aboutsummaryrefslogtreecommitdiff
path: root/src/pthreads.c
blob: 2d945a0e673b06639c2e44210efbf23a5cb01928 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/* Standard C headers */
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

/* Configuration header */
#include "threadpool-common.h"

/* POSIX headers */
#include <pthread.h>
#include <unistd.h>

/* Futex-specific headers */
#if PTHREADPOOL_USE_FUTEX
	#if defined(__linux__)
		#include <sys/syscall.h>
		#include <linux/futex.h>

		/* Old Android NDKs do not define SYS_futex and FUTEX_PRIVATE_FLAG */
		#ifndef SYS_futex
			#define SYS_futex __NR_futex
		#endif
		#ifndef FUTEX_PRIVATE_FLAG
			#define FUTEX_PRIVATE_FLAG 128
		#endif
	#elif defined(__EMSCRIPTEN__)
		/* math.h for INFINITY constant */
		#include <math.h>

		#include <emscripten/threading.h>
	#else
		#error "Platform-specific implementation of futex_wait and futex_wake_all required"
	#endif
#endif

/* Windows-specific headers */
#ifdef _WIN32
	#include <sysinfoapi.h>
#endif

/* Dependencies */
#if PTHREADPOOL_USE_CPUINFO
	#include <cpuinfo.h>
#endif

/* Public library header */
#include <pthreadpool.h>

/* Internal library headers */
#include "threadpool-atomics.h"
#include "threadpool-object.h"
#include "threadpool-utils.h"


#if PTHREADPOOL_USE_FUTEX
	#if defined(__linux__)
		static int futex_wait(pthreadpool_atomic_uint32_t* address, uint32_t value) {
			return syscall(SYS_futex, address, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, value, NULL);
		}

		static int futex_wake_all(pthreadpool_atomic_uint32_t* address) {
			return syscall(SYS_futex, address, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, INT_MAX);
		}
	#elif defined(__EMSCRIPTEN__)
		static int futex_wait(pthreadpool_atomic_uint32_t* address, uint32_t value) {
			return emscripten_futex_wait((volatile void*) address, value, INFINITY);
		}

		static int futex_wake_all(pthreadpool_atomic_uint32_t* address) {
			return emscripten_futex_wake((volatile void*) address, INT_MAX);
		}
	#else
		#error "Platform-specific implementation of futex_wait and futex_wake_all required"
	#endif
#endif

static void checkin_worker_thread(struct pthreadpool* threadpool) {
	#if PTHREADPOOL_USE_FUTEX
		if (pthreadpool_decrement_fetch_relaxed_size_t(&threadpool->active_threads) == 0) {
			pthreadpool_store_release_uint32_t(&threadpool->has_active_threads, 0);
			futex_wake_all(&threadpool->has_active_threads);
		}
	#else
		pthread_mutex_lock(&threadpool->completion_mutex);
		if (pthreadpool_decrement_fetch_release_size_t(&threadpool->active_threads) == 0) {
			pthread_cond_signal(&threadpool->completion_condvar);
		}
		pthread_mutex_unlock(&threadpool->completion_mutex);
	#endif
}

static void wait_worker_threads(struct pthreadpool* threadpool) {
	/* Initial check */
	#if PTHREADPOOL_USE_FUTEX
		uint32_t has_active_threads = pthreadpool_load_acquire_uint32_t(&threadpool->has_active_threads);
		if (has_active_threads == 0) {
			return;
		}
	#else
		size_t active_threads = pthreadpool_load_acquire_size_t(&threadpool->active_threads);
		if (active_threads == 0) {
			return;
		}
	#endif

	/* Spin-wait */
	for (uint32_t i = PTHREADPOOL_SPIN_WAIT_ITERATIONS; i != 0; i--) {
		/* This fence serves as a sleep instruction */
		pthreadpool_fence_acquire();

		#if PTHREADPOOL_USE_FUTEX
			has_active_threads = pthreadpool_load_acquire_uint32_t(&threadpool->has_active_threads);
			if (has_active_threads == 0) {
				return;
			}
		#else
			active_threads = pthreadpool_load_acquire_size_t(&threadpool->active_threads);
			if (active_threads == 0) {
				return;
			}
		#endif
	}

	/* Fall-back to mutex/futex wait */
	#if PTHREADPOOL_USE_FUTEX
		while ((has_active_threads = pthreadpool_load_acquire_uint32_t(&threadpool->has_active_threads)) != 0) {
			futex_wait(&threadpool->has_active_threads, 1);
		}
	#else
		pthread_mutex_lock(&threadpool->completion_mutex);
		while (pthreadpool_load_acquire_size_t(&threadpool->active_threads) != 0) {
			pthread_cond_wait(&threadpool->completion_condvar, &threadpool->completion_mutex);
		};
		pthread_mutex_unlock(&threadpool->completion_mutex);
	#endif
}

static uint32_t wait_for_new_command(
	struct pthreadpool* threadpool,
	uint32_t last_command,
	uint32_t last_flags)
{
	uint32_t command = pthreadpool_load_acquire_uint32_t(&threadpool->command);
	if (command != last_command) {
		return command;
	}

	if ((last_flags & PTHREADPOOL_FLAG_YIELD_WORKERS) == 0) {
		/* Spin-wait loop */
		for (uint32_t i = PTHREADPOOL_SPIN_WAIT_ITERATIONS; i != 0; i--) {
			/* This fence serves as a sleep instruction */
			pthreadpool_fence_acquire();

			command = pthreadpool_load_acquire_uint32_t(&threadpool->command);
			if (command != last_command) {
				return command;
			}
		}
	}

	/* Spin-wait disabled or timed out, fall back to mutex/futex wait */
	#if PTHREADPOOL_USE_FUTEX
		do {
			futex_wait(&threadpool->command, last_command);
			command = pthreadpool_load_acquire_uint32_t(&threadpool->command);
		} while (command == last_command);
	#else
		/* Lock the command mutex */
		pthread_mutex_lock(&threadpool->command_mutex);
		/* Read the command */
		while ((command = pthreadpool_load_acquire_uint32_t(&threadpool->command)) == last_command) {
			/* Wait for new command */
			pthread_cond_wait(&threadpool->command_condvar, &threadpool->command_mutex);
		}
		/* Read a new command */
		pthread_mutex_unlock(&threadpool->command_mutex);
	#endif
	return command;
}

static void* thread_main(void* arg) {
	struct thread_info* thread = (struct thread_info*) arg;
	struct pthreadpool* threadpool = thread->threadpool;
	uint32_t last_command = threadpool_command_init;
	struct fpu_state saved_fpu_state = { 0 };
	uint32_t flags = 0;

	/* Check in */
	checkin_worker_thread(threadpool);

	/* Monitor new commands and act accordingly */
	for (;;) {
		uint32_t command = wait_for_new_command(threadpool, last_command, flags);
		pthreadpool_fence_acquire();

		flags = pthreadpool_load_relaxed_uint32_t(&threadpool->flags);

		/* Process command */
		switch (command & THREADPOOL_COMMAND_MASK) {
			case threadpool_command_parallelize:
			{
				const thread_function_t thread_function =
					(thread_function_t) pthreadpool_load_relaxed_void_p(&threadpool->thread_function);
				if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
					saved_fpu_state = get_fpu_state();
					disable_fpu_denormals();
				}

				thread_function(threadpool, thread);
				if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
					set_fpu_state(saved_fpu_state);
				}
				break;
			}
			case threadpool_command_shutdown:
				/* Exit immediately: the master thread is waiting on pthread_join */
				return NULL;
			case threadpool_command_init:
				/* To inhibit compiler warning */
				break;
		}
		/* Notify the master thread that we finished processing */
		checkin_worker_thread(threadpool);
		/* Update last command */
		last_command = command;
	};
}

struct pthreadpool* pthreadpool_create(size_t threads_count) {
	#if PTHREADPOOL_USE_CPUINFO
		if (!cpuinfo_initialize()) {
			return NULL;
		}
	#endif

	if (threads_count == 0) {
		#if PTHREADPOOL_USE_CPUINFO
			threads_count = cpuinfo_get_processors_count();
		#elif defined(_SC_NPROCESSORS_ONLN)
			threads_count = (size_t) sysconf(_SC_NPROCESSORS_ONLN);
			#if defined(__EMSCRIPTEN_PTHREADS__)
				/* Limit the number of threads to 8 to match link-time PTHREAD_POOL_SIZE option */
				if (threads_count >= 8) {
					threads_count = 8;
				}
			#endif
		#elif defined(_WIN32)
			SYSTEM_INFO system_info;
			ZeroMemory(&system_info, sizeof(system_info));
			GetSystemInfo(&system_info);
			threads_count = (size_t) system_info.dwNumberOfProcessors;
		#else
			#error "Platform-specific implementation of sysconf(_SC_NPROCESSORS_ONLN) required"
		#endif
	}

	struct pthreadpool* threadpool = pthreadpool_allocate(threads_count);
	if (threadpool == NULL) {
		return NULL;
	}
	threadpool->threads_count = fxdiv_init_size_t(threads_count);
	for (size_t tid = 0; tid < threads_count; tid++) {
		threadpool->threads[tid].thread_number = tid;
		threadpool->threads[tid].threadpool = threadpool;
	}

	/* Thread pool with a single thread computes everything on the caller thread. */
	if (threads_count > 1) {
		pthread_mutex_init(&threadpool->execution_mutex, NULL);
		#if !PTHREADPOOL_USE_FUTEX
			pthread_mutex_init(&threadpool->completion_mutex, NULL);
			pthread_cond_init(&threadpool->completion_condvar, NULL);
			pthread_mutex_init(&threadpool->command_mutex, NULL);
			pthread_cond_init(&threadpool->command_condvar, NULL);
		#endif

		#if PTHREADPOOL_USE_FUTEX
			pthreadpool_store_relaxed_uint32_t(&threadpool->has_active_threads, 1);
		#endif
		pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count - 1 /* caller thread */);

		/* Caller thread serves as worker #0. Thus, we create system threads starting with worker #1. */
		for (size_t tid = 1; tid < threads_count; tid++) {
			pthread_create(&threadpool->threads[tid].thread_object, NULL, &thread_main, &threadpool->threads[tid]);
		}

		/* Wait until all threads initialize */
		wait_worker_threads(threadpool);
	}
	return threadpool;
}

PTHREADPOOL_INTERNAL void pthreadpool_parallelize(
	struct pthreadpool* threadpool,
	thread_function_t thread_function,
	const void* params,
	size_t params_size,
	void* task,
	void* context,
	size_t linear_range,
	uint32_t flags)
{
	assert(threadpool != NULL);
	assert(thread_function != NULL);
	assert(task != NULL);
	assert(linear_range > 1);

	/* Protect the global threadpool structures */
	pthread_mutex_lock(&threadpool->execution_mutex);

	#if !PTHREADPOOL_USE_FUTEX
		/* Lock the command variables to ensure that threads don't start processing before they observe complete command with all arguments */
		pthread_mutex_lock(&threadpool->command_mutex);
	#endif

	/* Setup global arguments */
	pthreadpool_store_relaxed_void_p(&threadpool->thread_function, (void*) thread_function);
	pthreadpool_store_relaxed_void_p(&threadpool->task, task);
	pthreadpool_store_relaxed_void_p(&threadpool->argument, context);
	pthreadpool_store_relaxed_uint32_t(&threadpool->flags, flags);

	/* Locking of completion_mutex not needed: readers are sleeping on command_condvar */
	const struct fxdiv_divisor_size_t threads_count = threadpool->threads_count;
	pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count.value - 1 /* caller thread */);
	#if PTHREADPOOL_USE_FUTEX
		pthreadpool_store_relaxed_uint32_t(&threadpool->has_active_threads, 1);
	#endif

	if (params_size != 0) {
		memcpy(&threadpool->params, params, params_size);
		pthreadpool_fence_release();
	}

	/* Spread the work between threads */
	const struct fxdiv_result_size_t range_params = fxdiv_divide_size_t(linear_range, threads_count);
	size_t range_start = 0;
	for (size_t tid = 0; tid < threads_count.value; tid++) {
		struct thread_info* thread = &threadpool->threads[tid];
		const size_t range_length = range_params.quotient + (size_t) (tid < range_params.remainder);
		const size_t range_end = range_start + range_length;
		pthreadpool_store_relaxed_size_t(&thread->range_start, range_start);
		pthreadpool_store_relaxed_size_t(&thread->range_end, range_end);
		pthreadpool_store_relaxed_size_t(&thread->range_length, range_length);

		/* The next subrange starts where the previous ended */
		range_start = range_end;
	}

	/*
	 * Update the threadpool command.
	 * Imporantly, do it after initializing command parameters (range, task, argument, flags)
	 * ~(threadpool->command | THREADPOOL_COMMAND_MASK) flips the bits not in command mask
	 * to ensure the unmasked command is different then the last command, because worker threads
	 * monitor for change in the unmasked command.
	 */
	const uint32_t old_command = pthreadpool_load_relaxed_uint32_t(&threadpool->command);
	const uint32_t new_command = ~(old_command | THREADPOOL_COMMAND_MASK) | threadpool_command_parallelize;

	/*
	 * Store the command with release semantics to guarantee that if a worker thread observes
	 * the new command value, it also observes the updated command parameters.
	 *
	 * Note: release semantics is necessary even with a conditional variable, because the workers might
	 * be waiting in a spin-loop rather than the conditional variable.
	 */
	pthreadpool_store_release_uint32_t(&threadpool->command, new_command);
	#if PTHREADPOOL_USE_FUTEX
		/* Wake up the threads */
		futex_wake_all(&threadpool->command);
	#else
		/* Unlock the command variables before waking up the threads for better performance */
		pthread_mutex_unlock(&threadpool->command_mutex);

		/* Wake up the threads */
		pthread_cond_broadcast(&threadpool->command_condvar);
	#endif

	/* Save and modify FPU denormals control, if needed */
	struct fpu_state saved_fpu_state = { 0 };
	if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
		saved_fpu_state = get_fpu_state();
		disable_fpu_denormals();
	}

	/* Do computations as worker #0 */
	thread_function(threadpool, &threadpool->threads[0]);

	/* Restore FPU denormals control, if needed */
	if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
		set_fpu_state(saved_fpu_state);
	}

	/* Wait until the threads finish computation */
	wait_worker_threads(threadpool);

	/* Make changes by other threads visible to this thread */
	pthreadpool_fence_acquire();

	/* Unprotect the global threadpool structures */
	pthread_mutex_unlock(&threadpool->execution_mutex);
}

void pthreadpool_destroy(struct pthreadpool* threadpool) {
	if (threadpool != NULL) {
		const size_t threads_count = threadpool->threads_count.value;
		if (threads_count > 1) {
			#if PTHREADPOOL_USE_FUTEX
				pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count - 1 /* caller thread */);
				pthreadpool_store_relaxed_uint32_t(&threadpool->has_active_threads, 1);

				/*
				 * Store the command with release semantics to guarantee that if a worker thread observes
				 * the new command value, it also observes the updated active_threads/has_active_threads values.
				 */
				pthreadpool_store_release_uint32_t(&threadpool->command, threadpool_command_shutdown);

				/* Wake up worker threads */
				futex_wake_all(&threadpool->command);
			#else
				/* Lock the command variable to ensure that threads don't shutdown until both command and active_threads are updated */
				pthread_mutex_lock(&threadpool->command_mutex);

				pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count - 1 /* caller thread */);

				/*
				 * Store the command with release semantics to guarantee that if a worker thread observes
				 * the new command value, it also observes the updated active_threads value.
				 *
				 * Note: the release fence inside pthread_mutex_unlock is insufficient,
				 * because the workers might be waiting in a spin-loop rather than the conditional variable.
				 */
				pthreadpool_store_release_uint32_t(&threadpool->command, threadpool_command_shutdown);

				/* Wake up worker threads */
				pthread_cond_broadcast(&threadpool->command_condvar);

				/* Commit the state changes and let workers start processing */
				pthread_mutex_unlock(&threadpool->command_mutex);
			#endif

			/* Wait until all threads return */
			for (size_t thread = 1; thread < threads_count; thread++) {
				pthread_join(threadpool->threads[thread].thread_object, NULL);
			}

			/* Release resources */
			pthread_mutex_destroy(&threadpool->execution_mutex);
			#if !PTHREADPOOL_USE_FUTEX
				pthread_mutex_destroy(&threadpool->completion_mutex);
				pthread_cond_destroy(&threadpool->completion_condvar);
				pthread_mutex_destroy(&threadpool->command_mutex);
				pthread_cond_destroy(&threadpool->command_condvar);
			#endif
		}
		#if PTHREADPOOL_USE_CPUINFO
			cpuinfo_deinitialize();
		#endif
		pthreadpool_deallocate(threadpool);
	}
}