aboutsummaryrefslogtreecommitdiff
path: root/src/windows.c
blob: c9b88f7d0dcaff6a4b0e9fef1b744849c796980c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/* Standard C headers */
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

/* Configuration header */
#include "threadpool-common.h"

/* Windows headers */
#include <windows.h>

/* Public library header */
#include <pthreadpool.h>

/* Internal library headers */
#include "threadpool-atomics.h"
#include "threadpool-object.h"
#include "threadpool-utils.h"


static void checkin_worker_thread(struct pthreadpool* threadpool, uint32_t event_index) {
	if (pthreadpool_decrement_fetch_release_size_t(&threadpool->active_threads) == 0) {
		SetEvent(threadpool->completion_event[event_index]);
	}
}

static void wait_worker_threads(struct pthreadpool* threadpool, uint32_t event_index) {
	/* Initial check */
	size_t active_threads = pthreadpool_load_acquire_size_t(&threadpool->active_threads);
	if (active_threads == 0) {
		return;
	}

	/* Spin-wait */
	for (uint32_t i = PTHREADPOOL_SPIN_WAIT_ITERATIONS; i != 0; i--) {
		pthreadpool_yield();

		active_threads = pthreadpool_load_acquire_size_t(&threadpool->active_threads);
		if (active_threads == 0) {
			return;
		}
	}

	/* Fall-back to event wait */
	const DWORD wait_status = WaitForSingleObject(threadpool->completion_event[event_index], INFINITE);
	assert(wait_status == WAIT_OBJECT_0);
	assert(pthreadpool_load_relaxed_size_t(&threadpool->active_threads) == 0);
}

static uint32_t wait_for_new_command(
	struct pthreadpool* threadpool,
	uint32_t last_command,
	uint32_t last_flags)
{
	uint32_t command = pthreadpool_load_acquire_uint32_t(&threadpool->command);
	if (command != last_command) {
		return command;
	}

	if ((last_flags & PTHREADPOOL_FLAG_YIELD_WORKERS) == 0) {
		/* Spin-wait loop */
		for (uint32_t i = PTHREADPOOL_SPIN_WAIT_ITERATIONS; i != 0; i--) {
			pthreadpool_yield();

			command = pthreadpool_load_acquire_uint32_t(&threadpool->command);
			if (command != last_command) {
				return command;
			}
		}
	}

	/* Spin-wait disabled or timed out, fall back to event wait */
	const uint32_t event_index = (last_command >> 31);
	const DWORD wait_status = WaitForSingleObject(threadpool->command_event[event_index], INFINITE);
	assert(wait_status == WAIT_OBJECT_0);

	command = pthreadpool_load_relaxed_uint32_t(&threadpool->command);
	assert(command != last_command);
	return command;
}

static DWORD WINAPI thread_main(LPVOID arg) {
	struct thread_info* thread = (struct thread_info*) arg;
	struct pthreadpool* threadpool = thread->threadpool;
	uint32_t last_command = threadpool_command_init;
	struct fpu_state saved_fpu_state = { 0 };
	uint32_t flags = 0;

	/* Check in */
	checkin_worker_thread(threadpool, 0);

	/* Monitor new commands and act accordingly */
	for (;;) {
		uint32_t command = wait_for_new_command(threadpool, last_command, flags);
		pthreadpool_fence_acquire();

		flags = pthreadpool_load_relaxed_uint32_t(&threadpool->flags);

		/* Process command */
		switch (command & THREADPOOL_COMMAND_MASK) {
			case threadpool_command_parallelize:
			{
				const thread_function_t thread_function =
					(thread_function_t) pthreadpool_load_relaxed_void_p(&threadpool->thread_function);
				if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
					saved_fpu_state = get_fpu_state();
					disable_fpu_denormals();
				}

				thread_function(threadpool, thread);
				if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
					set_fpu_state(saved_fpu_state);
				}
				break;
			}
			case threadpool_command_shutdown:
				/* Exit immediately: the master thread is waiting on pthread_join */
				return 0;
			case threadpool_command_init:
				/* To inhibit compiler warning */
				break;
		}
		/* Notify the master thread that we finished processing */
		const uint32_t event_index = command >> 31;
		checkin_worker_thread(threadpool, event_index);
		/* Update last command */
		last_command = command;
	};
	return 0;
}

struct pthreadpool* pthreadpool_create(size_t threads_count) {
	if (threads_count == 0) {
		SYSTEM_INFO system_info;
		ZeroMemory(&system_info, sizeof(system_info));
		GetSystemInfo(&system_info);
		threads_count = (size_t) system_info.dwNumberOfProcessors;
	}

	struct pthreadpool* threadpool = pthreadpool_allocate(threads_count);
	if (threadpool == NULL) {
		return NULL;
	}
	threadpool->threads_count = fxdiv_init_size_t(threads_count);
	for (size_t tid = 0; tid < threads_count; tid++) {
		threadpool->threads[tid].thread_number = tid;
		threadpool->threads[tid].threadpool = threadpool;
	}

	/* Thread pool with a single thread computes everything on the caller thread. */
	if (threads_count > 1) {
		threadpool->execution_mutex = CreateMutexW(
			NULL /* mutex attributes */,
			FALSE /* initially owned */,
			NULL /* name */);
		for (size_t i = 0; i < 2; i++) {
			threadpool->completion_event[i] = CreateEventW(
				NULL /* event attributes */,
				TRUE /* manual-reset event: yes */,
				FALSE /* initial state: nonsignaled */,
				NULL /* name */);
			threadpool->command_event[i] = CreateEventW(
				NULL /* event attributes */,
				TRUE /* manual-reset event: yes */,
				FALSE /* initial state: nonsignaled */,
				NULL /* name */);
		}

		pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count - 1 /* caller thread */);

		/* Caller thread serves as worker #0. Thus, we create system threads starting with worker #1. */
		for (size_t tid = 1; tid < threads_count; tid++) {
			threadpool->threads[tid].thread_handle = CreateThread(
				NULL /* thread attributes */,
				0 /* stack size: default */,
				&thread_main,
				&threadpool->threads[tid],
				0 /* creation flags */,
				NULL /* thread id */);
		}

		/* Wait until all threads initialize */
		wait_worker_threads(threadpool, 0);
	}
	return threadpool;
}

PTHREADPOOL_INTERNAL void pthreadpool_parallelize(
	struct pthreadpool* threadpool,
	thread_function_t thread_function,
	const void* params,
	size_t params_size,
	void* task,
	void* context,
	size_t linear_range,
	uint32_t flags)
{
	assert(threadpool != NULL);
	assert(thread_function != NULL);
	assert(task != NULL);
	assert(linear_range > 1);

	/* Protect the global threadpool structures */
	const DWORD wait_status = WaitForSingleObject(threadpool->execution_mutex, INFINITE);
	assert(wait_status == WAIT_OBJECT_0);

	/* Setup global arguments */
	pthreadpool_store_relaxed_void_p(&threadpool->thread_function, (void*) thread_function);
	pthreadpool_store_relaxed_void_p(&threadpool->task, task);
	pthreadpool_store_relaxed_void_p(&threadpool->argument, context);
	pthreadpool_store_relaxed_uint32_t(&threadpool->flags, flags);

	const struct fxdiv_divisor_size_t threads_count = threadpool->threads_count;
	pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count.value - 1 /* caller thread */);

	if (params_size != 0) {
		CopyMemory(&threadpool->params, params, params_size);
		pthreadpool_fence_release();
	}

	/* Spread the work between threads */
	const struct fxdiv_result_size_t range_params = fxdiv_divide_size_t(linear_range, threads_count);
	size_t range_start = 0;
	for (size_t tid = 0; tid < threads_count.value; tid++) {
		struct thread_info* thread = &threadpool->threads[tid];
		const size_t range_length = range_params.quotient + (size_t) (tid < range_params.remainder);
		const size_t range_end = range_start + range_length;
		pthreadpool_store_relaxed_size_t(&thread->range_start, range_start);
		pthreadpool_store_relaxed_size_t(&thread->range_end, range_end);
		pthreadpool_store_relaxed_size_t(&thread->range_length, range_length);

		/* The next subrange starts where the previous ended */
		range_start = range_end;
	}

	/*
	 * Update the threadpool command.
	 * Imporantly, do it after initializing command parameters (range, task, argument, flags)
	 * ~(threadpool->command | THREADPOOL_COMMAND_MASK) flips the bits not in command mask
	 * to ensure the unmasked command is different then the last command, because worker threads
	 * monitor for change in the unmasked command.
	 */
	const uint32_t old_command = pthreadpool_load_relaxed_uint32_t(&threadpool->command);
	const uint32_t new_command = ~(old_command | THREADPOOL_COMMAND_MASK) | threadpool_command_parallelize;

	/*
	 * Reset the command event for the next command.
	 * It is important to reset the event before writing out the new command, because as soon as the worker threads
	 * observe the new command, they may process it and switch to waiting on the next command event.
	 *
	 * Note: the event is different from the command event signalled in this update.
	 */
	const uint32_t event_index = (old_command >> 31);
	BOOL reset_event_status = ResetEvent(threadpool->command_event[event_index ^ 1]);
	assert(reset_event_status != FALSE);

	/*
	 * Store the command with release semantics to guarantee that if a worker thread observes
	 * the new command value, it also observes the updated command parameters.
	 *
	 * Note: release semantics is necessary, because the workers might be waiting in a spin-loop
	 * rather than on the event object.
	 */
	pthreadpool_store_release_uint32_t(&threadpool->command, new_command);

	/*
	 * Signal the event to wake up the threads.
	 * Event in use must be switched after every submitted command to avoid race conditions.
	 * Choose the event based on the high bit of the command, which is flipped on every update.
	 */
	const BOOL set_event_status = SetEvent(threadpool->command_event[event_index]);
	assert(set_event_status != FALSE);

	/* Save and modify FPU denormals control, if needed */
	struct fpu_state saved_fpu_state = { 0 };
	if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
		saved_fpu_state = get_fpu_state();
		disable_fpu_denormals();
	}

	/* Do computations as worker #0 */
	thread_function(threadpool, &threadpool->threads[0]);

	/* Restore FPU denormals control, if needed */
	if (flags & PTHREADPOOL_FLAG_DISABLE_DENORMALS) {
		set_fpu_state(saved_fpu_state);
	}

	/*
	 * Wait until the threads finish computation
	 * Use the complementary event because it corresponds to the new command.
	 */
	wait_worker_threads(threadpool, event_index ^ 1);

	/*
	 * Reset the completion event for the next command.
	 * Note: the event is different from the one used for waiting in this update.
	 */
	reset_event_status = ResetEvent(threadpool->completion_event[event_index]);
	assert(reset_event_status != FALSE);

	/* Make changes by other threads visible to this thread */
	pthreadpool_fence_acquire();

	/* Unprotect the global threadpool structures */
	const BOOL release_mutex_status = ReleaseMutex(threadpool->execution_mutex);
	assert(release_mutex_status != FALSE);
}

void pthreadpool_destroy(struct pthreadpool* threadpool) {
	if (threadpool != NULL) {
		const size_t threads_count = threadpool->threads_count.value;
		if (threads_count > 1) {
			pthreadpool_store_relaxed_size_t(&threadpool->active_threads, threads_count - 1 /* caller thread */);

			/*
			 * Store the command with release semantics to guarantee that if a worker thread observes
			 * the new command value, it also observes the updated active_threads values.
			 */
			const uint32_t old_command = pthreadpool_load_relaxed_uint32_t(&threadpool->command);
			pthreadpool_store_release_uint32_t(&threadpool->command, threadpool_command_shutdown);

			/*
			 * Signal the event to wake up the threads.
			 * Event in use must be switched after every submitted command to avoid race conditions.
			 * Choose the event based on the high bit of the command, which is flipped on every update.
			 */
			const uint32_t event_index = (old_command >> 31);
			const BOOL set_event_status = SetEvent(threadpool->command_event[event_index]);
			assert(set_event_status != FALSE);

			/* Wait until all threads return */
			for (size_t tid = 1; tid < threads_count; tid++) {
				const HANDLE thread_handle = threadpool->threads[tid].thread_handle;
				if (thread_handle != NULL) {
					const DWORD wait_status = WaitForSingleObject(thread_handle, INFINITE);
					assert(wait_status == WAIT_OBJECT_0);

					const BOOL close_status = CloseHandle(thread_handle);
					assert(close_status != FALSE);
				}
			}

			/* Release resources */
			if (threadpool->execution_mutex != NULL) {
				const BOOL close_status = CloseHandle(threadpool->execution_mutex);
				assert(close_status != FALSE);
			}
			for (size_t i = 0; i < 2; i++) {
				if (threadpool->command_event[i] != NULL) {
					const BOOL close_status = CloseHandle(threadpool->command_event[i]);
					assert(close_status != FALSE);
				}
				if (threadpool->completion_event[i] != NULL) {
					const BOOL close_status = CloseHandle(threadpool->completion_event[i]);
					assert(close_status != FALSE);
				}
			}
		}
		pthreadpool_deallocate(threadpool);
	}
}