aboutsummaryrefslogtreecommitdiff
path: root/pw_multisink/multisink_test.cc
blob: 1f5bea91e778343d09532b0aebf3237d1df6b78c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// Copyright 2021 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

#include "pw_multisink/multisink.h"

#include <array>
#include <cstdint>
#include <cstring>
#include <optional>
#include <span>
#include <string_view>

#include "gtest/gtest.h"
#include "pw_function/function.h"
#include "pw_status/status.h"

namespace pw::multisink {
using Drain = MultiSink::Drain;
using Listener = MultiSink::Listener;

class CountingListener : public Listener {
 public:
  void OnNewEntryAvailable() override { notification_count_++; }

  size_t GetNotificationCount() { return notification_count_; }

  void ResetNotificationCount() { notification_count_ = 0; }

 private:
  size_t notification_count_ = 0;
};

class MultiSinkTest : public ::testing::Test {
 protected:
  static constexpr std::byte kMessage[] = {
      (std::byte)0xDE, (std::byte)0xAD, (std::byte)0xBE, (std::byte)0xEF};
  static constexpr std::byte kMessageOther[] = {
      (std::byte)0x12, (std::byte)0x34, (std::byte)0x56, (std::byte)0x78};
  static constexpr size_t kMaxDrains = 3;
  static constexpr size_t kMaxListeners = 3;
  static constexpr size_t kEntryBufferSize = 1024;
  static constexpr size_t kBufferSize = 5 * kEntryBufferSize;

  MultiSinkTest() : multisink_(buffer_) {}

  // Expects the peeked or popped message to equal the provided non-empty
  // message, and the drop count to match. If `expected_message` is empty, the
  // Pop call status expected is OUT_OF_RANGE.
  void ExpectMessageAndDropCounts(Result<ConstByteSpan>& result,
                                  uint32_t result_drop_count,
                                  uint32_t result_ingress_drop_count,
                                  std::optional<ConstByteSpan> expected_message,
                                  uint32_t expected_drop_count,
                                  uint32_t expected_ingress_drop_count) {
    if (!expected_message.has_value()) {
      EXPECT_EQ(Status::OutOfRange(), result.status());
    } else {
      ASSERT_EQ(result.status(), OkStatus());
      if (!expected_message.value().empty()) {
        ASSERT_FALSE(result.value().empty());
        ASSERT_EQ(result.value().size_bytes(),
                  expected_message.value().size_bytes());
        EXPECT_EQ(memcmp(result.value().data(),
                         expected_message.value().data(),
                         expected_message.value().size_bytes()),
                  0);
      }
    }
    EXPECT_EQ(result_drop_count, expected_drop_count);
    EXPECT_EQ(result_ingress_drop_count, expected_ingress_drop_count);
  }

  void VerifyPopEntry(Drain& drain,
                      std::optional<ConstByteSpan> expected_message,
                      uint32_t expected_drop_count,
                      uint32_t expected_ingress_drop_count) {
    uint32_t drop_count = 0;
    uint32_t ingress_drop_count = 0;
    Result<ConstByteSpan> result =
        drain.PopEntry(entry_buffer_, drop_count, ingress_drop_count);
    ExpectMessageAndDropCounts(result,
                               drop_count,
                               ingress_drop_count,
                               expected_message,
                               expected_drop_count,
                               expected_ingress_drop_count);
  }

  void VerifyPeekResult(const Result<Drain::PeekedEntry>& peek_result,
                        uint32_t result_drop_count,
                        uint32_t result_ingress_drop_count,
                        std::optional<ConstByteSpan> expected_message,
                        uint32_t expected_drop_count,
                        uint32_t expected_ingress_drop_count) {
    if (peek_result.ok()) {
      ASSERT_FALSE(peek_result.value().entry().empty());
      Result<ConstByteSpan> verify_result(peek_result.value().entry());
      ExpectMessageAndDropCounts(verify_result,
                                 result_drop_count,
                                 result_ingress_drop_count,
                                 expected_message,
                                 expected_drop_count,
                                 expected_ingress_drop_count);
      return;
    }
    if (expected_message.has_value()) {
      // Fail since we expected OkStatus.
      ASSERT_EQ(peek_result.status(), OkStatus());
    }
    EXPECT_EQ(Status::OutOfRange(), peek_result.status());
  }

  void ExpectNotificationCount(CountingListener& listener,
                               size_t expected_notification_count) {
    EXPECT_EQ(listener.GetNotificationCount(), expected_notification_count);
    listener.ResetNotificationCount();
  }

  std::byte buffer_[kBufferSize];
  std::byte entry_buffer_[kEntryBufferSize];
  CountingListener listeners_[kMaxListeners];
  Drain drains_[kMaxDrains];
  MultiSink multisink_;
};

TEST_F(MultiSinkTest, SingleDrain) {
  multisink_.AttachDrain(drains_[0]);
  multisink_.AttachListener(listeners_[0]);
  ExpectNotificationCount(listeners_[0], 1u);
  multisink_.HandleEntry(kMessage);

  // Single entry push and pop.
  ExpectNotificationCount(listeners_[0], 1u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  // Single empty entry push and pop.
  multisink_.HandleEntry(ConstByteSpan());
  ExpectNotificationCount(listeners_[0], 1u);
  VerifyPopEntry(drains_[0], ConstByteSpan(), 0u, 0u);

  // Multiple entries with intermittent drops.
  multisink_.HandleEntry(kMessage);
  multisink_.HandleDropped();
  multisink_.HandleEntry(kMessage);
  ExpectNotificationCount(listeners_[0], 3u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 1u);

  // Send drops only.
  multisink_.HandleDropped();
  ExpectNotificationCount(listeners_[0], 1u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 1u);

  // Confirm out-of-range if no entries are expected.
  ExpectNotificationCount(listeners_[0], 0u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 0u);
}

TEST_F(MultiSinkTest, MultipleDrain) {
  multisink_.AttachDrain(drains_[0]);
  multisink_.AttachDrain(drains_[1]);
  multisink_.AttachListener(listeners_[0]);
  multisink_.AttachListener(listeners_[1]);
  ExpectNotificationCount(listeners_[0], 1u);
  ExpectNotificationCount(listeners_[1], 1u);

  multisink_.HandleEntry(kMessage);
  multisink_.HandleEntry(kMessage);
  multisink_.HandleDropped();
  multisink_.HandleEntry(kMessage);
  multisink_.HandleDropped();

  // Drain one drain entirely.
  ExpectNotificationCount(listeners_[0], 5u);
  ExpectNotificationCount(listeners_[1], 5u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 1u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 1u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 0u);

  // Confirm the other drain can be drained separately.
  ExpectNotificationCount(listeners_[0], 0u);
  ExpectNotificationCount(listeners_[1], 0u);
  VerifyPopEntry(drains_[1], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[1], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[1], kMessage, 0u, 1u);
  VerifyPopEntry(drains_[1], std::nullopt, 0u, 1u);
  VerifyPopEntry(drains_[1], std::nullopt, 0u, 0u);
}

TEST_F(MultiSinkTest, LateDrainRegistration) {
  // Drains attached after entries are pushed should still observe those entries
  // if they have not been evicted from the ring buffer.
  multisink_.HandleEntry(kMessage);

  multisink_.AttachDrain(drains_[0]);
  multisink_.AttachListener(listeners_[0]);
  ExpectNotificationCount(listeners_[0], 1u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 0u);

  multisink_.HandleEntry(kMessage);
  ExpectNotificationCount(listeners_[0], 1u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 0u);
}

TEST_F(MultiSinkTest, DynamicDrainRegistration) {
  multisink_.AttachDrain(drains_[0]);
  multisink_.AttachListener(listeners_[0]);
  ExpectNotificationCount(listeners_[0], 1u);

  multisink_.HandleDropped();
  multisink_.HandleEntry(kMessage);
  multisink_.HandleDropped();
  multisink_.HandleEntry(kMessage);

  // Drain out one message and detach it.
  ExpectNotificationCount(listeners_[0], 4u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 1u);
  multisink_.DetachDrain(drains_[0]);
  multisink_.DetachListener(listeners_[0]);

  // Re-attaching the drain should reproduce the last observed message. Note
  // that notifications are not expected, nor are drops observed before the
  // first valid message in the buffer.
  multisink_.AttachDrain(drains_[0]);
  multisink_.AttachListener(listeners_[0]);
  ExpectNotificationCount(listeners_[0], 1u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 1u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 1u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 0u);

  multisink_.HandleEntry(kMessage);
  ExpectNotificationCount(listeners_[0], 1u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], std::nullopt, 0u, 0u);
}

TEST_F(MultiSinkTest, TooSmallBuffer) {
  multisink_.AttachDrain(drains_[0]);

  // Insert an entry and a drop, then try to read into an insufficient buffer.
  uint32_t drop_count = 0;
  uint32_t ingress_drop_count = 0;
  multisink_.HandleDropped();
  multisink_.HandleEntry(kMessage);

  // Attempting to acquire an entry with a small buffer should result in
  // RESOURCE_EXHAUSTED and remove it.
  Result<ConstByteSpan> result = drains_[0].PopEntry(
      std::span(entry_buffer_, 1), drop_count, ingress_drop_count);
  EXPECT_EQ(result.status(), Status::ResourceExhausted());

  VerifyPopEntry(drains_[0], std::nullopt, 1u, 1u);
}

TEST_F(MultiSinkTest, Iterator) {
  multisink_.AttachDrain(drains_[0]);

  // Insert entries and consume them all.
  multisink_.HandleEntry(kMessage);
  multisink_.HandleEntry(kMessage);
  multisink_.HandleEntry(kMessage);

  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);
  VerifyPopEntry(drains_[0], kMessage, 0u, 0u);

  // Confirm that the iterator still observes the messages in the ring buffer.
  size_t iterated_entries = 0;
  for (ConstByteSpan entry : multisink_.UnsafeIteration()) {
    EXPECT_EQ(memcmp(entry.data(), kMessage, sizeof(kMessage)), 0);
    iterated_entries++;
  }
  EXPECT_EQ(iterated_entries, 3u);
}

TEST_F(MultiSinkTest, IteratorNoDrains) {
  // Insert entries with no drains attached. Even though there are no consumers,
  // iterators should still walk from the oldest entry.
  multisink_.HandleEntry(kMessage);
  multisink_.HandleEntry(kMessage);
  multisink_.HandleEntry(kMessage);

  // Confirm that the iterator still observes the messages in the ring buffer.
  size_t iterated_entries = 0;
  for (ConstByteSpan entry : multisink_.UnsafeIteration()) {
    EXPECT_EQ(memcmp(entry.data(), kMessage, sizeof(kMessage)), 0);
    iterated_entries++;
  }
  EXPECT_EQ(iterated_entries, 3u);
}

TEST_F(MultiSinkTest, IteratorNoEntries) {
  // Attach a drain, but don't add any entries.
  multisink_.AttachDrain(drains_[0]);
  // Confirm that the iterator has no entries.
  MultiSink::UnsafeIterationWrapper unsafe_iterator =
      multisink_.UnsafeIteration();
  EXPECT_EQ(unsafe_iterator.begin(), unsafe_iterator.end());
}

TEST_F(MultiSinkTest, PeekEntryNoEntries) {
  multisink_.AttachDrain(drains_[0]);

  // Peek empty multisink.
  uint32_t drop_count = 0;
  uint32_t ingress_drop_count = 0;
  auto peek_result =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(peek_result, 0, drop_count, std::nullopt, 0, 0);
}

TEST_F(MultiSinkTest, PeekAndPop) {
  multisink_.AttachDrain(drains_[0]);
  multisink_.AttachDrain(drains_[1]);

  // Peek entry after multisink has some entries.
  multisink_.HandleEntry(kMessage);
  multisink_.HandleEntry(kMessageOther);
  uint32_t drop_count = 0;
  uint32_t ingress_drop_count = 0;
  auto first_peek_result =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(
      first_peek_result, drop_count, ingress_drop_count, kMessage, 0, 0);

  // Multiple peeks must return the front message.
  auto peek_duplicate =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(
      peek_duplicate, drop_count, ingress_drop_count, kMessage, 0, 0);
  // A second drain must peek the front message.
  auto peek_other_drain =
      drains_[1].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(
      peek_other_drain, drop_count, ingress_drop_count, kMessage, 0, 0);

  // After a drain pops a peeked entry, the next peek call must return the next
  // message.
  ASSERT_EQ(drains_[0].PopEntry(first_peek_result.value()), OkStatus());
  auto second_peek_result =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(
      second_peek_result, drop_count, ingress_drop_count, kMessageOther, 0, 0);
  // Slower readers must be unchanged.
  auto peek_other_drain_duplicate =
      drains_[1].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(peek_other_drain_duplicate,
                   drop_count,
                   ingress_drop_count,
                   kMessage,
                   0,
                   0);

  // PopEntry prior to popping the previously peeked entry.
  VerifyPopEntry(drains_[0], kMessageOther, 0, 0);
  // Popping an entry already handled must not trigger errors.
  ASSERT_EQ(drains_[0].PopEntry(second_peek_result.value()), OkStatus());
  // Popping with an old peek context must not trigger errors.
  ASSERT_EQ(drains_[0].PopEntry(first_peek_result.value()), OkStatus());

  // Multisink is empty, pops and peeks should trigger OUT_OF_RANGE.
  VerifyPopEntry(drains_[0], std::nullopt, 0, 0);
  auto empty_peek_result =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(
      empty_peek_result, drop_count, ingress_drop_count, std::nullopt, 0, 0);

  // // Slower readers must be unchanged.
  auto peek_other_drain_unchanged =
      drains_[1].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(peek_other_drain_unchanged,
                   drop_count,
                   ingress_drop_count,
                   kMessage,
                   0,
                   0);
}

TEST_F(MultiSinkTest, PeekReportsIngressDropCount) {
  multisink_.AttachDrain(drains_[0]);

  // Peek entry after multisink has some entries.
  multisink_.HandleEntry(kMessage);
  const uint32_t ingress_drops = 10;
  multisink_.HandleDropped(ingress_drops);

  uint32_t drop_count = 0;
  uint32_t ingress_drop_count = 0;
  auto peek_result1 =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  // No drops reported until the drain finds a gap in the sequence IDs.
  VerifyPeekResult(
      peek_result1, drop_count, ingress_drop_count, kMessage, 0, 0);

  // Popping the peeked entry advances the drain, and a new peek will find the
  // gap in sequence IDs.
  ASSERT_EQ(drains_[0].PopEntry(peek_result1.value()), OkStatus());
  auto peek_result2 =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  ASSERT_EQ(peek_result2.status(), Status::OutOfRange());
  EXPECT_EQ(drop_count, 0u);
  EXPECT_EQ(ingress_drop_count, ingress_drops);
}

TEST_F(MultiSinkTest, PeekReportsSlowDrainDropCount) {
  multisink_.AttachDrain(drains_[0]);

  // Add entries until buffer is full and drain has to be advanced.
  // The sequence ID takes 1 byte when less than 128.
  const size_t max_multisink_messages = 128;
  const size_t buffer_entry_size = kBufferSize / max_multisink_messages;
  // Account for 1 byte of preamble (sequnce ID) and 1 byte of data size.
  const size_t message_size = buffer_entry_size - 2;
  std::array<std::byte, message_size> message;
  std::memset(message.data(), 'a', message.size());
  for (size_t i = 0; i < max_multisink_messages; ++i) {
    multisink_.HandleEntry(message);
  }

  // At this point the buffer is full, but the sequence ID will take 1 more byte
  // in the preamble, meaning that adding N new entries, drops N + 1 entries.
  // Account for that offset.
  const size_t expected_drops = 5;
  for (size_t i = 1; i < expected_drops; ++i) {
    multisink_.HandleEntry(message);
  }

  uint32_t drop_count = 0;
  uint32_t ingress_drop_count = 0;
  auto peek_result =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(
      peek_result, drop_count, ingress_drop_count, message, expected_drops, 0);
}

TEST_F(MultiSinkTest, IngressDropCountOverflow) {
  multisink_.AttachDrain(drains_[0]);

  // Make drain's last handled drop larger than multisink drop count, which
  // overflowed.
  const uint32_t drop_count_close_to_overflow =
      std::numeric_limits<uint32_t>::max() - 3;
  multisink_.HandleDropped(drop_count_close_to_overflow);
  multisink_.HandleEntry(kMessage);

  // Catch up drain's drop count.
  uint32_t drop_count = 0;
  uint32_t ingress_drop_count = 0;
  auto peek_result1 =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(peek_result1,
                   drop_count,
                   ingress_drop_count,
                   kMessage,
                   0,
                   drop_count_close_to_overflow);
  // Popping the peeked entry advances the drain, and a new peek will find the
  // gap in sequence IDs.
  ASSERT_EQ(drains_[0].PopEntry(peek_result1.value()), OkStatus());

  // Overflow multisink's drop count.
  const uint32_t expected_ingress_drop_count = 10;
  multisink_.HandleDropped(expected_ingress_drop_count);

  auto peek_result2 =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  ASSERT_EQ(peek_result2.status(), Status::OutOfRange());
  EXPECT_EQ(drop_count, 0u);
  EXPECT_EQ(ingress_drop_count, expected_ingress_drop_count);

  multisink_.HandleEntry(kMessage);
  auto peek_result3 =
      drains_[0].PeekEntry(entry_buffer_, drop_count, ingress_drop_count);
  VerifyPeekResult(
      peek_result3, drop_count, ingress_drop_count, kMessage, 0, 0);
}

TEST_F(MultiSinkTest, DetachedDrainReportsDropCount) {
  multisink_.AttachDrain(drains_[0]);

  const uint32_t ingress_drops = 10;
  multisink_.HandleDropped(ingress_drops);
  multisink_.HandleEntry(kMessage);
  VerifyPopEntry(drains_[0], kMessage, 0, ingress_drops);

  // Detaching and attaching drain should report the same drops.
  multisink_.DetachDrain(drains_[0]);
  multisink_.AttachDrain(drains_[0]);
  VerifyPopEntry(drains_[0], kMessage, 0, ingress_drops);
}

TEST(UnsafeIteration, NoLimit) {
  constexpr std::array<std::string_view, 5> kExpectedEntries{
      "one", "two", "three", "four", "five"};
  std::array<std::byte, 32> buffer;
  MultiSink multisink(buffer);

  for (std::string_view entry : kExpectedEntries) {
    multisink.HandleEntry(std::as_bytes(std::span(entry)));
  }

  size_t entry_count = 0;
  struct {
    size_t& entry_count;
    std::span<const std::string_view> expected_results;
  } ctx{entry_count, kExpectedEntries};
  auto cb = [&ctx](ConstByteSpan data) {
    std::string_view expected_entry = ctx.expected_results[ctx.entry_count];
    EXPECT_EQ(data.size(), expected_entry.size());
    const int result =
        memcmp(data.data(), expected_entry.data(), expected_entry.size());
    EXPECT_EQ(0, result);
    ctx.entry_count++;
  };

  EXPECT_EQ(OkStatus(), multisink.UnsafeForEachEntry(cb));
  EXPECT_EQ(kExpectedEntries.size(), entry_count);
}

TEST(UnsafeIteration, Subset) {
  constexpr std::array<std::string_view, 5> kExpectedEntries{
      "one", "two", "three", "four", "five"};
  constexpr size_t kStartOffset = 3;
  constexpr size_t kExpectedEntriesMaxEntries =
      kExpectedEntries.size() - kStartOffset;
  std::array<std::byte, 32> buffer;
  MultiSink multisink(buffer);

  for (std::string_view entry : kExpectedEntries) {
    multisink.HandleEntry(std::as_bytes(std::span(entry)));
  }

  size_t entry_count = 0;
  struct {
    size_t& entry_count;
    std::span<const std::string_view> expected_results;
  } ctx{entry_count, kExpectedEntries};
  auto cb = [&ctx](ConstByteSpan data) {
    std::string_view expected_entry =
        ctx.expected_results[ctx.entry_count + kStartOffset];
    EXPECT_EQ(data.size(), expected_entry.size());
    const int result =
        memcmp(data.data(), expected_entry.data(), expected_entry.size());
    EXPECT_EQ(0, result);
    ctx.entry_count++;
  };

  EXPECT_EQ(
      OkStatus(),
      multisink.UnsafeForEachEntry(cb, kExpectedEntries.size() - kStartOffset));
  EXPECT_EQ(kExpectedEntriesMaxEntries, entry_count);
}

}  // namespace pw::multisink