aboutsummaryrefslogtreecommitdiff
path: root/pw_thread/sleep_facade_test.cc
blob: ca838808608df34513c4a6c8eb832bcb885770ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

#include <chrono>

#include "gtest/gtest.h"
#include "pw_chrono/system_clock.h"
#include "pw_thread/id.h"
#include "pw_thread/sleep.h"

using pw::chrono::SystemClock;
using namespace std::chrono_literals;

namespace pw::this_thread {
namespace {

extern "C" {

// Functions defined in sleep_facade_test_c.c which call the API from C.
void pw_this_thread_CallSleepFor(pw_chrono_SystemClock_Duration sleep_duration);
void pw_this_thread_CallSleepUntil(pw_chrono_SystemClock_TimePoint wakeup_time);

}  // extern "C"

// We can't control the SystemClock's period configuration, so just in case
// duration cannot be accurately expressed in integer ticks, round the
// duration up.
constexpr SystemClock::duration kRoundedArbitraryDuration =
    SystemClock::for_at_least(42ms);
constexpr pw_chrono_SystemClock_Duration kRoundedArbitraryDurationInC =
    PW_SYSTEM_CLOCK_MS(42);

TEST(Sleep, SleepForPositiveDuration) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  SystemClock::time_point before = SystemClock::now();
  sleep_for(kRoundedArbitraryDuration);
  SystemClock::duration time_elapsed = SystemClock::now() - before;
  EXPECT_GE(time_elapsed, kRoundedArbitraryDuration);
}

TEST(Sleep, SleepForZeroLengthDuration) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when a zero length duration is used.
  SystemClock::time_point before = SystemClock::now();
  sleep_for(SystemClock::duration::zero());
  SystemClock::duration time_elapsed = SystemClock::now() - before;
  EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
}

TEST(Sleep, SleepForNegativeDuration) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when a negative duration is used.
  SystemClock::time_point before = SystemClock::now();
  sleep_for(-kRoundedArbitraryDuration);
  SystemClock::duration time_elapsed = SystemClock::now() - before;
  EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
}

TEST(Sleep, SleepUntilFutureWakeupTime) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  SystemClock::time_point deadline =
      SystemClock::now() + kRoundedArbitraryDuration;
  sleep_until(deadline);
  EXPECT_GE(SystemClock::now(), deadline);
}

TEST(Sleep, SleepUntilCurrentWakeupTime) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when now is used.
  SystemClock::time_point deadline =
      SystemClock::now() + kRoundedArbitraryDuration;
  sleep_until(SystemClock::now());
  EXPECT_LT(SystemClock::now(), deadline);
}

TEST(Sleep, SleepUntilPastWakeupTime) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when a timestamp in the past is used.
  SystemClock::time_point deadline =
      SystemClock::now() + kRoundedArbitraryDuration;
  sleep_until(SystemClock::now() - kRoundedArbitraryDuration);
  EXPECT_LT(SystemClock::now(), deadline);
}

TEST(Sleep, SleepForPositiveDurationInC) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
  pw_this_thread_SleepFor(kRoundedArbitraryDurationInC);
  pw_chrono_SystemClock_Duration time_elapsed =
      pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
  EXPECT_GE(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}

TEST(Sleep, SleepForZeroLengthDurationInC) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when a zero length duration is used.
  pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
  pw_this_thread_SleepFor(PW_SYSTEM_CLOCK_MS(0));
  pw_chrono_SystemClock_Duration time_elapsed =
      pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
  EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}

TEST(Sleep, SleepForNegativeDurationInC) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when a negative duration is used.
  pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
  pw_this_thread_SleepFor(
      PW_SYSTEM_CLOCK_MS(-kRoundedArbitraryDurationInC.ticks));
  pw_chrono_SystemClock_Duration time_elapsed =
      pw_chrono_SystemClock_TimeElapsed(before, pw_chrono_SystemClock_Now());
  EXPECT_LT(time_elapsed.ticks, kRoundedArbitraryDurationInC.ticks);
}

TEST(Sleep, SleepUntilFutureWakeupTimeInC) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  pw_chrono_SystemClock_TimePoint deadline;
  deadline.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
      kRoundedArbitraryDurationInC.ticks;
  pw_this_thread_CallSleepUntil(deadline);
  EXPECT_GE(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
            deadline.duration_since_epoch.ticks);
}

TEST(Sleep, SleepUntilCurrentWakeupTimeInC) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when now is used.
  pw_chrono_SystemClock_TimePoint deadline;
  deadline.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
      kRoundedArbitraryDurationInC.ticks;
  pw_this_thread_CallSleepUntil(pw_chrono_SystemClock_Now());
  EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
            deadline.duration_since_epoch.ticks);
}

TEST(Sleep, SleepUntilPastWakeupTimeInC) {
  // Ensure we are in a thread context, meaning we are permitted to sleep.
  ASSERT_NE(get_id(), thread::Id());

  // Ensure it doesn't sleep when a timestamp in the past is used.
  pw_chrono_SystemClock_TimePoint deadline;
  deadline.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks +
      kRoundedArbitraryDurationInC.ticks;
  pw_chrono_SystemClock_TimePoint old_timestamp;
  old_timestamp.duration_since_epoch.ticks =
      pw_chrono_SystemClock_Now().duration_since_epoch.ticks -
      kRoundedArbitraryDurationInC.ticks;
  pw_this_thread_CallSleepUntil(old_timestamp);
  EXPECT_LT(pw_chrono_SystemClock_Now().duration_since_epoch.ticks,
            deadline.duration_since_epoch.ticks);
}

}  // namespace
}  // namespace pw::this_thread