size_;
  const size_t data_size_;
  const size_t key_size_;
  const size_t erase_size_;
  const size_t min_put_size_;
};

class EmptyInitializedKvs : public ::testing::Test {
 protected:
  EmptyInitializedKvs() : kvs_(&test_partition, default_format) {
    test_partition.Erase();
    ASSERT_EQ(Status::OK, kvs_.Init());
  }

  // Intention of this is to put and erase key-val to fill up sectors. It's a
  // helper function in testing how KVS handles cases where flash sector is full
  // or near full.
  void FillKvs(const char* key, size_t size_to_fill) {
    constexpr size_t kTestDataSize = 8;
    KvsAttributes kvs_attr(std::strlen(key), kTestDataSize);
    const size_t kMaxPutSize =
        buffer.size() + kvs_attr.ChunkHeaderSize() + kvs_attr.KeySize();

    ASSERT_GE(size_to_fill, kvs_attr.MinPutSize() + kvs_attr.EraseSize());

    // Saving enough space to perform erase after loop
    size_to_fill -= kvs_attr.EraseSize();
    // We start with possible small chunk to prevent too small of a Kvs.Put() at
    // the end.
    size_t chunk_len =
        std::max(kvs_attr.MinPutSize(), size_to_fill % buffer.size());
    std::memset(buffer.data(), 0, buffer.size());
    while (size_to_fill > 0) {
      // Changing buffer value so put actually does something
      buffer[0] = static_cast<byte>(static_cast<uint8_t>(buffer[0]) + 1);
      ASSERT_EQ(Status::OK,
                kvs_.Put(key,
                         span(buffer.data(),
                              chunk_len - kvs_attr.ChunkHeaderSize() -
                                  kvs_attr.KeySize())));
      size_to_fill -= chunk_len;
      chunk_len = std::min(size_to_fill, kMaxPutSize);
    }
    ASSERT_EQ(Status::OK, kvs_.Delete(key));
  }

  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs_;
};

}  // namespace

TEST_F(EmptyInitializedKvs, Put_SameKeySameValueRepeatedly_AlignedEntries) {
  std::array<char, 8> value{'v', 'a', 'l', 'u', 'e', '6', '7', '\0'};

  for (int i = 0; i < 1000; ++i) {
    ASSERT_EQ(Status::OK, kvs_.Put("The Key!", as_bytes(span(value))));
  }
}

TEST_F(EmptyInitializedKvs, Put_SameKeySameValueRepeatedly_UnalignedEntries) {
  std::array<char, 7> value{'v', 'a', 'l', 'u', 'e', '6', '\0'};

  for (int i = 0; i < 1000; ++i) {
    ASSERT_EQ(Status::OK, kvs_.Put("The Key!", as_bytes(span(value))));
  }
}

TEST_F(EmptyInitializedKvs, Put_SameKeyDifferentValuesRepeatedly) {
  std::array<char, 10> value{'v', 'a', 'l', 'u', 'e', '6', '7', '8', '9', '\0'};

  for (int i = 0; i < 100; ++i) {
    for (unsigned size = 0; size < value.size(); ++size) {
      ASSERT_EQ(Status::OK, kvs_.Put("The Key!", i));
    }
  }
}

TEST_F(EmptyInitializedKvs, Put_MaxValueSize) {
  size_t max_value_size =
      test_partition.sector_size_bytes() - sizeof(EntryHeader) - 1;

  // Use the large_test_flash as a big chunk of data for the Put statement.
  ASSERT_GT(sizeof(large_test_flash), max_value_size + 2 * sizeof(EntryHeader));
  auto big_data = as_bytes(span(&large_test_flash, 1));

  EXPECT_EQ(Status::OK, kvs_.Put("K", big_data.subspan(0, max_value_size)));

  // Larger than maximum is rejected.
  EXPECT_EQ(Status::INVALID_ARGUMENT,
            kvs_.Put("K", big_data.subspan(0, max_value_size + 1)));
  EXPECT_EQ(Status::INVALID_ARGUMENT, kvs_.Put("K", big_data));
}

TEST_F(EmptyInitializedKvs, PutAndGetByValue_ConvertibleToSpan) {
  constexpr float input[] = {1.0, -3.5};
  ASSERT_EQ(Status::OK, kvs_.Put("key", input));

  float output[2] = {};
  ASSERT_EQ(Status::OK, kvs_.Get("key", &output));
  EXPECT_EQ(input[0], output[0]);
  EXPECT_EQ(input[1], output[1]);
}

TEST_F(EmptyInitializedKvs, PutAndGetByValue_Span) {
  float input[] = {1.0, -3.5};
  ASSERT_EQ(Status::OK, kvs_.Put("key", span(input)));

  float output[2] = {};
  ASSERT_EQ(Status::OK, kvs_.Get("key", &output));
  EXPECT_EQ(input[0], output[0]);
  EXPECT_EQ(input[1], output[1]);
}

TEST_F(EmptyInitializedKvs, PutAndGetByValue_NotConvertibleToSpan) {
  struct TestStruct {
    double a;
    bool b;
  };
  const TestStruct input{-1234.5, true};

  ASSERT_EQ(Status::OK, kvs_.Put("key", input));

  TestStruct output;
  ASSERT_EQ(Status::OK, kvs_.Get("key", &output));
  EXPECT_EQ(input.a, output.a);
  EXPECT_EQ(input.b, output.b);
}

TEST_F(EmptyInitializedKvs, Get_Simple) {
  ASSERT_EQ(Status::OK, kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[16];
  auto result = kvs_.Get("Charles", as_writable_bytes(span(value)));
  EXPECT_EQ(Status::OK, result.status());
  EXPECT_EQ(sizeof("Mingus"), result.size());
  EXPECT_STREQ("Mingus", value);
}

TEST_F(EmptyInitializedKvs, Get_WithOffset) {
  ASSERT_EQ(Status::OK, kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[16];
  auto result = kvs_.Get("Charles", as_writable_bytes(span(value)), 4);
  EXPECT_EQ(Status::OK, result.status());
  EXPECT_EQ(sizeof("Mingus") - 4, result.size());
  EXPECT_STREQ("us", value);
}

TEST_F(EmptyInitializedKvs, Get_WithOffset_FillBuffer) {
  ASSERT_EQ(Status::OK, kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[4] = {};
  auto result = kvs_.Get("Charles", as_writable_bytes(span(value, 3)), 1);
  EXPECT_EQ(Status::RESOURCE_EXHAUSTED, result.status());
  EXPECT_EQ(3u, result.size());
  EXPECT_STREQ("ing", value);
}

TEST_F(EmptyInitializedKvs, Get_WithOffset_PastEnd) {
  ASSERT_EQ(Status::OK, kvs_.Put("Charles", as_bytes(span("Mingus"))));

  char value[16];
  auto result =
      kvs_.Get("Charles", as_writable_bytes(span(value)), sizeof("Mingus") + 1);
  EXPECT_EQ(Status::OUT_OF_RANGE, result.status());
  EXPECT_EQ(0u, result.size());
}

TEST_F(EmptyInitializedKvs, GetValue) {
  ASSERT_EQ(Status::OK, kvs_.Put("key", uint32_t(0xfeedbeef)));

  uint32_t value = 0;
  EXPECT_EQ(Status::OK, kvs_.Get("key", &value));
  EXPECT_EQ(uint32_t(0xfeedbeef), value);
}

TEST_F(EmptyInitializedKvs, GetValue_TooSmall) {
  ASSERT_EQ(Status::OK, kvs_.Put("key", uint32_t(0xfeedbeef)));

  uint8_t value = 0;
  EXPECT_EQ(Status::INVALID_ARGUMENT, kvs_.Get("key", &value));
  EXPECT_EQ(0u, value);
}

TEST_F(EmptyInitializedKvs, GetValue_TooLarge) {
  ASSERT_EQ(Status::OK, kvs_.Put("key", uint32_t(0xfeedbeef)));

  uint64_t value = 0;
  EXPECT_EQ(Status::INVALID_ARGUMENT, kvs_.Get("key", &value));
  EXPECT_EQ(0u, value);
}

TEST_F(EmptyInitializedKvs, Delete_GetDeletedKey_ReturnsNotFound) {
  ASSERT_EQ(Status::OK, kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(Status::OK, kvs_.Delete("kEy"));

  EXPECT_EQ(Status::NOT_FOUND, kvs_.Get("kEy", {}).status());
  EXPECT_EQ(Status::NOT_FOUND, kvs_.ValueSize("kEy").status());
}

TEST_F(EmptyInitializedKvs, Delete_AddBackKey_PersistsAfterInitialization) {
  ASSERT_EQ(Status::OK, kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(Status::OK, kvs_.Delete("kEy"));

  EXPECT_EQ(Status::OK, kvs_.Put("kEy", as_bytes(span("45678"))));
  char data[6] = {};
  ASSERT_EQ(Status::OK, kvs_.Get("kEy", &data));
  EXPECT_STREQ(data, "45678");

  // Ensure that the re-added key is still present after reinitialization.
  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> new_kvs(&test_partition,
                                                              default_format);
  ASSERT_EQ(Status::OK, new_kvs.Init());

  EXPECT_EQ(Status::OK, new_kvs.Put("kEy", as_bytes(span("45678"))));
  char new_data[6] = {};
  EXPECT_EQ(Status::OK, new_kvs.Get("kEy", &new_data));
  EXPECT_STREQ(data, "45678");
}

TEST_F(EmptyInitializedKvs, Delete_AllItems_KvsIsEmpty) {
  ASSERT_EQ(Status::OK, kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(Status::OK, kvs_.Delete("kEy"));

  EXPECT_EQ(0u, kvs_.size());
  EXPECT_TRUE(kvs_.empty());
}

TEST_F(EmptyInitializedKvs, Collision_WithPresentKey) {
  // Both hash to 0x19df36f0.
  constexpr std::string_view key1 = "D4";
  constexpr std::string_view key2 = "dFU6S";

  ASSERT_EQ(Status::OK, kvs_.Put(key1, 1000));

  EXPECT_EQ(Status::ALREADY_EXISTS, kvs_.Put(key2, 999));

  int value = 0;
  EXPECT_EQ(Status::OK, kvs_.Get(key1, &value));
  EXPECT_EQ(1000, value);

  EXPECT_EQ(Status::NOT_FOUND, kvs_.Get(key2, &value));
  EXPECT_EQ(Status::NOT_FOUND, kvs_.ValueSize(key2).status());
  EXPECT_EQ(Status::NOT_FOUND, kvs_.Delete(key2));
}

TEST_F(EmptyInitializedKvs, Collision_WithDeletedKey) {
  // Both hash to 0x4060f732.
  constexpr std::string_view key1 = "1U2";
  constexpr std::string_view key2 = "ahj9d";

  ASSERT_EQ(Status::OK, kvs_.Put(key1, 1000));
  ASSERT_EQ(Status::OK, kvs_.Delete(key1));

  // key2 collides with key1's tombstone.
  EXPECT_EQ(Status::ALREADY_EXISTS, kvs_.Put(key2, 999));

  int value = 0;
  EXPECT_EQ(Status::NOT_FOUND, kvs_.Get(key1, &value));

  EXPECT_EQ(Status::NOT_FOUND, kvs_.Get(key2, &value));
  EXPECT_EQ(Status::NOT_FOUND, kvs_.ValueSize(key2).status());
  EXPECT_EQ(Status::NOT_FOUND, kvs_.Delete(key2));
}

TEST_F(EmptyInitializedKvs, Iteration_Empty_ByReference) {
  for (const KeyValueStore::Item& entry : kvs_) {
    FAIL();  // The KVS is empty; this shouldn't execute.
    static_cast<void>(entry);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_Empty_ByValue) {
  for (KeyValueStore::Item entry : kvs_) {
    FAIL();  // The KVS is empty; this shouldn't execute.
    static_cast<void>(entry);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_OneItem) {
  ASSERT_EQ(Status::OK, kvs_.Put("kEy", as_bytes(span("123"))));

  for (KeyValueStore::Item entry : kvs_) {
    EXPECT_STREQ(entry.key(), "kEy");  // Make sure null-terminated.

    char temp[sizeof("123")] = {};
    EXPECT_EQ(Status::OK, entry.Get(&temp));
    EXPECT_STREQ("123", temp);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetWithOffset) {
  ASSERT_EQ(Status::OK, kvs_.Put("key", as_bytes(span("not bad!"))));

  for (KeyValueStore::Item entry : kvs_) {
    char temp[5];
    auto result = entry.Get(as_writable_bytes(span(temp)), 4);
    EXPECT_EQ(Status::OK, result.status());
    EXPECT_EQ(5u, result.size());
    EXPECT_STREQ("bad!", temp);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetValue) {
  ASSERT_EQ(Status::OK, kvs_.Put("key", uint32_t(0xfeedbeef)));

  for (KeyValueStore::Item entry : kvs_) {
    uint32_t value = 0;
    EXPECT_EQ(Status::OK, entry.Get(&value));
    EXPECT_EQ(uint32_t(0xfeedbeef), value);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetValue_TooSmall) {
  ASSERT_EQ(Status::OK, kvs_.Put("key", uint32_t(0xfeedbeef)));

  for (KeyValueStore::Item entry : kvs_) {
    uint8_t value = 0;
    EXPECT_EQ(Status::INVALID_ARGUMENT, entry.Get(&value));
    EXPECT_EQ(0u, value);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_GetValue_TooLarge) {
  ASSERT_EQ(Status::OK, kvs_.Put("key", uint32_t(0xfeedbeef)));

  for (KeyValueStore::Item entry : kvs_) {
    uint64_t value = 0;
    EXPECT_EQ(Status::INVALID_ARGUMENT, entry.Get(&value));
    EXPECT_EQ(0u, value);
  }
}

TEST_F(EmptyInitializedKvs, Iteration_EmptyAfterDeletion) {
  ASSERT_EQ(Status::OK, kvs_.Put("kEy", as_bytes(span("123"))));
  ASSERT_EQ(Status::OK, kvs_.Delete("kEy"));

  for (KeyValueStore::Item entry : kvs_) {
    static_cast<void>(entry);
    FAIL();
  }
}

TEST_F(EmptyInitializedKvs, FuzzTest) {
  if (test_partition.sector_size_bytes() < 4 * 1024 ||
      test_partition.sector_count() < 4) {
    PW_LOG_INFO("Sectors too small, skipping test.");
    return;  // TODO: Test could be generalized
  }
  const char* key1 = "Buf1";
  const char* key2 = "Buf2";
  const size_t kLargestBufSize = 3 * 1024;
  static byte buf1[kLargestBufSize];
  static byte buf2[kLargestBufSize];
  std::memset(buf1, 1, sizeof(buf1));
  std::memset(buf2, 2, sizeof(buf2));

  // Start with things in KVS
  ASSERT_EQ(Status::OK, kvs_.Put(key1, buf1));
  ASSERT_EQ(Status::OK, kvs_.Put(key2, buf2));
  for (size_t j = 0; j < keys.size(); j++) {
    ASSERT_EQ(Status::OK, kvs_.Put(keys[j], j));
  }

  for (size_t i = 0; i < 100; i++) {
    // Vary two sizes
    size_t size1 = (kLargestBufSize) / (i + 1);
    size_t size2 = (kLargestBufSize) / (100 - i);
    for (size_t j = 0; j < 50; j++) {
      // Rewrite a single key many times, can fill up a sector
      ASSERT_EQ(Status::OK, kvs_.Put("some_data", j));
    }
    // Delete and re-add everything
    ASSERT_EQ(Status::OK, kvs_.Delete(key1));
    ASSERT_EQ(Status::OK, kvs_.Put(key1, span(buf1, size1)));
    ASSERT_EQ(Status::OK, kvs_.Delete(key2));
    ASSERT_EQ(Status::OK, kvs_.Put(key2, span(buf2, size2)));
    for (size_t j = 0; j < keys.size(); j++) {
      ASSERT_EQ(Status::OK, kvs_.Delete(keys[j]));
      ASSERT_EQ(Status::OK, kvs_.Put(keys[j], j));
    }

    // Re-enable and verify
    ASSERT_EQ(Status::OK, kvs_.Init());
    static byte buf[4 * 1024];
    ASSERT_EQ(Status::OK, kvs_.Get(key1, span(buf, size1)).status());
    ASSERT_EQ(std::memcmp(buf, buf1, size1), 0);
    ASSERT_EQ(Status::OK, kvs_.Get(key2, span(buf, size2)).status());
    ASSERT_EQ(std::memcmp(buf2, buf2, size2), 0);
    for (size_t j = 0; j < keys.size(); j++) {
      size_t ret = 1000;
      ASSERT_EQ(Status::OK, kvs_.Get(keys[j], &ret));
      ASSERT_EQ(ret, j);
    }
  }
}

TEST_F(EmptyInitializedKvs, Basic) {
  // Add some data
  uint8_t value1 = 0xDA;
  ASSERT_EQ(Status::OK,
            kvs_.Put(keys[0], as_bytes(span(&value1, sizeof(value1)))));

  uint32_t value2 = 0xBAD0301f;
  ASSERT_EQ(Status::OK, kvs_.Put(keys[1], value2));

  // Verify data
  uint32_t test2;
  EXPECT_EQ(Status::OK, kvs_.Get(keys[1], &test2));
  uint8_t test1;
  ASSERT_EQ(Status::OK, kvs_.Get(keys[0], &test1));

  EXPECT_EQ(test1, value1);
  EXPECT_EQ(test2, value2);

  // Delete a key
  EXPECT_EQ(Status::OK, kvs_.Delete(keys[0]));

  // Verify it was erased
  EXPECT_EQ(kvs_.Get(keys[0], &test1), Status::NOT_FOUND);
  test2 = 0;
  ASSERT_EQ(
      Status::OK,
      kvs_.Get(keys[1], span(reinterpret_cast<byte*>(&test2), sizeof(test2)))
          .status());
  EXPECT_EQ(test2, value2);

  // Delete other key
  kvs_.Delete(keys[1]);

  // Verify it was erased
  EXPECT_EQ(kvs_.size(), 0u);
}

#define ASSERT_OK(expr) ASSERT_EQ(Status::OK, expr)
#define EXPECT_OK(expr) EXPECT_EQ(Status::OK, expr)

TEST(InMemoryKvs, WriteOneKeyMultipleTimes) {
  // Create and erase the fake flash. It will persist across reloads.
  Flash flash;
  ASSERT_OK(flash.partition.Erase());

  int num_reloads = 2;
  for (int reload = 0; reload < num_reloads; ++reload) {
    DBG("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx");
    DBG("xxx                                      xxxx");
    DBG("xxx               Reload %2d              xxxx", reload);
    DBG("xxx                                      xxxx");
    DBG("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx");

    // Create and initialize the KVS.
    constexpr EntryFormat format{.magic = 0xBAD'C0D3, .checksum = nullptr};
    KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs(&flash.partition,
                                                            format);
    ASSERT_OK(kvs.Init());

    // Write the same entry many times.
    const char* key = "abcd";
    const size_t num_writes = 99;
    uint32_t written_value;
    EXPECT_EQ(kvs.size(), (reload == 0) ? 0 : 1u);
    for (uint32_t i = 0; i < num_writes; ++i) {
      DBG("PUT #%zu for key %s with value %zu", size_t(i), key, size_t(i));

      written_value = i + 0xfc;  // Prevent accidental pass with zero.
      EXPECT_OK(kvs.Put(key, written_value));
      EXPECT_EQ(kvs.size(), 1u);
    }

    // Verify that we can read the value back.
    DBG("GET final value for key: %s", key);
    uint32_t actual_value;
    EXPECT_OK(kvs.Get(key, &actual_value));
    EXPECT_EQ(actual_value, written_value);

    char fname_buf[64] = {'\0'};
    snprintf(&fname_buf[0],
             sizeof(fname_buf),
             "WriteOneKeyMultipleTimes_%d.bin",
             reload);
    flash.Dump(fname_buf);
  }
}

TEST(InMemoryKvs, WritingMultipleKeysIncreasesSize) {
  // Create and erase the fake flash.
  Flash flash;
  ASSERT_OK(flash.partition.Erase());

  // Create and initialize the KVS.
  constexpr EntryFormat format{.magic = 0xBAD'C0D3, .checksum = nullptr};
  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs(&flash.partition,
                                                          format);
  ASSERT_OK(kvs.Init());

  // Write the same entry many times.
  const size_t num_writes = 10;
  EXPECT_EQ(kvs.size(), 0u);
  for (size_t i = 0; i < num_writes; ++i) {
    StringBuffer<150> key;
    key << "key_" << i;
    DBG("PUT #%zu for key %s with value %zu", i, key.c_str(), i);

    size_t value = i + 77;  // Prevent accidental pass with zero.
    EXPECT_OK(kvs.Put(key.view(), value));
    EXPECT_EQ(kvs.size(), i + 1);
  }
  flash.Dump("WritingMultipleKeysIncreasesSize.bin");
}

TEST(InMemoryKvs, WriteAndReadOneKey) {
  // Create and erase the fake flash.
  Flash flash;
  ASSERT_OK(flash.partition.Erase());

  // Create and initialize the KVS.
  constexpr EntryFormat format{.magic = 0xBAD'C0D3, .checksum = nullptr};
  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs(&flash.partition,
                                                          format);
  ASSERT_OK(kvs.Init());

  // Add one entry.
  const char* key = "Key1";
  DBG("PUT value for key: %s", key);
  uint8_t written_value = 0xDA;
  ASSERT_OK(kvs.Put(key, written_value));
  EXPECT_EQ(kvs.size(), 1u);

  DBG("GET value for key: %s", key);
  uint8_t actual_value;
  ASSERT_OK(kvs.Get(key, &actual_value));
  EXPECT_EQ(actual_value, written_value);

  EXPECT_EQ(kvs.size(), 1u);
}

TEST(InMemoryKvs, WriteOneKeyValueMultipleTimes) {
  // Create and erase the fake flash.
  Flash flash;
  ASSERT_OK(flash.partition.Erase());

  // Create and initialize the KVS.
  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs(&flash.partition,
                                                          default_format);
  ASSERT_OK(kvs.Init());

  // Add one entry, with the same key and value, multiple times.
  const char* key = "Key1";
  uint8_t written_value = 0xDA;
  for (int i = 0; i < 50; i++) {
    DBG("PUT [%d] value for key: %s", i, key);
    ASSERT_OK(kvs.Put(key, written_value));
    EXPECT_EQ(kvs.size(), 1u);
  }

  DBG("GET value for key: %s", key);
  uint8_t actual_value;
  ASSERT_OK(kvs.Get(key, &actual_value));
  EXPECT_EQ(actual_value, written_value);

  // Verify that only one entry was written to the KVS.
  EXPECT_EQ(kvs.size(), 1u);
  EXPECT_EQ(kvs.transaction_count(), 1u);
  KeyValueStore::StorageStats stats = kvs.GetStorageStats();
  EXPECT_EQ(stats.reclaimable_bytes, 0u);
}

TEST(InMemoryKvs, Basic) {
  const char* key1 = "Key1";
  const char* key2 = "Key2";

  // Create and erase the fake flash.
  Flash flash;
  ASSERT_EQ(Status::OK, flash.partition.Erase());

  // Create and initialize the KVS.
  constexpr EntryFormat format{.magic = 0xBAD'C0D3, .checksum = nullptr};
  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs(&flash.partition,
                                                          format);
  ASSERT_OK(kvs.Init());

  // Add two entries with different keys and values.
  uint8_t value1 = 0xDA;
  ASSERT_OK(kvs.Put(key1, as_bytes(span(&value1, sizeof(value1)))));
  EXPECT_EQ(kvs.size(), 1u);

  uint32_t value2 = 0xBAD0301f;
  ASSERT_OK(kvs.Put(key2, value2));
  EXPECT_EQ(kvs.size(), 2u);

  // Verify data
  uint32_t test2;
  EXPECT_OK(kvs.Get(key2, &test2));

  uint8_t test1;
  ASSERT_OK(kvs.Get(key1, &test1));

  EXPECT_EQ(test1, value1);
  EXPECT_EQ(test2, value2);

  EXPECT_EQ(kvs.size(), 2u);
}

TEST_F(EmptyInitializedKvs, MaxKeyLength) {
  // Add some data
  char key[16] = "123456789abcdef";  // key length 15 (without \0)
  int value = 1;
  ASSERT_EQ(Status::OK, kvs_.Put(key, value));

  // Verify data
  int test = 0;
  ASSERT_EQ(Status::OK, kvs_.Get(key, &test));
  EXPECT_EQ(test, value);

  // Delete a key
  EXPECT_EQ(Status::OK, kvs_.Delete(key));

  // Verify it was erased
  EXPECT_EQ(kvs_.Get(key, &test), Status::NOT_FOUND);
}

TEST_F(EmptyInitializedKvs, LargeBuffers) {
  // Note this assumes that no other keys larger then key0
  static_assert(sizeof(keys[0]) >= sizeof(keys[1]) &&
                sizeof(keys[0]) >= sizeof(keys[2]));
  KvsAttributes kvs_attr(std::strlen(keys[0]), buffer.size());

  // Verify the data will fit in this test partition. This checks that all the
  // keys chunks will fit and a header for each sector will fit. It requires 1
  // empty sector also.
  const size_t kMinSize = kvs_attr.MinPutSize() * keys.size();
  const size_t kAvailSectorSpace =
      test_partition.sector_size_bytes() * (test_partition.sector_count() - 1);
  if (kAvailSectorSpace < kMinSize) {
    PW_LOG_INFO("KVS too small, skipping test.");
    return;
  }

  // Add and verify
  for (unsigned add_idx = 0; add_idx < keys.size(); add_idx++) {
    std::memset(buffer.data(), add_idx, buffer.size());
    ASSERT_EQ(Status::OK, kvs_.Put(keys[add_idx], buffer));
    EXPECT_EQ(kvs_.size(), add_idx + 1);
    for (unsigned verify_idx = 0; verify_idx <= add_idx; verify_idx++) {
      std::memset(buffer.data(), 0, buffer.size());
      ASSERT_EQ(Status::OK, kvs_.Get(keys[verify_idx], buffer).status());
      for (unsigned i = 0; i < buffer.size(); i++) {
        EXPECT_EQ(static_cast<unsigned>(buffer[i]), verify_idx);
      }
    }
  }

  // Erase and verify
  for (unsigned erase_idx = 0; erase_idx < keys.size(); erase_idx++) {
    ASSERT_EQ(Status::OK, kvs_.Delete(keys[erase_idx]));
    EXPECT_EQ(kvs_.size(), keys.size() - erase_idx - 1);
    for (unsigned verify_idx = 0; verify_idx < keys.size(); verify_idx++) {
      std::memset(buffer.data(), 0, buffer.size());
      if (verify_idx <= erase_idx) {
        ASSERT_EQ(kvs_.Get(keys[verify_idx], buffer).status(),
                  Status::NOT_FOUND);
      } else {
        ASSERT_EQ(Status::OK, kvs_.Get(keys[verify_idx], buffer).status());
        for (uint32_t i = 0; i < buffer.size(); i++) {
          EXPECT_EQ(buffer[i], static_cast<byte>(verify_idx));
        }
      }
    }
  }
}

TEST_F(EmptyInitializedKvs, Enable) {
  KvsAttributes kvs_attr(std::strlen(keys[0]), buffer.size());

  // Verify the data will fit in this test partition. This checks that all the
  // keys chunks will fit and a header for each sector will fit. It requires 1
  // empty sector also.
  const size_t kMinSize = kvs_attr.MinPutSize() * keys.size();
  const size_t kAvailSectorSpace =
      test_partition.sector_size_bytes() * (test_partition.sector_count() - 1);
  if (kAvailSectorSpace < kMinSize) {
    PW_LOG_INFO("KVS too small, skipping test.");
    return;
  }

  // Add some items
  for (unsigned add_idx = 0; add_idx < keys.size(); add_idx++) {
    std::memset(buffer.data(), add_idx, buffer.size());
    ASSERT_EQ(Status::OK, kvs_.Put(keys[add_idx], buffer));
    EXPECT_EQ(kvs_.size(), add_idx + 1);
  }

  // Enable different KVS which should be able to properly setup the same map
  // from what is stored in flash.
  static KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs_local(
      &test_partition, default_format);
  ASSERT_EQ(Status::OK, kvs_local.Init());
  EXPECT_EQ(kvs_local.size(), keys.size());

  // Ensure adding to new KVS works
  uint8_t value = 0xDA;
  const char* key = "new_key";
  ASSERT_EQ(Status::OK, kvs_local.Put(key, value));
  uint8_t test;
  ASSERT_EQ(Status::OK, kvs_local.Get(key, &test));
  EXPECT_EQ(value, test);
  EXPECT_EQ(kvs_local.size(), keys.size() + 1);

  // Verify previous data
  for (unsigned verify_idx = 0; verify_idx < keys.size(); verify_idx++) {
    std::memset(buffer.data(), 0, buffer.size());
    ASSERT_EQ(Status::OK, kvs_local.Get(keys[verify_idx], buffer).status());
    for (uint32_t i = 0; i < buffer.size(); i++) {
      EXPECT_EQ(static_cast<unsigned>(buffer[i]), verify_idx);
    }
  }
}

TEST_F(EmptyInitializedKvs, MultiSector) {
  // Calculate number of elements to ensure multiple sectors are required.
  uint16_t add_count = (test_partition.sector_size_bytes() / buffer.size()) + 1;

  if (kvs_.max_size() < add_count) {
    PW_LOG_INFO("Sector size too large, skipping test.");
    return;  // this chip has very large sectors, test won't work
  }
  if (test_partition.sector_count() < 3) {
    PW_LOG_INFO("Not enough sectors, skipping test.");
    return;  // need at least 3 sectors for multi-sector test
  }

  char key[20];
  for (unsigned add_idx = 0; add_idx < add_count; add_idx++) {
    std::memset(buffer.data(), add_idx, buffer.size());
    snprintf(key, sizeof(key), "key_%u", add_idx);
    ASSERT_EQ(Status::OK, kvs_.Put(key, buffer));
    EXPECT_EQ(kvs_.size(), add_idx + 1);
  }

  for (unsigned verify_idx = 0; verify_idx < add_count; verify_idx++) {
    std::memset(buffer.data(), 0, buffer.size());
    snprintf(key, sizeof(key), "key_%u", verify_idx);
    ASSERT_EQ(Status::OK, kvs_.Get(key, buffer).status());
    for (uint32_t i = 0; i < buffer.size(); i++) {
      EXPECT_EQ(static_cast<unsigned>(buffer[i]), verify_idx);
    }
  }

  // Check erase
  for (unsigned erase_idx = 0; erase_idx < add_count; erase_idx++) {
    snprintf(key, sizeof(key), "key_%u", erase_idx);
    ASSERT_EQ(Status::OK, kvs_.Delete(key));
    EXPECT_EQ(kvs_.size(), add_count - erase_idx - 1);
  }
}

TEST_F(EmptyInitializedKvs, RewriteValue) {
  // Write first value
  const uint8_t kValue1 = 0xDA;
  const uint8_t kValue2 = 0x12;
  const char* key = "the_key";
  ASSERT_EQ(Status::OK, kvs_.Put(key, as_bytes(span(&kValue1, 1))));

  // Verify
  uint8_t value;
  ASSERT_EQ(Status::OK,
            kvs_.Get(key, as_writable_bytes(span(&value, 1))).status());
  EXPECT_EQ(kValue1, value);

  // Write new value for key
  ASSERT_EQ(Status::OK, kvs_.Put(key, as_bytes(span(&kValue2, 1))));

  // Verify
  ASSERT_EQ(Status::OK,
            kvs_.Get(key, as_writable_bytes(span(&value, 1))).status());
  EXPECT_EQ(kValue2, value);

  // Verify only 1 element exists
  EXPECT_EQ(kvs_.size(), 1u);
}

TEST_F(EmptyInitializedKvs, RepeatingValueWithOtherData) {
  std::byte set_buf[150];
  std::byte get_buf[sizeof(set_buf)];

  for (size_t set_index = 0; set_index < sizeof(set_buf); set_index++) {
    set_buf[set_index] = static_cast<std::byte>(set_index);
  }

  StatusWithSize result;

  // Test setting the same entry 10 times but varying the amount of data
  // that is already in env before each test
  for (size_t test_iteration = 0; test_iteration < sizeof(set_buf);
       test_iteration++) {
    // TOD0: Add KVS erase
    // Add a constant unchanging entry so that the updates are not
    // the only entries in the env.  The size of this initial entry
    // we vary between no bytes to sizeof(set_buf).
    ASSERT_EQ(Status::OK,
              kvs_.Put("const_entry", span(set_buf, test_iteration)));

    // The value we read back should be the last value we set
    std::memset(get_buf, 0, sizeof(get_buf));
    result = kvs_.Get("const_entry", span(get_buf));
    ASSERT_EQ(Status::OK, result.status());
    ASSERT_EQ(result.size(), test_iteration);
    for (size_t j = 0; j < test_iteration; j++) {
      EXPECT_EQ(set_buf[j], get_buf[j]);
    }

    // Update the test entry 5 times
    static_assert(sizeof(std::byte) == sizeof(uint8_t));
    uint8_t set_entry_buf[]{1, 2, 3, 4, 5, 6, 7, 8};
    std::byte* set_entry = reinterpret_cast<std::byte*>(set_entry_buf);
    std::byte get_entry_buf[sizeof(set_entry_buf)];
    for (size_t i = 0; i < 5; i++) {
      set_entry[0] = static_cast<std::byte>(i);
      ASSERT_EQ(Status::OK,
                kvs_.Put("test_entry", span(set_entry, sizeof(set_entry_buf))));
      std::memset(get_entry_buf, 0, sizeof(get_entry_buf));
      result = kvs_.Get("test_entry", span(get_entry_buf));
      ASSERT_TRUE(result.ok());
      ASSERT_EQ(result.size(), sizeof(get_entry_buf));
      for (uint32_t j = 0; j < sizeof(set_entry_buf); j++) {
        EXPECT_EQ(set_entry[j], get_entry_buf[j]);
      }
    }

    // Check that the const entry is still present and has the right value
    std::memset(get_buf, 0, sizeof(get_buf));
    result = kvs_.Get("const_entry", span(get_buf));
    ASSERT_TRUE(result.ok());
    ASSERT_EQ(result.size(), test_iteration);
    for (size_t j = 0; j < test_iteration; j++) {
      EXPECT_EQ(set_buf[j], get_buf[j]);
    }
  }
}

TEST_F(EmptyInitializedKvs, OffsetRead) {
  const char* key = "the_key";
  constexpr size_t kReadSize = 16;  // needs to be a multiple of alignment
  constexpr size_t kTestBufferSize = kReadSize * 10;
  ASSERT_GT(buffer.size(), kTestBufferSize);
  ASSERT_LE(kTestBufferSize, 0xFFu);

  // Write the entire buffer
  for (size_t i = 0; i < kTestBufferSize; i++) {
    buffer[i] = byte(i);
  }
  ASSERT_EQ(Status::OK, kvs_.Put(key, span(buffer.data(), kTestBufferSize)));
  EXPECT_EQ(kvs_.size(), 1u);

  // Read in small chunks and verify
  for (unsigned i = 0; i < kTestBufferSize / kReadSize; i++) {
    std::memset(buffer.data(), 0, buffer.size());
    StatusWithSize result =
        kvs_.Get(key, span(buffer.data(), kReadSize), i * kReadSize);

    ASSERT_EQ(kReadSize, result.size());

    // Only last iteration is OK since all remaining data was read.
    if (i == kTestBufferSize / kReadSize - 1) {
      ASSERT_EQ(Status::OK, result.status());
    } else {  // RESOURCE_EXHAUSTED, since there is still data to read.
      ASSERT_EQ(Status::RESOURCE_EXHAUSTED, result.status());
    }

    for (unsigned j = 0; j < kReadSize; j++) {
      ASSERT_EQ(static_cast<unsigned>(buffer[j]), j + i * kReadSize);
    }
  }
}

TEST_F(EmptyInitializedKvs, MultipleRewrite) {
  // Calculate number of elements to ensure multiple sectors are required.
  unsigned add_count = (test_partition.sector_size_bytes() / buffer.size()) + 1;

  const char* key = "the_key";
  constexpr uint8_t kGoodVal = 0x60;
  constexpr uint8_t kBadVal = 0xBA;
  std::memset(buffer.data(), kBadVal, buffer.size());
  for (unsigned add_idx = 0; add_idx < add_count; add_idx++) {
    if (add_idx == add_count - 1) {  // last value
      std::memset(buffer.data(), kGoodVal, buffer.size());
    }
    ASSERT_EQ(Status::OK, kvs_.Put(key, buffer));
    EXPECT_EQ(kvs_.size(), 1u);
  }

  // Verify
  std::memset(buffer.data(), 0, buffer.size());
  ASSERT_EQ(Status::OK, kvs_.Get(key, buffer).status());
  for (uint32_t i = 0; i < buffer.size(); i++) {
    ASSERT_EQ(buffer[i], static_cast<byte>(kGoodVal));
  }
}

TEST_F(EmptyInitializedKvs, FillSector) {
  ASSERT_EQ(std::strlen(keys[0]), 8U);  // Easier for alignment
  ASSERT_EQ(std::strlen(keys[2]), 8U);  // Easier for alignment
  constexpr size_t kTestDataSize = 8;
  KvsAttributes kvs_attr(std::strlen(keys[2]), kTestDataSize);
  int bytes_remaining = test_partition.sector_size_bytes();
  constexpr byte kKey0Pattern = byte{0xBA};

  std::memset(
      buffer.data(), static_cast<int>(kKey0Pattern), kvs_attr.DataSize());
  ASSERT_EQ(Status::OK,
            kvs_.Put(keys[0], span(buffer.data(), kvs_attr.DataSize())));
  bytes_remaining -= kvs_attr.MinPutSize();
  std::memset(buffer.data(), 1, kvs_attr.DataSize());
  ASSERT_EQ(Status::OK,
            kvs_.Put(keys[2], span(buffer.data(), kvs_attr.DataSize())));
  bytes_remaining -= kvs_attr.MinPutSize();
  EXPECT_EQ(kvs_.size(), 2u);
  ASSERT_EQ(Status::OK, kvs_.Delete(keys[2]));
  bytes_remaining -= kvs_attr.EraseSize();
  EXPECT_EQ(kvs_.size(), 1u);

  // Intentionally adding erase size to trigger sector cleanup
  bytes_remaining += kvs_attr.EraseSize();
  FillKvs(keys[2], bytes_remaining);

  // Verify key[0]
  std::memset(buffer.data(), 0, kvs_attr.DataSize());
  ASSERT_EQ(
      Status::OK,
      kvs_.Get(keys[0], span(buffer.data(), kvs_attr.DataSize())).status());
  for (uint32_t i = 0; i < kvs_attr.DataSize(); i++) {
    EXPECT_EQ(buffer[i], kKey0Pattern);
  }
}

TEST_F(EmptyInitializedKvs, Interleaved) {
  const uint8_t kValue1 = 0xDA;
  const uint8_t kValue2 = 0x12;
  uint8_t value;
  ASSERT_EQ(Status::OK, kvs_.Put(keys[0], kValue1));
  EXPECT_EQ(kvs_.size(), 1u);
  ASSERT_EQ(Status::OK, kvs_.Delete(keys[0]));
  EXPECT_EQ(kvs_.Get(keys[0], &value), Status::NOT_FOUND);
  ASSERT_EQ(Status::OK, kvs_.Put(keys[1], as_bytes(span(&kValue1, 1))));
  ASSERT_EQ(Status::OK, kvs_.Put(keys[2], kValue2));
  ASSERT_EQ(Status::OK, kvs_.Delete(keys[1]));
  EXPECT_EQ(Status::OK, kvs_.Get(keys[2], &value));
  EXPECT_EQ(kValue2, value);

  EXPECT_EQ(kvs_.size(), 1u);
}

TEST_F(EmptyInitializedKvs, DeleteAndReinitialize) {
  // Write value
  const uint8_t kValue = 0xDA;
  ASSERT_EQ(Status::OK, kvs_.Put(keys[0], kValue));

  ASSERT_EQ(Status::OK, kvs_.Delete(keys[0]));
  uint8_t value;
  ASSERT_EQ(kvs_.Get(keys[0], &value), Status::NOT_FOUND);

  // Reset KVS, ensure captured at enable
  ASSERT_EQ(Status::OK, kvs_.Init());

  ASSERT_EQ(kvs_.Get(keys[0], &value), Status::NOT_FOUND);
}

TEST_F(EmptyInitializedKvs, TemplatedPutAndGet) {
  // Store a value with the convenience method.
  const uint32_t kValue = 0x12345678;
  ASSERT_EQ(Status::OK, kvs_.Put(keys[0], kValue));

  // Read it back with the other convenience method.
  uint32_t value;
  ASSERT_EQ(Status::OK, kvs_.Get(keys[0], &value));
  ASSERT_EQ(kValue, value);

  // Make sure we cannot get something where size isn't what we expect
  const uint8_t kSmallValue = 0xBA;
  uint8_t small_value = kSmallValue;
  ASSERT_EQ(kvs_.Get(keys[0], &small_value), Status::INVALID_ARGUMENT);
  ASSERT_EQ(small_value, kSmallValue);
}

// This test is derived from bug that was discovered. Testing this corner case
// relies on creating a new key-value just under the size that is left over in
// the sector.
TEST_F(EmptyInitializedKvs, FillSector2) {
  if (test_partition.sector_count() < 3) {
    PW_LOG_INFO("Not enough sectors, skipping test.");
    return;  // need at least 3 sectors
  }

  // Start of by filling flash sector to near full
  constexpr int kHalfBufferSize = buffer.size() / 2;
  const int kSizeToFill = test_partition.sector_size_bytes() - kHalfBufferSize;
  constexpr size_t kTestDataSize = 8;
  KvsAttributes kvs_attr(std::strlen(keys[2]), kTestDataSize);

  FillKvs(keys[2], kSizeToFill);

  // Find out how much space is remaining for new key-value and confirm it
  // makes sense.
  size_t new_keyvalue_size = 0;
  size_t alignment = test_partition.alignment_bytes();
  // Starts on second sector since it will try to keep first sector free
  FlashPartition::Address read_address =
      2 * test_partition.sector_size_bytes() - alignment;
  for (; read_address > 0; read_address -= alignment) {
    bool is_erased = false;
    ASSERT_EQ(
        Status::OK,
        test_partition.IsRegionErased(read_address, alignment, &is_erased));
    if (is_erased) {
      new_keyvalue_size += alignment;
    } else {
      break;
    }
  }

  size_t expected_remaining = test_partition.sector_size_bytes() - kSizeToFill;
  ASSERT_EQ(new_keyvalue_size, expected_remaining);

  const char* kNewKey = "NewKey";
  constexpr size_t kValueLessThanChunkHeaderSize = 2;
  constexpr auto kTestPattern = byte{0xBA};
  new_keyvalue_size -= kValueLessThanChunkHeaderSize;
  std::memset(buffer.data(), static_cast<int>(kTestPattern), new_keyvalue_size);
  ASSERT_EQ(Status::OK,
            kvs_.Put(kNewKey, span(buffer.data(), new_keyvalue_size)));

  // In failed corner case, adding new key is deceptively successful. It isn't
  // until KVS is disabled and reenabled that issue can be detected.
  ASSERT_EQ(Status::OK, kvs_.Init());

  // Might as well check that new key-value is what we expect it to be
  ASSERT_EQ(Status::OK,
            kvs_.Get(kNewKey, span(buffer.data(), new_keyvalue_size)).status());
  for (size_t i = 0; i < new_keyvalue_size; i++) {
    EXPECT_EQ(buffer[i], kTestPattern);
  }
}

TEST_F(EmptyInitializedKvs, ValueSize_Positive) {
  constexpr auto kData = AsBytes('h', 'i', '!');
  ASSERT_EQ(Status::OK, kvs_.Put("TheKey", kData));

  auto result = kvs_.ValueSize("TheKey");

  EXPECT_EQ(Status::OK, result.status());
  EXPECT_EQ(kData.size(), result.size());
}

TEST_F(EmptyInitializedKvs, ValueSize_Zero) {
  ASSERT_EQ(Status::OK, kvs_.Put("TheKey", as_bytes(span("123", 3))));
  auto result = kvs_.ValueSize("TheKey");

  EXPECT_EQ(Status::OK, result.status());
  EXPECT_EQ(3u, result.size());
}

TEST_F(EmptyInitializedKvs, ValueSize_InvalidKey) {
  EXPECT_EQ(Status::INVALID_ARGUMENT, kvs_.ValueSize("").status());
}

TEST_F(EmptyInitializedKvs, ValueSize_MissingKey) {
  EXPECT_EQ(Status::NOT_FOUND, kvs_.ValueSize("Not in there").status());
}

TEST_F(EmptyInitializedKvs, ValueSize_DeletedKey) {
  ASSERT_EQ(Status::OK, kvs_.Put("TheKey", as_bytes(span("123", 3))));
  ASSERT_EQ(Status::OK, kvs_.Delete("TheKey"));

  EXPECT_EQ(Status::NOT_FOUND, kvs_.ValueSize("TheKey").status());
}

#if USE_MEMORY_BUFFER

class LargeEmptyInitializedKvs : public ::testing::Test {
 protected:
  LargeEmptyInitializedKvs() : kvs_(&large_test_partition, default_format) {
    ASSERT_EQ(
        Status::OK,
        large_test_partition.Erase(0, large_test_partition.sector_count()));
    ASSERT_EQ(Status::OK, kvs_.Init());
  }

  KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs_;
};

TEST_F(LargeEmptyInitializedKvs, Basic) {
  const uint8_t kValue1 = 0xDA;
  const uint8_t kValue2 = 0x12;
  uint8_t value;
  ASSERT_EQ(Status::OK, kvs_.Put(keys[0], kValue1));
  EXPECT_EQ(kvs_.size(), 1u);
  ASSERT_EQ(Status::OK, kvs_.Delete(keys[0]));
  EXPECT_EQ(kvs_.Get(keys[0], &value), Status::NOT_FOUND);
  ASSERT_EQ(Status::OK, kvs_.Put(keys[1], kValue1));
  ASSERT_EQ(Status::OK, kvs_.Put(keys[2], kValue2));
  ASSERT_EQ(Status::OK, kvs_.Delete(keys[1]));
  EXPECT_EQ(Status::OK, kvs_.Get(keys[2], &value));
  EXPECT_EQ(kValue2, value);
  ASSERT_EQ(kvs_.Get(keys[1], &value), Status::NOT_FOUND);
  EXPECT_EQ(kvs_.size(), 1u);
}

#endif  // USE_MEMORY_BUFFER

TEST_F(EmptyInitializedKvs, CallingEraseTwice_NothingWrittenToFlash) {
  const uint8_t kValue = 0xDA;
  ASSERT_EQ(Status::OK, kvs_.Put(keys[0], kValue));
  ASSERT_EQ(Status::OK, kvs_.Delete(keys[0]));

  // Compare before / after checksums to verify that nothing was written.
  const uint16_t crc = checksum::CcittCrc16(test_flash.buffer());

  EXPECT_EQ(kvs_.Delete(keys[0]), Status::NOT_FOUND);

  EXPECT_EQ(crc, checksum::CcittCrc16(test_flash.buffer()));
}

}  // namespace pw::kvs