aboutsummaryrefslogtreecommitdiff
path: root/pw_tokenizer/py/pw_tokenizer/decode.py
blob: 4263507063a05c2af01688717e7da6b408bea506 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
# Copyright 2020 The Pigweed Authors
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
"""Decodes arguments and formats tokenized messages.

The decode(format_string, encoded_arguments) function provides a simple way to
format a string with encoded arguments. The FormatString class may also be used.

Missing, truncated, or otherwise corrupted arguments are handled and displayed
in the resulting string with an error message.
"""

from datetime import datetime
import math
import re
import struct
from typing import (
    Iterable,
    List,
    NamedTuple,
    Match,
    Optional,
    Sequence,
    Tuple,
)


def zigzag_decode(value: int) -> int:
    """ZigZag decode function from protobuf's wire_format module."""
    if not value & 0x1:
        return value >> 1
    return (value >> 1) ^ (~0)


class FormatSpec:
    """Represents a format specifier parsed from a printf-style string.

    This implementation is designed to align with the C99 specification,
    section 7.19.6
    (https://www.dii.uchile.cl/~daespino/files/Iso_C_1999_definition.pdf).
    Notably, this specification is slightly different than what is implemented
    in most compilers due to each compiler choosing to interpret undefined
    behavior in slightly different ways. Treat the following description as the
    source of truth.

    This implementation supports:
    - Overall Format: `%[flags][width][.precision][length][specifier]`
    - Flags (Zero or More)
      - `-`: Left-justify within the given field width; Right justification is
             the default (see Width modifier).
      - `+`: Forces to preceed the result with a plus or minus sign (`+` or `-`)
             even for positive numbers. By default, only negative numbers are
             preceded with a `-` sign.
      - ` ` (space): If no sign is going to be written, a blank space is
                     inserted before the value.
      - `#`: Specifies an alternative print syntax should be used.
        - Used with `o`, `x` or `X` specifiers the value is preceeded with `0`,
          `0x`, or `0X`, respectively, for values different than zero.
        - Used with `a`, `A`, `e`, `E`, `f`, `F`, `g`, or `G` it forces the
          written output to contain a decimal point even if no more digits
          follow. By default, if no digits follow, no decimal point is written.
      - `0`: Left-pads the number with zeroes (`0`) instead of spaces when
             padding is specified (see width sub-specifier).
    - Width (Optional)
      - ``(number)``: Minimum number of characters to be printed. If the value
                      to be printed is shorter than this number, the result is
                      padded with blank spaces or `0` if the `0` flag is
                      present. The value is not truncated even if the result is
                      larger. If the value is negative and the `0` flag is
                      present, the `0`s are padded after the `-` symbol.
      - `*`: The width is not specified in the format string, but as an
             additional integer value argument preceding the argument that has
             to be formatted.
    - Precision (Optional)
      - `.(number)`
        - For `d`, `i`, `o`, `u`, `x`, `X`, specifies the minimum number of
          digits to be written. If the value to be written is shorter than this
          number, the result is padded with leading zeros. The value is not
          truncated even if the result is longer.
          - A precision of `0` means that no character is written for the value
            `0`.
        - For `a`, `A`, `e`, `E`, `f`, and `F`, specifies the number of digits
          to be printed after the decimal point. By default, this is `6`.
        - For `g` and `G`, specifies the maximum number of significant digits to
          be printed.
        - For `s`, specifies the maximum number of characters to be printed. By
          default all characters are printed until the ending null character is
          encountered.
        - If the period is specified without an explicit value for precision,
          `0` is assumed.
      - `.*`: The precision is not specified in the format string, but as an
              additional integer value argument preceding the argument that has
              to be formatted.
    - Length (Optional)
      - `hh`: Usable with `d`, `i`, `o`, `u`, `x`, or `X` specifiers to convey
              the argument will be a `signed char` or `unsigned char`. However,
              this is largely ignored in the implementation due to it not being
              necessary for Python or argument decoding (since the argument is
              always encoded at least as a 32-bit integer).
      - `h`: Usable with `d`, `i`, `o`, `u`, `x`, or `X` specifiers to convey
             the argument will be a `signed short int` or `unsigned short int`.
             However, this is largely ignored in the implementation due to it
             not being necessary for Python or argument decoding (since the
             argument is always encoded at least as a 32-bit integer).
      - `l`: Usable with `d`, `i`, `o`, `u`, `x`, or `X` specifiers to convey
             the argument will be a `signed long int` or `unsigned long int`.
             Also is usable with `c` and `s` to specify that the arguments will
             be encoded with `wchar_t` values (which isn't different from normal
             `char` values). However, this is largely ignored in the
             implementation due to it not being necessary for Python or argument
             decoding (since the argument is always encoded at least as a 32-bit
             integer).
      - `ll`: Usable with `d`, `i`, `o`, `u`, `x`, or `X` specifiers to convey
              the argument will be a `signed long long int` or
              `unsigned long long int`. This is required to properly decode the
              argument as a 64-bit integer.
      - `L`: Usable with `a`, `A`, `e`, `E`, `f`, `F`, `g`, or `G` conversion
             specifiers applies to a long double argument. However, this is
             ignored in the implementation due to floating point value encoded
             that is unaffected by bit width.
      - `j`: Usable with `d`, `i`, `o`, `u`, `x`, or `X` specifiers to convey
             the argument will be a `intmax_t` or `uintmax_t`.
      - `z`: Usable with `d`, `i`, `o`, `u`, `x`, or `X` specifiers to convey
             the argument will be a `size_t`. This will force the argument to be
             decoded as an unsigned integer.
      - `t`: Usable with `d`, `i`, `o`, `u`, `x`, or `X` specifiers to convey
             the argument will be a `ptrdiff_t`.
      - If a length modifier is provided for an incorrect specifier, it is
        ignored.
    - Specifier (Required)
      - `d` / `i`: Used for signed decimal integers.
      - `u`: Used for unsigned decimal integers.
      - `o`: Used for unsigned decimal integers and specifies formatting should
             be as an octal number.
      - `x`: Used for unsigned decimal integers and specifies formatting should
             be as a hexadecimal number using all lowercase letters.
      - `X`: Used for unsigned decimal integers and specifies formatting should
             be as a hexadecimal number using all uppercase letters.
      - `f`: Used for floating-point values and specifies to use lowercase,
             decimal floating point formatting.
        - Default precision is `6` decimal places unless explicitly specified.
      - `F`: Used for floating-point values and specifies to use uppercase,
             decimal floating point formatting.
        - Default precision is `6` decimal places unless explicitly specified.
      - `e`: Used for floating-point values and specifies to use lowercase,
             exponential (scientific) formatting.
        - Default precision is `6` decimal places unless explicitly specified.
      - `E`: Used for floating-point values and specifies to use uppercase,
             exponential (scientific) formatting.
        - Default precision is `6` decimal places unless explicitly specified.
      - `g`: Used for floating-point values and specified to use `f` or `e`
             formatting depending on which would be the shortest representation.
        - Precision specifies the number of significant digits, not just digits
          after the decimal place.
        - If the precision is specified as `0`, it is interpreted to mean `1`.
        - `e` formatting is used if the the exponent would be less than `-4` or
          is greater than or equal to the precision.
        - Trailing zeros are removed unless the `#` flag is set.
        - A decimal point only appears if it is followed by a digit.
        - `NaN` or infinities always follow `f` formatting.
      - `G`: Used for floating-point values and specified to use `f` or `e`
             formatting depending on which would be the shortest representation.
        - Precision specifies the number of significant digits, not just digits
          after the decimal place.
        - If the precision is specified as `0`, it is interpreted to mean `1`.
        - `E` formatting is used if the the exponent would be less than `-4` or
          is greater than or equal to the precision.
        - Trailing zeros are removed unless the `#` flag is set.
        - A decimal point only appears if it is followed by a digit.
        - `NaN` or infinities always follow `F` formatting.
      - `c`: Used for formatting a `char` value.
      - `s`: Used for formatting a string of `char` values.
        - If width is specified, the null terminator character is included as a
          character for width count.
        - If precision is specified, no more `char`s than that value will be
          written from the string (padding is used to fill additional width).
      - `p`: Used for formatting a pointer address.
      - `%`: Prints a single `%`. Only valid as `%%` (supports no flags, width,
             precision, or length modifiers).

    Underspecified details:
    - If both `+` and ` ` flags appear, the ` ` is ignored.
    - The `+` and ` ` flags will error if used with `c` or `s`.
    - The `#` flag will error if used with `d`, `i`, `u`, `c`, `s`, or `p`.
    - The `0` flag will error if used with `c`, `s`, or `p`.
    - Both `+` and ` ` can work with the unsigned integer specifiers `u`, `o`,
      `x`, and `X`.
    - If a length modifier is provided for an incorrect specifier, it is
      ignored.
    - The `z` length modifier will decode arugments as signed as long as `d` or
      `i` is used.
    - `p` is implementation defined. For this implementation, it will print
      with a `0x` prefix and then the pointer value was printed using `%08X`.
      `p` supports the `+`, `-`, and ` ` flags, but not the `#` or `0` flags.
      None of the length modifiers are usable with `p`. This implementation will
      try to adhere to user-specified width (assuming the width provided is
      larger than the guaranteed minimum of 10). Specifying precision for `p` is
      considered an error.
    - Only `%%` is allowed with no other modifiers. Things like `%+%` will fail
      to decode. Some C stdlib implementations support any modifiers being
      present between `%`, but ignore any for the output.
    - If a width is specified with the `0` flag for a negative value, the padded
      `0`s will appear after the `-` symbol.
    - A precision of `0` for `d`, `i`, `u`, `o`, `x`, or `X` means that no
      character is written for the value `0`.
    - Precision cannot be specified for `c`.
    - Using `*` or fixed precision with the `s` specifier still requires the
      string argument to be null-terminated. This is due to argument encoding
      happening on the C/C++-side while the precision value is not read or
      otherwise used until decoding happens in this Python code.

    Non-conformant details:
    - `n` specifier: We do not support the `n` specifier since it is impossible
                     for us to retroactively tell the original program how many
                     characters have been printed since this decoding happens a
                     great deal of time after the device sent it, usually on a
                     separate processing device entirely.
    """

    # Regular expression for finding format specifiers.
    FORMAT_SPEC = re.compile(
        r'%(?P<flags>[+\- #0]+)?'
        r'(?P<width>\d+|\*)?'
        r'(?P<precision>\.(?:\d*|\*))?'
        r'(?P<length>hh|h|ll|l|j|z|t|L)?'
        r'(?P<type>[csdioxXufFeEaAgGnp%])'
    )

    # Conversions to make format strings Python compatible.
    _REMAP_TYPE = {'a': 'f', 'A': 'F', 'p': 'X'}

    # Conversion specifiers by type; n is not supported.
    SIGNED_INT = frozenset('di')
    UNSIGNED_INT = frozenset('oxXup')
    FLOATING_POINT = frozenset('fFeEaAgG')

    _PACKED_FLOAT = struct.Struct('<f')

    @classmethod
    def from_string(cls, format_specifier: str):
        """Creates a FormatSpec from a str with a single format specifier."""
        match = cls.FORMAT_SPEC.fullmatch(format_specifier)

        if not match:
            raise ValueError(
                '{!r} is not a valid single format specifier'.format(
                    format_specifier
                )
            )

        return cls(match)

    def __init__(self, re_match: Match):
        """Constructs a FormatSpec from an re.Match object for FORMAT_SPEC."""
        self.match = re_match
        self.specifier: str = self.match.group()

        self.flags: str = self.match.group('flags') or ''
        self.width: str = self.match.group('width') or ''
        self.precision: str = self.match.group('precision') or ''
        self.length: str = self.match.group('length') or ''
        self.type: str = self.match.group('type')

        self.error = None
        if self.type == 'n':
            self.error = 'Unsupported conversion specifier n.'
        elif self.type == '%':
            if self.flags or self.width or self.precision or self.length:
                self.error = (
                    '%% does not support any flags, width, precision,'
                    'or length modifiers.'
                )
        elif self.type in 'csdiup' and '#' in self.flags:
            self.error = (
                '# is only supported with o, x, X, f, F, e, E, a, A, '
                'g, and G specifiers.'
            )
        elif self.type in 'csp' and '0' in self.flags:
            self.error = (
                '0 is only supported with d, i, o, u, x, X, a, A, e, '
                'E, f, F, g, and G specifiers.'
            )
        elif self.type in 'cs' and ('+' in self.flags or ' ' in self.flags):
            self.error = (
                '+ and space are only available for d, i, o, u, x, X,'
                'a, A, e, E, f, F, g, and G specifiers.'
            )
        elif self.type == 'c':
            if self.precision != '':
                self.error = 'Precision is not supported for specifier c.'
        elif self.type == 'p':
            if self.length != '':
                self.error = 'p does not support any length modifiers.'
            elif self.precision != '':
                self.error = 'p does not support precision modifiers.'

        # If we are going to add additional characters to the output, we add to
        # width_bias to ensure user-provided widths are reduced by that amount.
        self._width_bias = 0
        # Some of our machinery requires that we maintain a minimum precision
        # width to ensure a certain amount of digits gets printed. This
        # increases the user-provided precision in these cases if it was not
        # enough.
        self._minimum_precision = 0
        # Python's handling of %#o is non-standard and prepends a 0o
        # instead of single 0.
        if self.type == 'o' and '#' in self.flags:
            self._width_bias = 1
        # Python does not support %p natively.
        if self.type == 'p':
            self._width_bias = 2
            self._minimum_precision = 8

        # If we have a concrete width, we reduce it by any width bias.
        # Otherwise, we either have no width or width is *, where the decoding
        # logic will handle the width bias.
        parsed_width = int(self.width.replace('*', '') or '0')
        if parsed_width > self._width_bias:
            self.width = f'{parsed_width - self._width_bias}'

        # Python %-operator does not support `.` without a
        # trailing number. `.` is defined to be equivalent to `.0`.
        if self.precision == '.':
            self.precision = '.0'

        # If we have a concrete precision that is not *, we check that it is at
        # least minimum precision. If it is *, other parts of decoding will
        # ensure the minimum is upheld.
        if (
            self.precision != '.*'
            and int(self.precision.replace('.', '') or '0')
            < self._minimum_precision
        ):
            self.precision = f'.{self._minimum_precision}'

        # The Python %-format machinery never requires the length
        # modifier to work correctly, and it doesn't support all of the
        # C99 length format specifiers anyway. We remove it from the
        # python-compaitble format string.
        self.compatible = ''.join(
            [
                '%',
                self.flags,
                self.width,
                self.precision,
                self._REMAP_TYPE.get(self.type, self.type),
            ]
        )

    def decode(self, encoded_arg: bytes) -> 'DecodedArg':
        """Decodes the provided data according to this format specifier."""
        if self.error is not None:
            return DecodedArg(
                self, None, b'', DecodedArg.DECODE_ERROR, self.error
            )

        width = None
        if self.width == '*':
            width = FormatSpec.from_string('%d').decode(encoded_arg)
            encoded_arg = encoded_arg[len(width.raw_data) :]

        precision = None
        if self.precision == '.*':
            precision = FormatSpec.from_string('%d').decode(encoded_arg)
            encoded_arg = encoded_arg[len(precision.raw_data) :]

        if self.type == '%':
            return DecodedArg(
                self, (), b''
            )  # Use () as the value for % formatting.

        if self.type == 's':
            return self._merge_decoded_args(
                width, precision, self._decode_string(encoded_arg)
            )

        if self.type == 'c':
            return self._merge_decoded_args(
                width, precision, self._decode_char(encoded_arg)
            )

        if self.type in self.SIGNED_INT:
            return self._merge_decoded_args(
                width, precision, self._decode_signed_integer(encoded_arg)
            )

        if self.type in self.UNSIGNED_INT:
            return self._merge_decoded_args(
                width, precision, self._decode_unsigned_integer(encoded_arg)
            )

        if self.type in self.FLOATING_POINT:
            return self._merge_decoded_args(
                width, precision, self._decode_float(encoded_arg)
            )

        # Should be unreachable.
        assert False, f'Unhandled format specifier: {self.type}'

    def text_float_safe_compatible(self) -> str:
        return ''.join(
            [
                '%',
                self.flags.replace('0', ' '),
                self.width,
                self.precision,
                self._REMAP_TYPE.get(self.type, self.type),
            ]
        )

    def _merge_decoded_args(
        self,
        width: Optional['DecodedArg'],
        precision: Optional['DecodedArg'],
        main: 'DecodedArg',
    ) -> 'DecodedArg':
        def merge_optional_str(*args: Optional[str]) -> Optional[str]:
            return ' '.join(a for a in args if a) or None

        if width is not None and precision is not None:
            return DecodedArg(
                main.specifier,
                (
                    width.value - self._width_bias,
                    max(precision.value, self._minimum_precision),
                    main.value,
                ),
                width.raw_data + precision.raw_data + main.raw_data,
                width.status | precision.status | main.status,
                merge_optional_str(width.error, precision.error, main.error),
            )

        if width is not None:
            return DecodedArg(
                main.specifier,
                (width.value - self._width_bias, main.value),
                width.raw_data + main.raw_data,
                width.status | main.status,
                merge_optional_str(width.error, main.error),
            )

        if precision is not None:
            return DecodedArg(
                main.specifier,
                (max(precision.value, self._minimum_precision), main.value),
                precision.raw_data + main.raw_data,
                precision.status | main.status,
                merge_optional_str(precision.error, main.error),
            )

        return main

    def _decode_signed_integer(
        self,
        encoded: bytes,
    ) -> 'DecodedArg':
        """Decodes a signed variable-length integer."""
        if not encoded:
            return DecodedArg.missing(self)

        count = 0
        result = 0
        shift = 0

        for byte in encoded:
            count += 1
            result |= (byte & 0x7F) << shift

            if not byte & 0x80:
                return DecodedArg(
                    self,
                    zigzag_decode(result),
                    encoded[:count],
                    DecodedArg.OK,
                )

            shift += 7
            if shift >= 64:
                break

        return DecodedArg(
            self,
            None,
            encoded[:count],
            DecodedArg.DECODE_ERROR,
            'Unterminated variable-length integer',
        )

    def _decode_unsigned_integer(self, encoded: bytes) -> 'DecodedArg':
        """Decodes an unsigned variable-length integer."""
        arg = self._decode_signed_integer(encoded)
        # Since ZigZag encoding is used, unsigned integers must be masked off to
        # their original bit length.
        if arg.value is not None:
            arg.value &= (1 << self.size_bits()) - 1

        return arg

    def _decode_float(self, encoded: bytes) -> 'DecodedArg':
        if len(encoded) < 4:
            return DecodedArg.missing(self)

        return DecodedArg(
            self, self._PACKED_FLOAT.unpack_from(encoded)[0], encoded[:4]
        )

    def _decode_string(self, encoded: bytes) -> 'DecodedArg':
        """Reads a unicode string from the encoded data."""
        if not encoded:
            return DecodedArg.missing(self)

        size_and_status = encoded[0]
        status = DecodedArg.OK

        if size_and_status & 0x80:
            status |= DecodedArg.TRUNCATED
            size_and_status &= 0x7F

        raw_data = encoded[0 : size_and_status + 1]
        data = raw_data[1:]

        if len(data) < size_and_status:
            status |= DecodedArg.DECODE_ERROR

        try:
            decoded = data.decode()
        except UnicodeDecodeError as err:
            return DecodedArg(
                self,
                repr(bytes(data)).lstrip('b'),
                raw_data,
                status | DecodedArg.DECODE_ERROR,
                err,
            )

        return DecodedArg(self, decoded, raw_data, status)

    def _decode_char(self, encoded: bytes) -> 'DecodedArg':
        """Reads an integer from the data, then converts it to a string."""
        arg = self._decode_signed_integer(encoded)

        if arg.ok():
            try:
                arg.value = chr(arg.value)
            except (OverflowError, ValueError) as err:
                arg.error = err
                arg.status |= DecodedArg.DECODE_ERROR

        return arg

    def size_bits(self) -> int:
        """Size of the argument in bits; 0 for strings."""
        if self.type == 's':
            return 0

        # TODO(hepler): 64-bit targets likely have 64-bit l, j, z, and t.
        return 64 if self.length in ['ll', 'j'] else 32

    def __str__(self) -> str:
        return self.specifier


class DecodedArg:
    """Represents a decoded argument that is ready to be formatted."""

    # Status flags for a decoded argument. These values should match the
    # DecodingStatus enum in pw_tokenizer/internal/decode.h.
    OK = 0  # decoding was successful
    MISSING = 1  # the argument was not present in the data
    TRUNCATED = 2  # the argument was truncated during encoding
    DECODE_ERROR = 4  # an error occurred while decoding the argument
    SKIPPED = 8  # argument was skipped due to a previous error

    @classmethod
    def missing(cls, specifier: FormatSpec):
        return cls(specifier, None, b'', cls.MISSING)

    def __init__(
        self,
        specifier: FormatSpec,
        value,
        raw_data: bytes,
        status: int = OK,
        error=None,
    ):
        self.specifier = specifier  # FormatSpec (e.g. to represent "%0.2f")
        self.value = value  # the decoded value, or None if decoding failed
        self.raw_data = bytes(
            raw_data
        )  # the exact bytes used to decode this arg
        self._status = status
        self.error = error

    def ok(self) -> bool:
        """The argument was decoded without errors."""
        return self.status == self.OK or self.status == self.TRUNCATED

    @property
    def status(self) -> int:
        return self._status

    @status.setter
    def status(self, status: int):
        # The %% specifier is always OK and should always be printed normally.
        self._status = status if self.specifier.type != '%' else self.OK

    def format(self) -> str:
        """Returns formatted version of this argument, with error handling."""
        if self.status == self.TRUNCATED:
            return self.specifier.compatible % (self.value + '[...]')

        if self.ok():
            # Check if we are effectively .0{diuoxX} with a 0 value (this
            # includes .* with (0, 0)). C standard says a value of 0 with 0
            # precision produces an empty string.
            is_integer_specifier_type = self.specifier.type in 'diuoxX'
            is_simple_0_precision_with_0_value = self.value == 0 and (
                self.specifier.precision == '.0'
                or self.specifier.precision == '.'
            )
            is_star_0_precision_with_0_value = (
                self.value == (0, 0) and self.specifier.precision == '.*'
            )
            if is_integer_specifier_type and (
                is_simple_0_precision_with_0_value
                or is_star_0_precision_with_0_value
            ):
                return ''

            try:
                # Python has a nonstandard alternative octal form.
                if self.specifier.type == 'o' and '#' in self.specifier.flags:
                    return self._format_alternative_octal()

                # Python doesn't pad zeros correctly for inf/nan.
                if self.specifier.type in FormatSpec.FLOATING_POINT and (
                    self.value == math.inf
                    or self.value == -math.inf
                    or self.value == math.nan
                ):
                    return self._format_text_float()

                # Python doesn't have a native pointer formatter.
                if self.specifier.type == 'p':
                    return self._format_pointer()

                return self.specifier.compatible % self.value
            except (OverflowError, TypeError, ValueError) as err:
                self._status |= self.DECODE_ERROR
                self.error = err

        if self.status & self.SKIPPED:
            message = '{} SKIPPED'.format(self.specifier)
        elif self.status == self.MISSING:
            message = '{} MISSING'.format(self.specifier)
        elif self.status & self.DECODE_ERROR:
            message = '{} ERROR'.format(self.specifier)
        else:
            raise AssertionError(
                'Unhandled DecodedArg status {:x}!'.format(self.status)
            )

        if self.value is None or not str(self.value):
            return '<[{}]>'.format(message)

        return '<[{} ({})]>'.format(message, self.value)

    def _format_alternative_octal(self) -> str:
        """Formats an alternative octal specifier.

        This potentially throws OverflowError, TypeError, or ValueError.
        """
        compatible_specifier = self.specifier.compatible.replace('#', '')
        result = compatible_specifier % self.value

        # Find index of the first non-space, non-plus, and non-zero
        # character. If we cannot find anything, we will simply
        # prepend a 0 to the formatted string.
        counter = 0
        for i, value in enumerate(result):
            if value not in ' +0':
                counter = i
                break
        return result[:counter] + '0' + result[counter:]

    def _format_text_float(self) -> str:
        """Formats a float specifier with txt value (e.g. NAN, INF).

        This potentially throws OverflowError, TypeError, or ValueError.
        """
        return self.specifier.text_float_safe_compatible() % self.value

    def _format_pointer(self) -> str:
        """Formats a pointer specifier.

        This potentially throws OverflowError, TypeError, or ValueError.
        """
        result = self.specifier.compatible % self.value

        # Find index of the first non-space, non-plus, and non-zero
        # character (unless we hit the first of the 8 required hex
        # digits).
        counter = 0
        for i, value in enumerate(result[:-7]):
            if value not in ' +0' or i == len(result) - 8:
                counter = i
                break

        # Insert the pointer 0x prefix in after the leading `+`,
        # space, or `0`
        return result[:counter] + '0x' + result[counter:]

    def __str__(self) -> str:
        return self.format()

    def __repr__(self) -> str:
        return f'DecodedArg({self})'


def parse_format_specifiers(format_string: str) -> Iterable[FormatSpec]:
    for spec in FormatSpec.FORMAT_SPEC.finditer(format_string):
        yield FormatSpec(spec)


class FormattedString(NamedTuple):
    value: str
    args: Sequence[DecodedArg]
    remaining: bytes

    def ok(self) -> bool:
        """Arg data decoded successfully and all expected args were found."""
        return all(arg.ok() for arg in self.args) and not self.remaining

    def score(self, date_removed: Optional[datetime] = None) -> tuple:
        """Returns a key for sorting by how successful a decode was.

        Decoded strings are sorted by whether they

          1. decoded all bytes for all arguments without errors,
          2. decoded all data,
          3. have the fewest decoding errors,
          4. decoded the most arguments successfully, or
          5. have the most recent removal date, if they were removed.

        This must match the collision resolution logic in detokenize.cc.

        To format a list of FormattedStrings from most to least successful,
        use sort(key=FormattedString.score, reverse=True).
        """
        return (
            self.ok(),  # decocoded all data and all expected args were found
            not self.remaining,  # decoded all data
            -sum(not arg.ok() for arg in self.args),  # fewest errors
            len(self.args),  # decoded the most arguments
            date_removed or datetime.max,
        )  # most recently present


class FormatString:
    """Represents a printf-style format string."""

    def __init__(self, format_string: str):
        """Parses format specifiers in the format string."""
        self.format_string = format_string
        self.specifiers = tuple(parse_format_specifiers(self.format_string))

        # List of non-specifier string pieces with room for formatted arguments.
        self._segments = self._parse_string_segments()

    def _parse_string_segments(self) -> List:
        """Splits the format string by format specifiers."""
        if not self.specifiers:
            return [self.format_string]

        spec_spans = [spec.match.span() for spec in self.specifiers]

        # Start with the part of the format string up to the first specifier.
        string_pieces = [self.format_string[: spec_spans[0][0]]]

        for ((_, end1), (start2, _)) in zip(spec_spans[:-1], spec_spans[1:]):
            string_pieces.append(self.format_string[end1:start2])

        # Append the format string segment after the last format specifier.
        string_pieces.append(self.format_string[spec_spans[-1][1] :])

        # Make a list with spots for the replacements between the string pieces.
        segments: List = [None] * (len(string_pieces) + len(self.specifiers))
        segments[::2] = string_pieces

        return segments

    def decode(self, encoded: bytes) -> Tuple[Sequence[DecodedArg], bytes]:
        """Decodes arguments according to the format string.

        Args:
          encoded: bytes; the encoded arguments

        Returns:
          tuple with the decoded arguments and any unparsed data
        """
        decoded_args = []

        fatal_error = False
        index = 0

        for spec in self.specifiers:
            arg = spec.decode(encoded[index:])

            if fatal_error:
                # After an error is encountered, continue to attempt to parse
                # arguments, but mark them all as SKIPPED. If an error occurs,
                # it's impossible to know if subsequent arguments are valid.
                arg.status |= DecodedArg.SKIPPED
            elif not arg.ok():
                fatal_error = True

            decoded_args.append(arg)
            index += len(arg.raw_data)

        return tuple(decoded_args), encoded[index:]

    def format(
        self, encoded_args: bytes, show_errors: bool = False
    ) -> FormattedString:
        """Decodes arguments and formats the string with them.

        Args:
          encoded_args: the arguments to decode and format the string with
          show_errors: if True, an error message is used in place of the %
              conversion specifier when an argument fails to decode

        Returns:
          tuple with the formatted string, decoded arguments, and remaining data
        """
        # Insert formatted arguments in place of each format specifier.
        args, remaining = self.decode(encoded_args)

        if show_errors:
            self._segments[1::2] = (arg.format() for arg in args)
        else:
            self._segments[1::2] = (
                arg.format() if arg.ok() else arg.specifier.specifier
                for arg in args
            )

        return FormattedString(''.join(self._segments), args, remaining)


def decode(
    format_string: str, encoded_arguments: bytes, show_errors: bool = False
) -> str:
    """Decodes arguments and formats them with the provided format string.

    Args:
      format_string: the printf-style format string
      encoded_arguments: encoded arguments with which to format
          format_string; must exclude the 4-byte string token
      show_errors: if True, an error message is used in place of the %
          conversion specifier when an argument fails to decode

    Returns:
      the printf-style formatted string
    """
    return (
        FormatString(format_string).format(encoded_arguments, show_errors).value
    )