aboutsummaryrefslogtreecommitdiff
path: root/pycparser/c_parser.py
diff options
context:
space:
mode:
authoreli.bendersky <devnull@localhost>2010-12-04 17:38:11 +0200
committereli.bendersky <devnull@localhost>2010-12-04 17:38:11 +0200
commitfe5c2bb80abc1a9045d17b6b5a0f35096bde7d8d (patch)
tree65c15c4fe0c6922d56022acc42ba01380e30bfd2 /pycparser/c_parser.py
parent1359c959867b9fd29a65b55b7a17877d9f2abee4 (diff)
downloadpycparser-fe5c2bb80abc1a9045d17b6b5a0f35096bde7d8d.tar.gz
releasing version 2.01 - removed yaml dependency, fix installation problems
Diffstat (limited to 'pycparser/c_parser.py')
-rw-r--r--pycparser/c_parser.py2681
1 files changed, 1340 insertions, 1341 deletions
diff --git a/pycparser/c_parser.py b/pycparser/c_parser.py
index e9d0403..38c80b3 100644
--- a/pycparser/c_parser.py
+++ b/pycparser/c_parser.py
@@ -1,1354 +1,1353 @@
-#-----------------------------------------------------------------
-# pycparser: c_parser.py
-#
-# CParser class: Parser and AST builder for the C language
-#
-# Copyright (C) 2008-2010, Eli Bendersky
-# License: LGPL
-#-----------------------------------------------------------------
-
-import re
-
-import ply.yacc
-
-from . import c_ast
-from .c_lexer import CLexer
-from .plyparser import PLYParser, Coord, ParseError
-
-
-class CParser(PLYParser):
- def __init__(
- self,
- lex_optimize=True,
- lextab='pycparser.lextab',
- yacc_optimize=True,
- yacctab='pycparser.yacctab',
- yacc_debug=False):
- """ Create a new CParser.
-
- Some arguments for controlling the debug/optimization
- level of the parser are provided. The defaults are
- tuned for release/performance mode.
- The simple rules for using them are:
- *) When tweaking CParser/CLexer, set these to False
- *) When releasing a stable parser, set to True
-
- lex_optimize:
- Set to False when you're modifying the lexer.
- Otherwise, changes in the lexer won't be used, if
- some lextab.py file exists.
- When releasing with a stable lexer, set to True
- to save the re-generation of the lexer table on
- each run.
-
- lextab:
- Points to the lex table that's used for optimized
- mode. Only if you're modifying the lexer and want
- some tests to avoid re-generating the table, make
- this point to a local lex table file (that's been
- earlier generated with lex_optimize=True)
-
- yacc_optimize:
- Set to False when you're modifying the parser.
- Otherwise, changes in the parser won't be used, if
- some parsetab.py file exists.
- When releasing with a stable parser, set to True
- to save the re-generation of the parser table on
- each run.
-
- yacctab:
- Points to the yacc table that's used for optimized
- mode. Only if you're modifying the parser, make
- this point to a local yacc table file
-
- yacc_debug:
- Generate a parser.out file that explains how yacc
- built the parsing table from the grammar.
- """
- self.clex = CLexer(
- error_func=self._lex_error_func,
- type_lookup_func=self._lex_type_lookup_func)
-
- self.clex.build(
- optimize=lex_optimize,
- lextab=lextab)
- self.tokens = self.clex.tokens
-
- rules_with_opt = [
- 'abstract_declarator',
- 'assignment_expression',
- 'declaration_list',
- 'declaration_specifiers',
- 'designation',
- 'expression',
- 'identifier_list',
- 'init_declarator_list',
- 'parameter_type_list',
- 'specifier_qualifier_list',
- 'block_item_list',
- 'type_qualifier_list',
- ]
-
- for rule in rules_with_opt:
- self._create_opt_rule(rule)
-
- self.cparser = ply.yacc.yacc(
- module=self,
- start='translation_unit',
- debug=yacc_debug,
- optimize=yacc_optimize,
- tabmodule=yacctab)
-
- # A table of identifiers defined as typedef types during
- # parsing.
- #
- self.typedef_table = set([])
-
- def parse(self, text, filename='', debuglevel=0):
- """ Parses C code and returns an AST.
-
- text:
- A string containing the C source code
-
- filename:
- Name of the file being parsed (for meaningful
- error messages)
-
- debuglevel:
- Debug level to yacc
- """
- self.clex.filename = filename
- self.clex.reset_lineno()
- self.typedef_table = set([])
- return self.cparser.parse(text, lexer=self.clex, debug=debuglevel)
-
- ######################-- PRIVATE --######################
-
- def _lex_error_func(self, msg, line, column):
- self._parse_error(msg, self._coord(line, column))
-
- def _lex_type_lookup_func(self, name):
- """ Looks up types that were previously defined with
- typedef.
- Passed to the lexer for recognizing identifiers that
- are types.
- """
- return name in self.typedef_table
-
- def _add_typedef_type(self, name):
- """ Adds names that were defined as new types with
- typedef.
- """
- self.typedef_table.add(name)
-
- # To understand what's going on here, read sections A.8.5 and
- # A.8.6 of K&R2 very carefully.
- #
- # A C type consists of a basic type declaration, with a list
- # of modifiers. For example:
- #
- # int *c[5];
- #
- # The basic declaration here is 'int x', and the pointer and
- # the array are the modifiers.
- #
- # Basic declarations are represented by TypeDecl (from module
- # c_ast) and the modifiers are FuncDecl, PtrDecl and
- # ArrayDecl.
- #
- # The standard states that whenever a new modifier is parsed,
- # it should be added to the end of the list of modifiers. For
- # example:
- #
- # K&R2 A.8.6.2: Array Declarators
- #
- # In a declaration T D where D has the form
- # D1 [constant-expression-opt]
- # and the type of the identifier in the declaration T D1 is
- # "type-modifier T", the type of the
- # identifier of D is "type-modifier array of T"
- #
- # This is what this method does. The declarator it receives
- # can be a list of declarators ending with TypeDecl. It
- # tacks the modifier to the end of this list, just before
- # the TypeDecl.
- #
- # Additionally, the modifier may be a list itself. This is
- # useful for pointers, that can come as a chain from the rule
- # p_pointer. In this case, the whole modifier list is spliced
- # into the new location.
- #
- def _type_modify_decl(self, decl, modifier):
- """ Tacks a type modifier on a declarator, and returns
- the modified declarator.
-
- Note: the declarator and modifier may be modified
- """
- #~ print '****'
- #~ decl.show(offset=3)
- #~ modifier.show(offset=3)
- #~ print '****'
-
- modifier_head = modifier
- modifier_tail = modifier
-
- # The modifier may be a nested list. Reach its tail.
- #
- while modifier_tail.type:
- modifier_tail = modifier_tail.type
-
- # If the decl is a basic type, just tack the modifier onto
- # it
- #
- if isinstance(decl, c_ast.TypeDecl):
- modifier_tail.type = decl
- return modifier
- else:
- # Otherwise, the decl is a list of modifiers. Reach
- # its tail and splice the modifier onto the tail,
- # pointing to the underlying basic type.
- #
- decl_tail = decl
-
- while not isinstance(decl_tail.type, c_ast.TypeDecl):
- decl_tail = decl_tail.type
-
- modifier_tail.type = decl_tail.type
- decl_tail.type = modifier_head
- return decl
-
- # Due to the order in which declarators are constructed,
- # they have to be fixed in order to look like a normal AST.
- #
- # When a declaration arrives from syntax construction, it has
- # these problems:
- # * The innermost TypeDecl has no type (because the basic
- # type is only known at the uppermost declaration level)
- # * The declaration has no variable name, since that is saved
- # in the innermost TypeDecl
- # * The typename of the declaration is a list of type
- # specifiers, and not a node. Here, basic identifier types
- # should be separated from more complex types like enums
- # and structs.
- #
- # This method fixes these problem.
- #
- def _fix_decl_name_type(self, decl, typename):
- """ Fixes a declaration. Modifies decl.
- """
- # Reach the underlying basic type
- #
- type = decl
- while not isinstance(type, c_ast.TypeDecl):
- type = type.type
-
- decl.name = type.declname
- type.quals = decl.quals
-
- # The typename is a list of types. If any type in this
- # list isn't a simple string type, it must be the only
- # type in the list (it's illegal to declare "int enum .."
- # If all the types are basic, they're collected in the
- # IdentifierType holder.
- #
- for tn in typename:
- if not isinstance(tn, str):
- if len(typename) > 1:
- self._parse_error(
- "Invalid multiple types specified", tn.coord)
- else:
- type.type = tn
- return decl
-
- type.type = c_ast.IdentifierType(typename)
- return decl
-
- def _add_declaration_specifier(self, declspec, newspec, kind):
- """ Declaration specifiers are represented by a dictionary
- with the entries:
- * qual: a list of type qualifiers
- * storage: a list of storage type qualifiers
- * type: a list of type specifiers
- * function: a list of function specifiers
-
- This method is given a declaration specifier, and a
- new specifier of a given kind.
- Returns the declaration specifier, with the new
- specifier incorporated.
- """
- spec = declspec or dict(qual=[], storage=[], type=[], function=[])
- spec[kind].append(newspec)
- return spec
-
- def _build_function_definition(self, decl, spec, param_decls, body):
- """ Builds a function definition.
- """
- declaration = c_ast.Decl(
- name=None,
- quals=spec['qual'],
- storage=spec['storage'],
- funcspec=spec['function'],
- type=decl,
- init=None,
- bitsize=None,
- coord=decl.coord)
-
- typename = spec['type']
- declaration = self._fix_decl_name_type(declaration, typename)
- return c_ast.FuncDef(
- decl=declaration,
- param_decls=param_decls,
- body=body,
- coord=decl.coord)
-
- def _select_struct_union_class(self, token):
- """ Given a token (either STRUCT or UNION), selects the
- appropriate AST class.
- """
- if token == 'struct':
- return c_ast.Struct
- else:
- return c_ast.Union
-
- ##
- ## Precedence and associativity of operators
- ##
- precedence = (
- ('left', 'LOR'),
- ('left', 'LAND'),
- ('left', 'OR'),
- ('left', 'XOR'),
- ('left', 'AND'),
- ('left', 'EQ', 'NE'),
- ('left', 'GT', 'GE', 'LT', 'LE'),
- ('left', 'RSHIFT', 'LSHIFT'),
- ('left', 'PLUS', 'MINUS'),
- ('left', 'TIMES', 'DIVIDE', 'MOD')
- )
-
- ##
- ## Grammar productions
- ## Implementation of the BNF defined in K&R2 A.13
- ##
- def p_translation_unit_1(self, p):
- """ translation_unit : external_declaration
- """
- # Note: external_declaration is already a list
- #
- p[0] = c_ast.FileAST(p[1])
-
- def p_translation_unit_2(self, p):
- """ translation_unit : translation_unit external_declaration
- """
- p[1].ext.extend(p[2])
- p[0] = p[1]
-
- # Declarations always come as lists (because they can be
- # several in one line), so we wrap the function definition
- # into a list as well, to make the return value of
- # external_declaration homogenous.
- #
- def p_external_declaration_1(self, p):
- """ external_declaration : function_definition
- """
- p[0] = [p[1]]
-
- def p_external_declaration_2(self, p):
- """ external_declaration : declaration
- """
- p[0] = p[1]
-
- def p_external_declaration_3(self, p):
- """ external_declaration : pp_directive
- """
- p[0] = p[1]
-
- def p_pp_directive(self, p):
- """ pp_directive : PPHASH
- """
- self._parse_error('Directives not supported yet',
- self._coord(p.lineno(1)))
-
- # In function definitions, the declarator can be followed by
- # a declaration list, for old "K&R style" function definitios.
- #
- def p_function_definition_1(self, p):
- """ function_definition : declarator declaration_list_opt compound_statement
- """
- # no declaration specifiers
- spec = dict(qual=[], storage=[], type=[])
-
- p[0] = self._build_function_definition(
- decl=p[1],
- spec=spec,
- param_decls=p[2],
- body=p[3])
-
- def p_function_definition_2(self, p):
- """ function_definition : declaration_specifiers declarator declaration_list_opt compound_statement
- """
- spec = p[1]
-
- p[0] = self._build_function_definition(
- decl=p[2],
- spec=spec,
- param_decls=p[3],
- body=p[4])
-
- def p_statement(self, p):
- """ statement : labeled_statement
- | expression_statement
- | compound_statement
- | selection_statement
- | iteration_statement
- | jump_statement
- """
- p[0] = p[1]
-
- # In C, declarations can come several in a line:
- # int x, *px, romulo = 5;
- #
- # However, for the AST, we will split them to separate Decl
- # nodes.
- #
- # This rule splits its declarations and always returns a list
- # of Decl nodes, even if it's one element long.
- #
- def p_decl_body(self, p):
- """ decl_body : declaration_specifiers init_declarator_list_opt
- """
- spec = p[1]
- is_typedef = 'typedef' in spec['storage']
- decls = []
-
- # p[2] (init_declarator_list_opt) is either a list or None
- #
- if p[2] is None:
- # Then it's a declaration of a struct / enum tag,
- # without an actual declarator.
- #
- type = spec['type']
- if len(type) > 1:
- coord = '?'
- for t in type:
- if hasattr(t, 'coord'):
- coord = t.coord
- break
-
- self._parse_error('Multiple type specifiers with a type tag', coord)
-
- decl = c_ast.Decl(
- name=None,
- quals=spec['qual'],
- storage=spec['storage'],
- funcspec=spec['function'],
- type=type[0],
- init=None,
- bitsize=None,
- coord=type[0].coord)
- decls = [decl]
- else:
- for decl, init in p[2] or []:
- if is_typedef:
- decl = c_ast.Typedef(
- name=None,
- quals=spec['qual'],
- storage=spec['storage'],
- type=decl,
- coord=decl.coord)
- else:
- decl = c_ast.Decl(
- name=None,
- quals=spec['qual'],
- storage=spec['storage'],
- funcspec=spec['function'],
- type=decl,
- init=init,
- bitsize=None,
- coord=decl.coord)
-
- typename = spec['type']
- fixed_decl = self._fix_decl_name_type(decl, typename)
-
- # Add the type name defined by typedef to a
- # symbol table (for usage in the lexer)
- #
- if is_typedef:
- self._add_typedef_type(fixed_decl.name)
-
- decls.append(fixed_decl)
-
- p[0] = decls
-
- # The declaration has been split to a decl_body sub-rule and
- # SEMI, because having them in a single rule created a problem
- # for defining typedefs.
- #
- # If a typedef line was directly followed by a line using the
- # type defined with the typedef, the type would not be
- # recognized. This is because to reduce the declaration rule,
- # the parser's lookahead asked for the token after SEMI, which
- # was the type from the next line, and the lexer had no chance
- # to see the updated type symbol table.
- #
- # Splitting solves this problem, because after seeing SEMI,
- # the parser reduces decl_body, which actually adds the new
- # type into the table to be seen by the lexer before the next
- # line is reached.
- #
- def p_declaration(self, p):
- """ declaration : decl_body SEMI
- """
- p[0] = p[1]
-
- # Since each declaration is a list of declarations, this
- # rule will combine all the declarations and return a single
- # list
- #
- def p_declaration_list(self, p):
- """ declaration_list : declaration
- | declaration_list declaration
- """
- p[0] = p[1] if len(p) == 2 else p[1] + p[2]
-
- def p_declaration_specifiers_1(self, p):
- """ declaration_specifiers : type_qualifier declaration_specifiers_opt
- """
- p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')
-
- def p_declaration_specifiers_2(self, p):
- """ declaration_specifiers : type_specifier declaration_specifiers_opt
- """
- p[0] = self._add_declaration_specifier(p[2], p[1], 'type')
-
- def p_declaration_specifiers_3(self, p):
- """ declaration_specifiers : storage_class_specifier declaration_specifiers_opt
- """
- p[0] = self._add_declaration_specifier(p[2], p[1], 'storage')
-
- def p_declaration_specifiers_4(self, p):
- """ declaration_specifiers : function_specifier declaration_specifiers_opt
- """
- p[0] = self._add_declaration_specifier(p[2], p[1], 'function')
-
- def p_storage_class_specifier(self, p):
- """ storage_class_specifier : AUTO
- | REGISTER
- | STATIC
- | EXTERN
- | TYPEDEF
- """
- p[0] = p[1]
-
+#-----------------------------------------------------------------
+# pycparser: c_parser.py
+#
+# CParser class: Parser and AST builder for the C language
+#
+# Copyright (C) 2008-2010, Eli Bendersky
+# License: LGPL
+#-----------------------------------------------------------------
+import re
+
+import ply.yacc
+
+from . import c_ast
+from .c_lexer import CLexer
+from .plyparser import PLYParser, Coord, ParseError
+
+
+class CParser(PLYParser):
+ def __init__(
+ self,
+ lex_optimize=True,
+ lextab='pycparser.lextab',
+ yacc_optimize=True,
+ yacctab='pycparser.yacctab',
+ yacc_debug=False):
+ """ Create a new CParser.
+
+ Some arguments for controlling the debug/optimization
+ level of the parser are provided. The defaults are
+ tuned for release/performance mode.
+ The simple rules for using them are:
+ *) When tweaking CParser/CLexer, set these to False
+ *) When releasing a stable parser, set to True
+
+ lex_optimize:
+ Set to False when you're modifying the lexer.
+ Otherwise, changes in the lexer won't be used, if
+ some lextab.py file exists.
+ When releasing with a stable lexer, set to True
+ to save the re-generation of the lexer table on
+ each run.
+
+ lextab:
+ Points to the lex table that's used for optimized
+ mode. Only if you're modifying the lexer and want
+ some tests to avoid re-generating the table, make
+ this point to a local lex table file (that's been
+ earlier generated with lex_optimize=True)
+
+ yacc_optimize:
+ Set to False when you're modifying the parser.
+ Otherwise, changes in the parser won't be used, if
+ some parsetab.py file exists.
+ When releasing with a stable parser, set to True
+ to save the re-generation of the parser table on
+ each run.
+
+ yacctab:
+ Points to the yacc table that's used for optimized
+ mode. Only if you're modifying the parser, make
+ this point to a local yacc table file
+
+ yacc_debug:
+ Generate a parser.out file that explains how yacc
+ built the parsing table from the grammar.
+ """
+ self.clex = CLexer(
+ error_func=self._lex_error_func,
+ type_lookup_func=self._lex_type_lookup_func)
+
+ self.clex.build(
+ optimize=lex_optimize,
+ lextab=lextab)
+ self.tokens = self.clex.tokens
+
+ rules_with_opt = [
+ 'abstract_declarator',
+ 'assignment_expression',
+ 'declaration_list',
+ 'declaration_specifiers',
+ 'designation',
+ 'expression',
+ 'identifier_list',
+ 'init_declarator_list',
+ 'parameter_type_list',
+ 'specifier_qualifier_list',
+ 'block_item_list',
+ 'type_qualifier_list',
+ ]
+
+ for rule in rules_with_opt:
+ self._create_opt_rule(rule)
+
+ self.cparser = ply.yacc.yacc(
+ module=self,
+ start='translation_unit',
+ debug=yacc_debug,
+ optimize=yacc_optimize,
+ tabmodule=yacctab)
+
+ # A table of identifiers defined as typedef types during
+ # parsing.
+ #
+ self.typedef_table = set([])
+
+ def parse(self, text, filename='', debuglevel=0):
+ """ Parses C code and returns an AST.
+
+ text:
+ A string containing the C source code
+
+ filename:
+ Name of the file being parsed (for meaningful
+ error messages)
+
+ debuglevel:
+ Debug level to yacc
+ """
+ self.clex.filename = filename
+ self.clex.reset_lineno()
+ self.typedef_table = set([])
+ return self.cparser.parse(text, lexer=self.clex, debug=debuglevel)
+
+ ######################-- PRIVATE --######################
+
+ def _lex_error_func(self, msg, line, column):
+ self._parse_error(msg, self._coord(line, column))
+
+ def _lex_type_lookup_func(self, name):
+ """ Looks up types that were previously defined with
+ typedef.
+ Passed to the lexer for recognizing identifiers that
+ are types.
+ """
+ return name in self.typedef_table
+
+ def _add_typedef_type(self, name):
+ """ Adds names that were defined as new types with
+ typedef.
+ """
+ self.typedef_table.add(name)
+
+ # To understand what's going on here, read sections A.8.5 and
+ # A.8.6 of K&R2 very carefully.
+ #
+ # A C type consists of a basic type declaration, with a list
+ # of modifiers. For example:
+ #
+ # int *c[5];
+ #
+ # The basic declaration here is 'int x', and the pointer and
+ # the array are the modifiers.
+ #
+ # Basic declarations are represented by TypeDecl (from module
+ # c_ast) and the modifiers are FuncDecl, PtrDecl and
+ # ArrayDecl.
+ #
+ # The standard states that whenever a new modifier is parsed,
+ # it should be added to the end of the list of modifiers. For
+ # example:
+ #
+ # K&R2 A.8.6.2: Array Declarators
+ #
+ # In a declaration T D where D has the form
+ # D1 [constant-expression-opt]
+ # and the type of the identifier in the declaration T D1 is
+ # "type-modifier T", the type of the
+ # identifier of D is "type-modifier array of T"
+ #
+ # This is what this method does. The declarator it receives
+ # can be a list of declarators ending with TypeDecl. It
+ # tacks the modifier to the end of this list, just before
+ # the TypeDecl.
+ #
+ # Additionally, the modifier may be a list itself. This is
+ # useful for pointers, that can come as a chain from the rule
+ # p_pointer. In this case, the whole modifier list is spliced
+ # into the new location.
+ #
+ def _type_modify_decl(self, decl, modifier):
+ """ Tacks a type modifier on a declarator, and returns
+ the modified declarator.
+
+ Note: the declarator and modifier may be modified
+ """
+ #~ print '****'
+ #~ decl.show(offset=3)
+ #~ modifier.show(offset=3)
+ #~ print '****'
+
+ modifier_head = modifier
+ modifier_tail = modifier
+
+ # The modifier may be a nested list. Reach its tail.
+ #
+ while modifier_tail.type:
+ modifier_tail = modifier_tail.type
+
+ # If the decl is a basic type, just tack the modifier onto
+ # it
+ #
+ if isinstance(decl, c_ast.TypeDecl):
+ modifier_tail.type = decl
+ return modifier
+ else:
+ # Otherwise, the decl is a list of modifiers. Reach
+ # its tail and splice the modifier onto the tail,
+ # pointing to the underlying basic type.
+ #
+ decl_tail = decl
+
+ while not isinstance(decl_tail.type, c_ast.TypeDecl):
+ decl_tail = decl_tail.type
+
+ modifier_tail.type = decl_tail.type
+ decl_tail.type = modifier_head
+ return decl
+
+ # Due to the order in which declarators are constructed,
+ # they have to be fixed in order to look like a normal AST.
+ #
+ # When a declaration arrives from syntax construction, it has
+ # these problems:
+ # * The innermost TypeDecl has no type (because the basic
+ # type is only known at the uppermost declaration level)
+ # * The declaration has no variable name, since that is saved
+ # in the innermost TypeDecl
+ # * The typename of the declaration is a list of type
+ # specifiers, and not a node. Here, basic identifier types
+ # should be separated from more complex types like enums
+ # and structs.
+ #
+ # This method fixes these problem.
+ #
+ def _fix_decl_name_type(self, decl, typename):
+ """ Fixes a declaration. Modifies decl.
+ """
+ # Reach the underlying basic type
+ #
+ type = decl
+ while not isinstance(type, c_ast.TypeDecl):
+ type = type.type
+
+ decl.name = type.declname
+ type.quals = decl.quals
+
+ # The typename is a list of types. If any type in this
+ # list isn't a simple string type, it must be the only
+ # type in the list (it's illegal to declare "int enum .."
+ # If all the types are basic, they're collected in the
+ # IdentifierType holder.
+ #
+ for tn in typename:
+ if not isinstance(tn, str):
+ if len(typename) > 1:
+ self._parse_error(
+ "Invalid multiple types specified", tn.coord)
+ else:
+ type.type = tn
+ return decl
+
+ type.type = c_ast.IdentifierType(typename)
+ return decl
+
+ def _add_declaration_specifier(self, declspec, newspec, kind):
+ """ Declaration specifiers are represented by a dictionary
+ with the entries:
+ * qual: a list of type qualifiers
+ * storage: a list of storage type qualifiers
+ * type: a list of type specifiers
+ * function: a list of function specifiers
+
+ This method is given a declaration specifier, and a
+ new specifier of a given kind.
+ Returns the declaration specifier, with the new
+ specifier incorporated.
+ """
+ spec = declspec or dict(qual=[], storage=[], type=[], function=[])
+ spec[kind].append(newspec)
+ return spec
+
+ def _build_function_definition(self, decl, spec, param_decls, body):
+ """ Builds a function definition.
+ """
+ declaration = c_ast.Decl(
+ name=None,
+ quals=spec['qual'],
+ storage=spec['storage'],
+ funcspec=spec['function'],
+ type=decl,
+ init=None,
+ bitsize=None,
+ coord=decl.coord)
+
+ typename = spec['type']
+ declaration = self._fix_decl_name_type(declaration, typename)
+ return c_ast.FuncDef(
+ decl=declaration,
+ param_decls=param_decls,
+ body=body,
+ coord=decl.coord)
+
+ def _select_struct_union_class(self, token):
+ """ Given a token (either STRUCT or UNION), selects the
+ appropriate AST class.
+ """
+ if token == 'struct':
+ return c_ast.Struct
+ else:
+ return c_ast.Union
+
+ ##
+ ## Precedence and associativity of operators
+ ##
+ precedence = (
+ ('left', 'LOR'),
+ ('left', 'LAND'),
+ ('left', 'OR'),
+ ('left', 'XOR'),
+ ('left', 'AND'),
+ ('left', 'EQ', 'NE'),
+ ('left', 'GT', 'GE', 'LT', 'LE'),
+ ('left', 'RSHIFT', 'LSHIFT'),
+ ('left', 'PLUS', 'MINUS'),
+ ('left', 'TIMES', 'DIVIDE', 'MOD')
+ )
+
+ ##
+ ## Grammar productions
+ ## Implementation of the BNF defined in K&R2 A.13
+ ##
+ def p_translation_unit_1(self, p):
+ """ translation_unit : external_declaration
+ """
+ # Note: external_declaration is already a list
+ #
+ p[0] = c_ast.FileAST(p[1])
+
+ def p_translation_unit_2(self, p):
+ """ translation_unit : translation_unit external_declaration
+ """
+ p[1].ext.extend(p[2])
+ p[0] = p[1]
+
+ # Declarations always come as lists (because they can be
+ # several in one line), so we wrap the function definition
+ # into a list as well, to make the return value of
+ # external_declaration homogenous.
+ #
+ def p_external_declaration_1(self, p):
+ """ external_declaration : function_definition
+ """
+ p[0] = [p[1]]
+
+ def p_external_declaration_2(self, p):
+ """ external_declaration : declaration
+ """
+ p[0] = p[1]
+
+ def p_external_declaration_3(self, p):
+ """ external_declaration : pp_directive
+ """
+ p[0] = p[1]
+
+ def p_pp_directive(self, p):
+ """ pp_directive : PPHASH
+ """
+ self._parse_error('Directives not supported yet',
+ self._coord(p.lineno(1)))
+
+ # In function definitions, the declarator can be followed by
+ # a declaration list, for old "K&R style" function definitios.
+ #
+ def p_function_definition_1(self, p):
+ """ function_definition : declarator declaration_list_opt compound_statement
+ """
+ # no declaration specifiers
+ spec = dict(qual=[], storage=[], type=[])
+
+ p[0] = self._build_function_definition(
+ decl=p[1],
+ spec=spec,
+ param_decls=p[2],
+ body=p[3])
+
+ def p_function_definition_2(self, p):
+ """ function_definition : declaration_specifiers declarator declaration_list_opt compound_statement
+ """
+ spec = p[1]
+
+ p[0] = self._build_function_definition(
+ decl=p[2],
+ spec=spec,
+ param_decls=p[3],
+ body=p[4])
+
+ def p_statement(self, p):
+ """ statement : labeled_statement
+ | expression_statement
+ | compound_statement
+ | selection_statement
+ | iteration_statement
+ | jump_statement
+ """
+ p[0] = p[1]
+
+ # In C, declarations can come several in a line:
+ # int x, *px, romulo = 5;
+ #
+ # However, for the AST, we will split them to separate Decl
+ # nodes.
+ #
+ # This rule splits its declarations and always returns a list
+ # of Decl nodes, even if it's one element long.
+ #
+ def p_decl_body(self, p):
+ """ decl_body : declaration_specifiers init_declarator_list_opt
+ """
+ spec = p[1]
+ is_typedef = 'typedef' in spec['storage']
+ decls = []
+
+ # p[2] (init_declarator_list_opt) is either a list or None
+ #
+ if p[2] is None:
+ # Then it's a declaration of a struct / enum tag,
+ # without an actual declarator.
+ #
+ type = spec['type']
+ if len(type) > 1:
+ coord = '?'
+ for t in type:
+ if hasattr(t, 'coord'):
+ coord = t.coord
+ break
+
+ self._parse_error('Multiple type specifiers with a type tag', coord)
+
+ decl = c_ast.Decl(
+ name=None,
+ quals=spec['qual'],
+ storage=spec['storage'],
+ funcspec=spec['function'],
+ type=type[0],
+ init=None,
+ bitsize=None,
+ coord=type[0].coord)
+ decls = [decl]
+ else:
+ for decl, init in p[2] or []:
+ if is_typedef:
+ decl = c_ast.Typedef(
+ name=None,
+ quals=spec['qual'],
+ storage=spec['storage'],
+ type=decl,
+ coord=decl.coord)
+ else:
+ decl = c_ast.Decl(
+ name=None,
+ quals=spec['qual'],
+ storage=spec['storage'],
+ funcspec=spec['function'],
+ type=decl,
+ init=init,
+ bitsize=None,
+ coord=decl.coord)
+
+ typename = spec['type']
+ fixed_decl = self._fix_decl_name_type(decl, typename)
+
+ # Add the type name defined by typedef to a
+ # symbol table (for usage in the lexer)
+ #
+ if is_typedef:
+ self._add_typedef_type(fixed_decl.name)
+
+ decls.append(fixed_decl)
+
+ p[0] = decls
+
+ # The declaration has been split to a decl_body sub-rule and
+ # SEMI, because having them in a single rule created a problem
+ # for defining typedefs.
+ #
+ # If a typedef line was directly followed by a line using the
+ # type defined with the typedef, the type would not be
+ # recognized. This is because to reduce the declaration rule,
+ # the parser's lookahead asked for the token after SEMI, which
+ # was the type from the next line, and the lexer had no chance
+ # to see the updated type symbol table.
+ #
+ # Splitting solves this problem, because after seeing SEMI,
+ # the parser reduces decl_body, which actually adds the new
+ # type into the table to be seen by the lexer before the next
+ # line is reached.
+ #
+ def p_declaration(self, p):
+ """ declaration : decl_body SEMI
+ """
+ p[0] = p[1]
+
+ # Since each declaration is a list of declarations, this
+ # rule will combine all the declarations and return a single
+ # list
+ #
+ def p_declaration_list(self, p):
+ """ declaration_list : declaration
+ | declaration_list declaration
+ """
+ p[0] = p[1] if len(p) == 2 else p[1] + p[2]
+
+ def p_declaration_specifiers_1(self, p):
+ """ declaration_specifiers : type_qualifier declaration_specifiers_opt
+ """
+ p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')
+
+ def p_declaration_specifiers_2(self, p):
+ """ declaration_specifiers : type_specifier declaration_specifiers_opt
+ """
+ p[0] = self._add_declaration_specifier(p[2], p[1], 'type')
+
+ def p_declaration_specifiers_3(self, p):
+ """ declaration_specifiers : storage_class_specifier declaration_specifiers_opt
+ """
+ p[0] = self._add_declaration_specifier(p[2], p[1], 'storage')
+
+ def p_declaration_specifiers_4(self, p):
+ """ declaration_specifiers : function_specifier declaration_specifiers_opt
+ """
+ p[0] = self._add_declaration_specifier(p[2], p[1], 'function')
+
+ def p_storage_class_specifier(self, p):
+ """ storage_class_specifier : AUTO
+ | REGISTER
+ | STATIC
+ | EXTERN
+ | TYPEDEF
+ """
+ p[0] = p[1]
+
def p_function_specifier(self, p):
""" function_specifier : INLINE
- """
- p[0] = p[1]
-
- def p_type_specifier_1(self, p):
- """ type_specifier : VOID
- | CHAR
- | SHORT
- | INT
- | LONG
- | FLOAT
- | DOUBLE
- | SIGNED
- | UNSIGNED
- | typedef_name
- | enum_specifier
- | struct_or_union_specifier
- """
- p[0] = p[1]
-
- def p_type_qualifier(self, p):
- """ type_qualifier : CONST
- | RESTRICT
- | VOLATILE
- """
- p[0] = p[1]
-
- def p_init_declarator_list(self, p):
- """ init_declarator_list : init_declarator
- | init_declarator_list COMMA init_declarator
- """
- p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]
-
- # Returns a (declarator, initializer) pair
- # If there's no initializer, returns (declarator, None)
- #
- def p_init_declarator(self, p):
- """ init_declarator : declarator
- | declarator EQUALS initializer
- """
- p[0] = (p[1], p[3] if len(p) > 2 else None)
-
- def p_specifier_qualifier_list_1(self, p):
- """ specifier_qualifier_list : type_qualifier specifier_qualifier_list_opt
- """
- p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')
-
- def p_specifier_qualifier_list_2(self, p):
- """ specifier_qualifier_list : type_specifier specifier_qualifier_list_opt
- """
- p[0] = self._add_declaration_specifier(p[2], p[1], 'type')
-
- # TYPEID is allowed here (and in other struct/enum related tag names), because
- # struct/enum tags reside in their own namespace and can be named the same as types
- #
- def p_struct_or_union_specifier_1(self, p):
- """ struct_or_union_specifier : struct_or_union ID
- | struct_or_union TYPEID
- """
- klass = self._select_struct_union_class(p[1])
- p[0] = klass(
- name=p[2],
- decls=None,
- coord=self._coord(p.lineno(2)))
-
- def p_struct_or_union_specifier_2(self, p):
- """ struct_or_union_specifier : struct_or_union LBRACE struct_declaration_list RBRACE
- """
- klass = self._select_struct_union_class(p[1])
- p[0] = klass(
- name=None,
- decls=p[3],
- coord=self._coord(p.lineno(2)))
-
- def p_struct_or_union_specifier_3(self, p):
- """ struct_or_union_specifier : struct_or_union ID LBRACE struct_declaration_list RBRACE
- | struct_or_union TYPEID LBRACE struct_declaration_list RBRACE
- """
- klass = self._select_struct_union_class(p[1])
- p[0] = klass(
- name=p[2],
- decls=p[4],
- coord=self._coord(p.lineno(2)))
-
- def p_struct_or_union(self, p):
- """ struct_or_union : STRUCT
- | UNION
- """
- p[0] = p[1]
-
- # Combine all declarations into a single list
- #
- def p_struct_declaration_list(self, p):
- """ struct_declaration_list : struct_declaration
- | struct_declaration_list struct_declaration
- """
- p[0] = p[1] if len(p) == 2 else p[1] + p[2]
-
- def p_struct_declaration_1(self, p):
- """ struct_declaration : specifier_qualifier_list struct_declarator_list SEMI
- """
- spec = p[1]
- decls = []
-
- for struct_decl in p[2]:
- if struct_decl['decl'] is not None:
- decl_coord = struct_decl['decl'].coord
- else:
- decl_coord = struct_decl['bitsize'].coord
-
- decl = c_ast.Decl(
- name=None,
- quals=spec['qual'],
- funcspec=spec['function'],
- storage=spec['storage'],
- type=struct_decl['decl'],
- init=None,
- bitsize=struct_decl['bitsize'],
- coord=decl_coord)
-
- typename = spec['type']
- decls.append(self._fix_decl_name_type(decl, typename))
-
- p[0] = decls
-
- def p_struct_declarator_list(self, p):
- """ struct_declarator_list : struct_declarator
- | struct_declarator_list COMMA struct_declarator
- """
- p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]
-
- # struct_declarator passes up a dict with the keys: decl (for
- # the underlying declarator) and bitsize (for the bitsize)
- #
- def p_struct_declarator_1(self, p):
- """ struct_declarator : declarator
- """
- p[0] = {'decl': p[1], 'bitsize': None}
-
- def p_struct_declarator_2(self, p):
- """ struct_declarator : declarator COLON constant_expression
- | COLON constant_expression
- """
- if len(p) > 3:
- p[0] = {'decl': p[1], 'bitsize': p[3]}
- else:
- p[0] = {'decl': c_ast.TypeDecl(None, None, None), 'bitsize': p[2]}
-
- def p_enum_specifier_1(self, p):
- """ enum_specifier : ENUM ID
- | ENUM TYPEID
- """
- p[0] = c_ast.Enum(p[2], None, self._coord(p.lineno(1)))
-
- def p_enum_specifier_2(self, p):
- """ enum_specifier : ENUM LBRACE enumerator_list RBRACE
- """
- p[0] = c_ast.Enum(None, p[3], self._coord(p.lineno(1)))
-
- def p_enum_specifier_3(self, p):
- """ enum_specifier : ENUM ID LBRACE enumerator_list RBRACE
- | ENUM TYPEID LBRACE enumerator_list RBRACE
- """
- p[0] = c_ast.Enum(p[2], p[4], self._coord(p.lineno(1)))
-
- def p_enumerator_list(self, p):
- """ enumerator_list : enumerator
- | enumerator_list COMMA
- | enumerator_list COMMA enumerator
- """
- if len(p) == 2:
- p[0] = c_ast.EnumeratorList([p[1]], p[1].coord)
- elif len(p) == 3:
- p[0] = p[1]
- else:
- p[1].enumerators.append(p[3])
- p[0] = p[1]
-
- def p_enumerator(self, p):
- """ enumerator : ID
- | ID EQUALS constant_expression
- """
- if len(p) == 2:
- p[0] = c_ast.Enumerator(
- p[1], None,
- self._coord(p.lineno(1)))
- else:
- p[0] = c_ast.Enumerator(
- p[1], p[3],
- self._coord(p.lineno(1)))
-
- def p_declarator_1(self, p):
- """ declarator : direct_declarator
- """
- p[0] = p[1]
-
- def p_declarator_2(self, p):
- """ declarator : pointer direct_declarator
- """
- p[0] = self._type_modify_decl(p[2], p[1])
-
- def p_direct_declarator_1(self, p):
- """ direct_declarator : ID
- """
- p[0] = c_ast.TypeDecl(
- declname=p[1],
- type=None,
- quals=None,
- coord=self._coord(p.lineno(1)))
-
- def p_direct_declarator_2(self, p):
- """ direct_declarator : LPAREN declarator RPAREN
- """
- p[0] = p[2]
-
- def p_direct_declarator_3(self, p):
- """ direct_declarator : direct_declarator LBRACKET assignment_expression_opt RBRACKET
- """
- arr = c_ast.ArrayDecl(
- type=None,
- dim=p[3],
- coord=p[1].coord)
-
- p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
-
- # Special for VLAs
- #
- def p_direct_declarator_4(self, p):
- """ direct_declarator : direct_declarator LBRACKET TIMES RBRACKET
- """
- arr = c_ast.ArrayDecl(
- type=None,
- dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
- coord=p[1].coord)
-
- p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
-
- def p_direct_declarator_5(self, p):
- """ direct_declarator : direct_declarator LPAREN parameter_type_list RPAREN
- | direct_declarator LPAREN identifier_list_opt RPAREN
- """
- func = c_ast.FuncDecl(
- args=p[3],
- type=None,
- coord=p[1].coord)
-
- p[0] = self._type_modify_decl(decl=p[1], modifier=func)
-
- def p_pointer(self, p):
- """ pointer : TIMES type_qualifier_list_opt
- | TIMES type_qualifier_list_opt pointer
- """
- coord = self._coord(p.lineno(1))
-
- p[0] = c_ast.PtrDecl(
- quals=p[2] or [],
- type=p[3] if len(p) > 3 else None,
- coord=coord)
-
- def p_type_qualifier_list(self, p):
- """ type_qualifier_list : type_qualifier
- | type_qualifier_list type_qualifier
- """
- p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]]
-
- def p_parameter_type_list(self, p):
- """ parameter_type_list : parameter_list
- | parameter_list COMMA ELLIPSIS
- """
- if len(p) > 2:
- p[1].params.append(c_ast.EllipsisParam())
-
- p[0] = p[1]
-
- def p_parameter_list(self, p):
- """ parameter_list : parameter_declaration
- | parameter_list COMMA parameter_declaration
- """
- if len(p) == 2: # single parameter
- p[0] = c_ast.ParamList([p[1]], p[1].coord)
- else:
- p[1].params.append(p[3])
- p[0] = p[1]
-
- def p_parameter_declaration_1(self, p):
- """ parameter_declaration : declaration_specifiers declarator
- """
- spec = p[1]
- decl = p[2]
-
- decl = c_ast.Decl(
- name=None,
- quals=spec['qual'],
- storage=spec['storage'],
- funcspec=spec['function'],
- type=decl,
- init=None,
- bitsize=None,
- coord=decl.coord)
-
- typename = spec['type'] or ['int']
- p[0] = self._fix_decl_name_type(decl, typename)
-
- def p_parameter_declaration_2(self, p):
- """ parameter_declaration : declaration_specifiers abstract_declarator_opt
- """
- spec = p[1]
- decl = c_ast.Typename(
- quals=spec['qual'],
- type=p[2] or c_ast.TypeDecl(None, None, None))
-
- typename = spec['type'] or ['int']
- p[0] = self._fix_decl_name_type(decl, typename)
-
- def p_identifier_list(self, p):
- """ identifier_list : identifier
- | identifier_list COMMA identifier
- """
- if len(p) == 2: # single parameter
- p[0] = c_ast.ParamList([p[1]], p[1].coord)
- else:
- p[1].params.append(p[3])
- p[0] = p[1]
-
- def p_initializer_1(self, p):
- """ initializer : assignment_expression
- """
- p[0] = p[1]
-
- def p_initializer_2(self, p):
- """ initializer : LBRACE initializer_list RBRACE
- | LBRACE initializer_list COMMA RBRACE
- """
- p[0] = p[2]
-
- def p_initializer_list(self, p):
- """ initializer_list : designation_opt initializer
- | initializer_list COMMA designation_opt initializer
- """
- if len(p) == 3: # single initializer
- init = p[2] if p[1] is None else c_ast.NamedInitializer(p[1], p[2])
- p[0] = c_ast.ExprList([init], p[2].coord)
- else:
- init = p[4] if p[3] is None else c_ast.NamedInitializer(p[3], p[4])
- p[1].exprs.append(init)
- p[0] = p[1]
-
+ """
+ p[0] = p[1]
+
+ def p_type_specifier_1(self, p):
+ """ type_specifier : VOID
+ | CHAR
+ | SHORT
+ | INT
+ | LONG
+ | FLOAT
+ | DOUBLE
+ | SIGNED
+ | UNSIGNED
+ | typedef_name
+ | enum_specifier
+ | struct_or_union_specifier
+ """
+ p[0] = p[1]
+
+ def p_type_qualifier(self, p):
+ """ type_qualifier : CONST
+ | RESTRICT
+ | VOLATILE
+ """
+ p[0] = p[1]
+
+ def p_init_declarator_list(self, p):
+ """ init_declarator_list : init_declarator
+ | init_declarator_list COMMA init_declarator
+ """
+ p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]
+
+ # Returns a (declarator, initializer) pair
+ # If there's no initializer, returns (declarator, None)
+ #
+ def p_init_declarator(self, p):
+ """ init_declarator : declarator
+ | declarator EQUALS initializer
+ """
+ p[0] = (p[1], p[3] if len(p) > 2 else None)
+
+ def p_specifier_qualifier_list_1(self, p):
+ """ specifier_qualifier_list : type_qualifier specifier_qualifier_list_opt
+ """
+ p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')
+
+ def p_specifier_qualifier_list_2(self, p):
+ """ specifier_qualifier_list : type_specifier specifier_qualifier_list_opt
+ """
+ p[0] = self._add_declaration_specifier(p[2], p[1], 'type')
+
+ # TYPEID is allowed here (and in other struct/enum related tag names), because
+ # struct/enum tags reside in their own namespace and can be named the same as types
+ #
+ def p_struct_or_union_specifier_1(self, p):
+ """ struct_or_union_specifier : struct_or_union ID
+ | struct_or_union TYPEID
+ """
+ klass = self._select_struct_union_class(p[1])
+ p[0] = klass(
+ name=p[2],
+ decls=None,
+ coord=self._coord(p.lineno(2)))
+
+ def p_struct_or_union_specifier_2(self, p):
+ """ struct_or_union_specifier : struct_or_union LBRACE struct_declaration_list RBRACE
+ """
+ klass = self._select_struct_union_class(p[1])
+ p[0] = klass(
+ name=None,
+ decls=p[3],
+ coord=self._coord(p.lineno(2)))
+
+ def p_struct_or_union_specifier_3(self, p):
+ """ struct_or_union_specifier : struct_or_union ID LBRACE struct_declaration_list RBRACE
+ | struct_or_union TYPEID LBRACE struct_declaration_list RBRACE
+ """
+ klass = self._select_struct_union_class(p[1])
+ p[0] = klass(
+ name=p[2],
+ decls=p[4],
+ coord=self._coord(p.lineno(2)))
+
+ def p_struct_or_union(self, p):
+ """ struct_or_union : STRUCT
+ | UNION
+ """
+ p[0] = p[1]
+
+ # Combine all declarations into a single list
+ #
+ def p_struct_declaration_list(self, p):
+ """ struct_declaration_list : struct_declaration
+ | struct_declaration_list struct_declaration
+ """
+ p[0] = p[1] if len(p) == 2 else p[1] + p[2]
+
+ def p_struct_declaration_1(self, p):
+ """ struct_declaration : specifier_qualifier_list struct_declarator_list SEMI
+ """
+ spec = p[1]
+ decls = []
+
+ for struct_decl in p[2]:
+ if struct_decl['decl'] is not None:
+ decl_coord = struct_decl['decl'].coord
+ else:
+ decl_coord = struct_decl['bitsize'].coord
+
+ decl = c_ast.Decl(
+ name=None,
+ quals=spec['qual'],
+ funcspec=spec['function'],
+ storage=spec['storage'],
+ type=struct_decl['decl'],
+ init=None,
+ bitsize=struct_decl['bitsize'],
+ coord=decl_coord)
+
+ typename = spec['type']
+ decls.append(self._fix_decl_name_type(decl, typename))
+
+ p[0] = decls
+
+ def p_struct_declarator_list(self, p):
+ """ struct_declarator_list : struct_declarator
+ | struct_declarator_list COMMA struct_declarator
+ """
+ p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]
+
+ # struct_declarator passes up a dict with the keys: decl (for
+ # the underlying declarator) and bitsize (for the bitsize)
+ #
+ def p_struct_declarator_1(self, p):
+ """ struct_declarator : declarator
+ """
+ p[0] = {'decl': p[1], 'bitsize': None}
+
+ def p_struct_declarator_2(self, p):
+ """ struct_declarator : declarator COLON constant_expression
+ | COLON constant_expression
+ """
+ if len(p) > 3:
+ p[0] = {'decl': p[1], 'bitsize': p[3]}
+ else:
+ p[0] = {'decl': c_ast.TypeDecl(None, None, None), 'bitsize': p[2]}
+
+ def p_enum_specifier_1(self, p):
+ """ enum_specifier : ENUM ID
+ | ENUM TYPEID
+ """
+ p[0] = c_ast.Enum(p[2], None, self._coord(p.lineno(1)))
+
+ def p_enum_specifier_2(self, p):
+ """ enum_specifier : ENUM LBRACE enumerator_list RBRACE
+ """
+ p[0] = c_ast.Enum(None, p[3], self._coord(p.lineno(1)))
+
+ def p_enum_specifier_3(self, p):
+ """ enum_specifier : ENUM ID LBRACE enumerator_list RBRACE
+ | ENUM TYPEID LBRACE enumerator_list RBRACE
+ """
+ p[0] = c_ast.Enum(p[2], p[4], self._coord(p.lineno(1)))
+
+ def p_enumerator_list(self, p):
+ """ enumerator_list : enumerator
+ | enumerator_list COMMA
+ | enumerator_list COMMA enumerator
+ """
+ if len(p) == 2:
+ p[0] = c_ast.EnumeratorList([p[1]], p[1].coord)
+ elif len(p) == 3:
+ p[0] = p[1]
+ else:
+ p[1].enumerators.append(p[3])
+ p[0] = p[1]
+
+ def p_enumerator(self, p):
+ """ enumerator : ID
+ | ID EQUALS constant_expression
+ """
+ if len(p) == 2:
+ p[0] = c_ast.Enumerator(
+ p[1], None,
+ self._coord(p.lineno(1)))
+ else:
+ p[0] = c_ast.Enumerator(
+ p[1], p[3],
+ self._coord(p.lineno(1)))
+
+ def p_declarator_1(self, p):
+ """ declarator : direct_declarator
+ """
+ p[0] = p[1]
+
+ def p_declarator_2(self, p):
+ """ declarator : pointer direct_declarator
+ """
+ p[0] = self._type_modify_decl(p[2], p[1])
+
+ def p_direct_declarator_1(self, p):
+ """ direct_declarator : ID
+ """
+ p[0] = c_ast.TypeDecl(
+ declname=p[1],
+ type=None,
+ quals=None,
+ coord=self._coord(p.lineno(1)))
+
+ def p_direct_declarator_2(self, p):
+ """ direct_declarator : LPAREN declarator RPAREN
+ """
+ p[0] = p[2]
+
+ def p_direct_declarator_3(self, p):
+ """ direct_declarator : direct_declarator LBRACKET assignment_expression_opt RBRACKET
+ """
+ arr = c_ast.ArrayDecl(
+ type=None,
+ dim=p[3],
+ coord=p[1].coord)
+
+ p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
+
+ # Special for VLAs
+ #
+ def p_direct_declarator_4(self, p):
+ """ direct_declarator : direct_declarator LBRACKET TIMES RBRACKET
+ """
+ arr = c_ast.ArrayDecl(
+ type=None,
+ dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
+ coord=p[1].coord)
+
+ p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
+
+ def p_direct_declarator_5(self, p):
+ """ direct_declarator : direct_declarator LPAREN parameter_type_list RPAREN
+ | direct_declarator LPAREN identifier_list_opt RPAREN
+ """
+ func = c_ast.FuncDecl(
+ args=p[3],
+ type=None,
+ coord=p[1].coord)
+
+ p[0] = self._type_modify_decl(decl=p[1], modifier=func)
+
+ def p_pointer(self, p):
+ """ pointer : TIMES type_qualifier_list_opt
+ | TIMES type_qualifier_list_opt pointer
+ """
+ coord = self._coord(p.lineno(1))
+
+ p[0] = c_ast.PtrDecl(
+ quals=p[2] or [],
+ type=p[3] if len(p) > 3 else None,
+ coord=coord)
+
+ def p_type_qualifier_list(self, p):
+ """ type_qualifier_list : type_qualifier
+ | type_qualifier_list type_qualifier
+ """
+ p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]]
+
+ def p_parameter_type_list(self, p):
+ """ parameter_type_list : parameter_list
+ | parameter_list COMMA ELLIPSIS
+ """
+ if len(p) > 2:
+ p[1].params.append(c_ast.EllipsisParam())
+
+ p[0] = p[1]
+
+ def p_parameter_list(self, p):
+ """ parameter_list : parameter_declaration
+ | parameter_list COMMA parameter_declaration
+ """
+ if len(p) == 2: # single parameter
+ p[0] = c_ast.ParamList([p[1]], p[1].coord)
+ else:
+ p[1].params.append(p[3])
+ p[0] = p[1]
+
+ def p_parameter_declaration_1(self, p):
+ """ parameter_declaration : declaration_specifiers declarator
+ """
+ spec = p[1]
+ decl = p[2]
+
+ decl = c_ast.Decl(
+ name=None,
+ quals=spec['qual'],
+ storage=spec['storage'],
+ funcspec=spec['function'],
+ type=decl,
+ init=None,
+ bitsize=None,
+ coord=decl.coord)
+
+ typename = spec['type'] or ['int']
+ p[0] = self._fix_decl_name_type(decl, typename)
+
+ def p_parameter_declaration_2(self, p):
+ """ parameter_declaration : declaration_specifiers abstract_declarator_opt
+ """
+ spec = p[1]
+ decl = c_ast.Typename(
+ quals=spec['qual'],
+ type=p[2] or c_ast.TypeDecl(None, None, None))
+
+ typename = spec['type'] or ['int']
+ p[0] = self._fix_decl_name_type(decl, typename)
+
+ def p_identifier_list(self, p):
+ """ identifier_list : identifier
+ | identifier_list COMMA identifier
+ """
+ if len(p) == 2: # single parameter
+ p[0] = c_ast.ParamList([p[1]], p[1].coord)
+ else:
+ p[1].params.append(p[3])
+ p[0] = p[1]
+
+ def p_initializer_1(self, p):
+ """ initializer : assignment_expression
+ """
+ p[0] = p[1]
+
+ def p_initializer_2(self, p):
+ """ initializer : LBRACE initializer_list RBRACE
+ | LBRACE initializer_list COMMA RBRACE
+ """
+ p[0] = p[2]
+
+ def p_initializer_list(self, p):
+ """ initializer_list : designation_opt initializer
+ | initializer_list COMMA designation_opt initializer
+ """
+ if len(p) == 3: # single initializer
+ init = p[2] if p[1] is None else c_ast.NamedInitializer(p[1], p[2])
+ p[0] = c_ast.ExprList([init], p[2].coord)
+ else:
+ init = p[4] if p[3] is None else c_ast.NamedInitializer(p[3], p[4])
+ p[1].exprs.append(init)
+ p[0] = p[1]
+
def p_designation(self, p):
""" designation : designator_list EQUALS
- """
- p[0] = p[1]
-
- # Designators are represented as a list of nodes, in the order in which
- # they're written in the code.
- #
+ """
+ p[0] = p[1]
+
+ # Designators are represented as a list of nodes, in the order in which
+ # they're written in the code.
+ #
def p_designator_list(self, p):
- """ designator_list : designator
+ """ designator_list : designator
| designator_list designator
- """
- p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]]
-
+ """
+ p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]]
+
def p_designator(self, p):
- """ designator : LBRACKET constant_expression RBRACKET
+ """ designator : LBRACKET constant_expression RBRACKET
| PERIOD identifier
- """
- p[0] = p[2]
-
- def p_type_name(self, p):
- """ type_name : specifier_qualifier_list abstract_declarator_opt
- """
- #~ print '=========='
- #~ print p[1]
- #~ print p[2]
- #~ print p[2].children()
- #~ print '=========='
-
- typename = c_ast.Typename(
- quals=p[1]['qual'],
- type=p[2] or c_ast.TypeDecl(None, None, None))
-
- p[0] = self._fix_decl_name_type(typename, p[1]['type'])
-
- def p_abstract_declarator_1(self, p):
- """ abstract_declarator : pointer
- """
- dummytype = c_ast.TypeDecl(None, None, None)
- p[0] = self._type_modify_decl(
- decl=dummytype,
- modifier=p[1])
-
- def p_abstract_declarator_2(self, p):
- """ abstract_declarator : pointer direct_abstract_declarator
- """
- p[0] = self._type_modify_decl(p[2], p[1])
-
- def p_abstract_declarator_3(self, p):
- """ abstract_declarator : direct_abstract_declarator
- """
- p[0] = p[1]
-
- # Creating and using direct_abstract_declarator_opt here
- # instead of listing both direct_abstract_declarator and the
- # lack of it in the beginning of _1 and _2 caused two
- # shift/reduce errors.
- #
- def p_direct_abstract_declarator_1(self, p):
- """ direct_abstract_declarator : LPAREN abstract_declarator RPAREN """
- p[0] = p[2]
-
- def p_direct_abstract_declarator_2(self, p):
- """ direct_abstract_declarator : direct_abstract_declarator LBRACKET assignment_expression_opt RBRACKET
- """
- arr = c_ast.ArrayDecl(
- type=None,
- dim=p[3],
- coord=p[1].coord)
-
- p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
-
- def p_direct_abstract_declarator_3(self, p):
- """ direct_abstract_declarator : LBRACKET assignment_expression_opt RBRACKET
- """
- p[0] = c_ast.ArrayDecl(
- type=c_ast.TypeDecl(None, None, None),
- dim=p[2],
- coord=self._coord(p.lineno(1)))
-
- def p_direct_abstract_declarator_4(self, p):
- """ direct_abstract_declarator : direct_abstract_declarator LBRACKET TIMES RBRACKET
- """
- arr = c_ast.ArrayDecl(
- type=None,
- dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
- coord=p[1].coord)
-
- p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
-
- def p_direct_abstract_declarator_5(self, p):
- """ direct_abstract_declarator : LBRACKET TIMES RBRACKET
- """
- p[0] = c_ast.ArrayDecl(
- type=c_ast.TypeDecl(None, None, None),
- dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
- coord=self._coord(p.lineno(1)))
-
- def p_direct_abstract_declarator_6(self, p):
- """ direct_abstract_declarator : direct_abstract_declarator LPAREN parameter_type_list_opt RPAREN
- """
- func = c_ast.FuncDecl(
- args=p[3],
- type=None,
- coord=p[1].coord)
-
- p[0] = self._type_modify_decl(decl=p[1], modifier=func)
-
- def p_direct_abstract_declarator_7(self, p):
- """ direct_abstract_declarator : LPAREN parameter_type_list_opt RPAREN
- """
- p[0] = c_ast.FuncDecl(
- args=p[2],
- type=c_ast.TypeDecl(None, None, None),
- coord=self._coord(p.lineno(1)))
-
- # declaration is a list, statement isn't. To make it consistent, block_item
- # will always be a list
- #
+ """
+ p[0] = p[2]
+
+ def p_type_name(self, p):
+ """ type_name : specifier_qualifier_list abstract_declarator_opt
+ """
+ #~ print '=========='
+ #~ print p[1]
+ #~ print p[2]
+ #~ print p[2].children()
+ #~ print '=========='
+
+ typename = c_ast.Typename(
+ quals=p[1]['qual'],
+ type=p[2] or c_ast.TypeDecl(None, None, None))
+
+ p[0] = self._fix_decl_name_type(typename, p[1]['type'])
+
+ def p_abstract_declarator_1(self, p):
+ """ abstract_declarator : pointer
+ """
+ dummytype = c_ast.TypeDecl(None, None, None)
+ p[0] = self._type_modify_decl(
+ decl=dummytype,
+ modifier=p[1])
+
+ def p_abstract_declarator_2(self, p):
+ """ abstract_declarator : pointer direct_abstract_declarator
+ """
+ p[0] = self._type_modify_decl(p[2], p[1])
+
+ def p_abstract_declarator_3(self, p):
+ """ abstract_declarator : direct_abstract_declarator
+ """
+ p[0] = p[1]
+
+ # Creating and using direct_abstract_declarator_opt here
+ # instead of listing both direct_abstract_declarator and the
+ # lack of it in the beginning of _1 and _2 caused two
+ # shift/reduce errors.
+ #
+ def p_direct_abstract_declarator_1(self, p):
+ """ direct_abstract_declarator : LPAREN abstract_declarator RPAREN """
+ p[0] = p[2]
+
+ def p_direct_abstract_declarator_2(self, p):
+ """ direct_abstract_declarator : direct_abstract_declarator LBRACKET assignment_expression_opt RBRACKET
+ """
+ arr = c_ast.ArrayDecl(
+ type=None,
+ dim=p[3],
+ coord=p[1].coord)
+
+ p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
+
+ def p_direct_abstract_declarator_3(self, p):
+ """ direct_abstract_declarator : LBRACKET assignment_expression_opt RBRACKET
+ """
+ p[0] = c_ast.ArrayDecl(
+ type=c_ast.TypeDecl(None, None, None),
+ dim=p[2],
+ coord=self._coord(p.lineno(1)))
+
+ def p_direct_abstract_declarator_4(self, p):
+ """ direct_abstract_declarator : direct_abstract_declarator LBRACKET TIMES RBRACKET
+ """
+ arr = c_ast.ArrayDecl(
+ type=None,
+ dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
+ coord=p[1].coord)
+
+ p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
+
+ def p_direct_abstract_declarator_5(self, p):
+ """ direct_abstract_declarator : LBRACKET TIMES RBRACKET
+ """
+ p[0] = c_ast.ArrayDecl(
+ type=c_ast.TypeDecl(None, None, None),
+ dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
+ coord=self._coord(p.lineno(1)))
+
+ def p_direct_abstract_declarator_6(self, p):
+ """ direct_abstract_declarator : direct_abstract_declarator LPAREN parameter_type_list_opt RPAREN
+ """
+ func = c_ast.FuncDecl(
+ args=p[3],
+ type=None,
+ coord=p[1].coord)
+
+ p[0] = self._type_modify_decl(decl=p[1], modifier=func)
+
+ def p_direct_abstract_declarator_7(self, p):
+ """ direct_abstract_declarator : LPAREN parameter_type_list_opt RPAREN
+ """
+ p[0] = c_ast.FuncDecl(
+ args=p[2],
+ type=c_ast.TypeDecl(None, None, None),
+ coord=self._coord(p.lineno(1)))
+
+ # declaration is a list, statement isn't. To make it consistent, block_item
+ # will always be a list
+ #
def p_block_item(self, p):
- """ block_item : declaration
+ """ block_item : declaration
| statement
- """
- p[0] = p[1] if isinstance(p[1], list) else [p[1]]
-
- # Since we made block_item a list, this just combines lists
- #
- def p_block_item_list(self, p):
- """ block_item_list : block_item
- | block_item_list block_item
- """
- p[0] = p[1] if len(p) == 2 else p[1] + p[2]
-
- def p_compound_statement_1(self, p):
- """ compound_statement : LBRACE block_item_list_opt RBRACE """
- p[0] = c_ast.Compound(
- block_items=p[2],
- coord=self._coord(p.lineno(1)))
-
- def p_labeled_statement_1(self, p):
- """ labeled_statement : ID COLON statement """
- p[0] = c_ast.Label(p[1], p[3], self._coord(p.lineno(1)))
-
- def p_labeled_statement_2(self, p):
- """ labeled_statement : CASE constant_expression COLON statement """
- p[0] = c_ast.Case(p[2], p[4], self._coord(p.lineno(1)))
-
- def p_labeled_statement_3(self, p):
- """ labeled_statement : DEFAULT COLON statement """
- p[0] = c_ast.Default(p[3], self._coord(p.lineno(1)))
-
- def p_selection_statement_1(self, p):
- """ selection_statement : IF LPAREN expression RPAREN statement """
- p[0] = c_ast.If(p[3], p[5], None, self._coord(p.lineno(1)))
-
- def p_selection_statement_2(self, p):
- """ selection_statement : IF LPAREN expression RPAREN statement ELSE statement """
- p[0] = c_ast.If(p[3], p[5], p[7], self._coord(p.lineno(1)))
-
- def p_selection_statement_3(self, p):
- """ selection_statement : SWITCH LPAREN expression RPAREN statement """
- p[0] = c_ast.Switch(p[3], p[5], self._coord(p.lineno(1)))
-
- def p_iteration_statement_1(self, p):
- """ iteration_statement : WHILE LPAREN expression RPAREN statement """
- p[0] = c_ast.While(p[3], p[5], self._coord(p.lineno(1)))
-
- def p_iteration_statement_2(self, p):
- """ iteration_statement : DO statement WHILE LPAREN expression RPAREN SEMI """
- p[0] = c_ast.DoWhile(p[5], p[2], self._coord(p.lineno(1)))
-
- def p_iteration_statement_3(self, p):
- """ iteration_statement : FOR LPAREN expression_opt SEMI expression_opt SEMI expression_opt RPAREN statement """
- p[0] = c_ast.For(p[3], p[5], p[7], p[9], self._coord(p.lineno(1)))
-
- def p_iteration_statement_4(self, p):
- """ iteration_statement : FOR LPAREN declaration expression_opt SEMI expression_opt RPAREN statement """
- p[0] = c_ast.For(c_ast.DeclList(p[3]), p[4], p[6], p[8], self._coord(p.lineno(1)))
-
- def p_jump_statement_1(self, p):
- """ jump_statement : GOTO ID SEMI """
- p[0] = c_ast.Goto(p[2], self._coord(p.lineno(1)))
-
- def p_jump_statement_2(self, p):
- """ jump_statement : BREAK SEMI """
- p[0] = c_ast.Break(self._coord(p.lineno(1)))
-
- def p_jump_statement_3(self, p):
- """ jump_statement : CONTINUE SEMI """
- p[0] = c_ast.Continue(self._coord(p.lineno(1)))
-
- def p_jump_statement_4(self, p):
- """ jump_statement : RETURN expression SEMI
- | RETURN SEMI
- """
- p[0] = c_ast.Return(p[2] if len(p) == 4 else None, self._coord(p.lineno(1)))
-
- def p_expression_statement(self, p):
- """ expression_statement : expression_opt SEMI """
- p[0] = p[1]
-
- def p_expression(self, p):
- """ expression : assignment_expression
- | expression COMMA assignment_expression
- """
- if len(p) == 2:
- p[0] = p[1]
- else:
- if not isinstance(p[1], c_ast.ExprList):
- p[1] = c_ast.ExprList([p[1]], p[1].coord)
-
- p[1].exprs.append(p[3])
- p[0] = p[1]
-
- def p_typedef_name(self, p):
- """ typedef_name : TYPEID """
- p[0] = p[1]
-
- def p_assignment_expression(self, p):
- """ assignment_expression : conditional_expression
- | unary_expression assignment_operator assignment_expression
- """
- if len(p) == 2:
- p[0] = p[1]
- else:
- p[0] = c_ast.Assignment(p[2], p[1], p[3], p[1].coord)
-
- # K&R2 defines these as many separate rules, to encode
- # precedence and associativity. Why work hard ? I'll just use
- # the built in precedence/associativity specification feature
- # of PLY. (see precedence declaration above)
- #
- def p_assignment_operator(self, p):
- """ assignment_operator : EQUALS
- | XOREQUAL
- | TIMESEQUAL
- | DIVEQUAL
- | MODEQUAL
- | PLUSEQUAL
- | MINUSEQUAL
- | LSHIFTEQUAL
- | RSHIFTEQUAL
- | ANDEQUAL
- | OREQUAL
- """
- p[0] = p[1]
-
- def p_constant_expression(self, p):
- """ constant_expression : conditional_expression """
- p[0] = p[1]
-
- def p_conditional_expression(self, p):
- """ conditional_expression : binary_expression
- | binary_expression CONDOP expression COLON conditional_expression
- """
- if len(p) == 2:
- p[0] = p[1]
- else:
- p[0] = c_ast.TernaryOp(p[1], p[3], p[5], p[1].coord)
-
- def p_binary_expression(self, p):
- """ binary_expression : cast_expression
- | binary_expression TIMES binary_expression
- | binary_expression DIVIDE binary_expression
- | binary_expression MOD binary_expression
- | binary_expression PLUS binary_expression
- | binary_expression MINUS binary_expression
- | binary_expression RSHIFT binary_expression
- | binary_expression LSHIFT binary_expression
- | binary_expression LT binary_expression
- | binary_expression LE binary_expression
- | binary_expression GE binary_expression
- | binary_expression GT binary_expression
- | binary_expression EQ binary_expression
- | binary_expression NE binary_expression
- | binary_expression AND binary_expression
- | binary_expression OR binary_expression
- | binary_expression XOR binary_expression
- | binary_expression LAND binary_expression
- | binary_expression LOR binary_expression
- """
- if len(p) == 2:
- p[0] = p[1]
- else:
- p[0] = c_ast.BinaryOp(p[2], p[1], p[3], p[1].coord)
-
- def p_cast_expression_1(self, p):
- """ cast_expression : unary_expression """
- p[0] = p[1]
-
- def p_cast_expression_2(self, p):
- """ cast_expression : LPAREN type_name RPAREN cast_expression """
- p[0] = c_ast.Cast(p[2], p[4], p[2].coord)
-
- def p_unary_expression_1(self, p):
- """ unary_expression : postfix_expression """
- p[0] = p[1]
-
- def p_unary_expression_2(self, p):
- """ unary_expression : PLUSPLUS unary_expression
- | MINUSMINUS unary_expression
- | unary_operator cast_expression
- """
- p[0] = c_ast.UnaryOp(p[1], p[2], p[2].coord)
-
- def p_unary_expression_3(self, p):
- """ unary_expression : SIZEOF unary_expression
- | SIZEOF LPAREN type_name RPAREN
- """
- p[0] = c_ast.UnaryOp(
- p[1],
- p[2] if len(p) == 3 else p[3],
- self._coord(p.lineno(1)))
-
- def p_unary_operator(self, p):
- """ unary_operator : AND
- | TIMES
- | PLUS
- | MINUS
- | NOT
- | LNOT
- """
- p[0] = p[1]
-
- def p_postfix_exptession_1(self, p):
- """ postfix_expression : primary_expression """
- p[0] = p[1]
-
- def p_postfix_exptession_2(self, p):
- """ postfix_expression : postfix_expression LBRACKET expression RBRACKET """
- p[0] = c_ast.ArrayRef(p[1], p[3], p[1].coord)
-
- def p_postfix_exptession_3(self, p):
- """ postfix_expression : postfix_expression LPAREN argument_expression_list RPAREN
- | postfix_expression LPAREN RPAREN
- """
- p[0] = c_ast.FuncCall(p[1], p[3] if len(p) == 5 else None, p[1].coord)
-
- def p_postfix_expression_4(self, p):
- """ postfix_expression : postfix_expression PERIOD identifier
- | postfix_expression ARROW identifier
- """
- p[0] = c_ast.StructRef(p[1], p[2], p[3], p[1].coord)
-
- def p_postfix_expression_5(self, p):
- """ postfix_expression : postfix_expression PLUSPLUS
- | postfix_expression MINUSMINUS
- """
- p[0] = c_ast.UnaryOp('p' + p[2], p[1], p[1].coord)
-
+ """
+ p[0] = p[1] if isinstance(p[1], list) else [p[1]]
+
+ # Since we made block_item a list, this just combines lists
+ #
+ def p_block_item_list(self, p):
+ """ block_item_list : block_item
+ | block_item_list block_item
+ """
+ p[0] = p[1] if len(p) == 2 else p[1] + p[2]
+
+ def p_compound_statement_1(self, p):
+ """ compound_statement : LBRACE block_item_list_opt RBRACE """
+ p[0] = c_ast.Compound(
+ block_items=p[2],
+ coord=self._coord(p.lineno(1)))
+
+ def p_labeled_statement_1(self, p):
+ """ labeled_statement : ID COLON statement """
+ p[0] = c_ast.Label(p[1], p[3], self._coord(p.lineno(1)))
+
+ def p_labeled_statement_2(self, p):
+ """ labeled_statement : CASE constant_expression COLON statement """
+ p[0] = c_ast.Case(p[2], p[4], self._coord(p.lineno(1)))
+
+ def p_labeled_statement_3(self, p):
+ """ labeled_statement : DEFAULT COLON statement """
+ p[0] = c_ast.Default(p[3], self._coord(p.lineno(1)))
+
+ def p_selection_statement_1(self, p):
+ """ selection_statement : IF LPAREN expression RPAREN statement """
+ p[0] = c_ast.If(p[3], p[5], None, self._coord(p.lineno(1)))
+
+ def p_selection_statement_2(self, p):
+ """ selection_statement : IF LPAREN expression RPAREN statement ELSE statement """
+ p[0] = c_ast.If(p[3], p[5], p[7], self._coord(p.lineno(1)))
+
+ def p_selection_statement_3(self, p):
+ """ selection_statement : SWITCH LPAREN expression RPAREN statement """
+ p[0] = c_ast.Switch(p[3], p[5], self._coord(p.lineno(1)))
+
+ def p_iteration_statement_1(self, p):
+ """ iteration_statement : WHILE LPAREN expression RPAREN statement """
+ p[0] = c_ast.While(p[3], p[5], self._coord(p.lineno(1)))
+
+ def p_iteration_statement_2(self, p):
+ """ iteration_statement : DO statement WHILE LPAREN expression RPAREN SEMI """
+ p[0] = c_ast.DoWhile(p[5], p[2], self._coord(p.lineno(1)))
+
+ def p_iteration_statement_3(self, p):
+ """ iteration_statement : FOR LPAREN expression_opt SEMI expression_opt SEMI expression_opt RPAREN statement """
+ p[0] = c_ast.For(p[3], p[5], p[7], p[9], self._coord(p.lineno(1)))
+
+ def p_iteration_statement_4(self, p):
+ """ iteration_statement : FOR LPAREN declaration expression_opt SEMI expression_opt RPAREN statement """
+ p[0] = c_ast.For(c_ast.DeclList(p[3]), p[4], p[6], p[8], self._coord(p.lineno(1)))
+
+ def p_jump_statement_1(self, p):
+ """ jump_statement : GOTO ID SEMI """
+ p[0] = c_ast.Goto(p[2], self._coord(p.lineno(1)))
+
+ def p_jump_statement_2(self, p):
+ """ jump_statement : BREAK SEMI """
+ p[0] = c_ast.Break(self._coord(p.lineno(1)))
+
+ def p_jump_statement_3(self, p):
+ """ jump_statement : CONTINUE SEMI """
+ p[0] = c_ast.Continue(self._coord(p.lineno(1)))
+
+ def p_jump_statement_4(self, p):
+ """ jump_statement : RETURN expression SEMI
+ | RETURN SEMI
+ """
+ p[0] = c_ast.Return(p[2] if len(p) == 4 else None, self._coord(p.lineno(1)))
+
+ def p_expression_statement(self, p):
+ """ expression_statement : expression_opt SEMI """
+ p[0] = p[1]
+
+ def p_expression(self, p):
+ """ expression : assignment_expression
+ | expression COMMA assignment_expression
+ """
+ if len(p) == 2:
+ p[0] = p[1]
+ else:
+ if not isinstance(p[1], c_ast.ExprList):
+ p[1] = c_ast.ExprList([p[1]], p[1].coord)
+
+ p[1].exprs.append(p[3])
+ p[0] = p[1]
+
+ def p_typedef_name(self, p):
+ """ typedef_name : TYPEID """
+ p[0] = p[1]
+
+ def p_assignment_expression(self, p):
+ """ assignment_expression : conditional_expression
+ | unary_expression assignment_operator assignment_expression
+ """
+ if len(p) == 2:
+ p[0] = p[1]
+ else:
+ p[0] = c_ast.Assignment(p[2], p[1], p[3], p[1].coord)
+
+ # K&R2 defines these as many separate rules, to encode
+ # precedence and associativity. Why work hard ? I'll just use
+ # the built in precedence/associativity specification feature
+ # of PLY. (see precedence declaration above)
+ #
+ def p_assignment_operator(self, p):
+ """ assignment_operator : EQUALS
+ | XOREQUAL
+ | TIMESEQUAL
+ | DIVEQUAL
+ | MODEQUAL
+ | PLUSEQUAL
+ | MINUSEQUAL
+ | LSHIFTEQUAL
+ | RSHIFTEQUAL
+ | ANDEQUAL
+ | OREQUAL
+ """
+ p[0] = p[1]
+
+ def p_constant_expression(self, p):
+ """ constant_expression : conditional_expression """
+ p[0] = p[1]
+
+ def p_conditional_expression(self, p):
+ """ conditional_expression : binary_expression
+ | binary_expression CONDOP expression COLON conditional_expression
+ """
+ if len(p) == 2:
+ p[0] = p[1]
+ else:
+ p[0] = c_ast.TernaryOp(p[1], p[3], p[5], p[1].coord)
+
+ def p_binary_expression(self, p):
+ """ binary_expression : cast_expression
+ | binary_expression TIMES binary_expression
+ | binary_expression DIVIDE binary_expression
+ | binary_expression MOD binary_expression
+ | binary_expression PLUS binary_expression
+ | binary_expression MINUS binary_expression
+ | binary_expression RSHIFT binary_expression
+ | binary_expression LSHIFT binary_expression
+ | binary_expression LT binary_expression
+ | binary_expression LE binary_expression
+ | binary_expression GE binary_expression
+ | binary_expression GT binary_expression
+ | binary_expression EQ binary_expression
+ | binary_expression NE binary_expression
+ | binary_expression AND binary_expression
+ | binary_expression OR binary_expression
+ | binary_expression XOR binary_expression
+ | binary_expression LAND binary_expression
+ | binary_expression LOR binary_expression
+ """
+ if len(p) == 2:
+ p[0] = p[1]
+ else:
+ p[0] = c_ast.BinaryOp(p[2], p[1], p[3], p[1].coord)
+
+ def p_cast_expression_1(self, p):
+ """ cast_expression : unary_expression """
+ p[0] = p[1]
+
+ def p_cast_expression_2(self, p):
+ """ cast_expression : LPAREN type_name RPAREN cast_expression """
+ p[0] = c_ast.Cast(p[2], p[4], p[2].coord)
+
+ def p_unary_expression_1(self, p):
+ """ unary_expression : postfix_expression """
+ p[0] = p[1]
+
+ def p_unary_expression_2(self, p):
+ """ unary_expression : PLUSPLUS unary_expression
+ | MINUSMINUS unary_expression
+ | unary_operator cast_expression
+ """
+ p[0] = c_ast.UnaryOp(p[1], p[2], p[2].coord)
+
+ def p_unary_expression_3(self, p):
+ """ unary_expression : SIZEOF unary_expression
+ | SIZEOF LPAREN type_name RPAREN
+ """
+ p[0] = c_ast.UnaryOp(
+ p[1],
+ p[2] if len(p) == 3 else p[3],
+ self._coord(p.lineno(1)))
+
+ def p_unary_operator(self, p):
+ """ unary_operator : AND
+ | TIMES
+ | PLUS
+ | MINUS
+ | NOT
+ | LNOT
+ """
+ p[0] = p[1]
+
+ def p_postfix_exptession_1(self, p):
+ """ postfix_expression : primary_expression """
+ p[0] = p[1]
+
+ def p_postfix_exptession_2(self, p):
+ """ postfix_expression : postfix_expression LBRACKET expression RBRACKET """
+ p[0] = c_ast.ArrayRef(p[1], p[3], p[1].coord)
+
+ def p_postfix_exptession_3(self, p):
+ """ postfix_expression : postfix_expression LPAREN argument_expression_list RPAREN
+ | postfix_expression LPAREN RPAREN
+ """
+ p[0] = c_ast.FuncCall(p[1], p[3] if len(p) == 5 else None, p[1].coord)
+
+ def p_postfix_expression_4(self, p):
+ """ postfix_expression : postfix_expression PERIOD identifier
+ | postfix_expression ARROW identifier
+ """
+ p[0] = c_ast.StructRef(p[1], p[2], p[3], p[1].coord)
+
+ def p_postfix_expression_5(self, p):
+ """ postfix_expression : postfix_expression PLUSPLUS
+ | postfix_expression MINUSMINUS
+ """
+ p[0] = c_ast.UnaryOp('p' + p[2], p[1], p[1].coord)
+
def p_postfix_expression_6(self, p):
- """ postfix_expression : LPAREN type_name RPAREN LBRACE initializer_list RBRACE
- | LPAREN type_name RPAREN LBRACE initializer_list COMMA RBRACE
- """
- p[0] = c_ast.CompoundLiteral(p[2], p[5])
-
- def p_primary_expression_1(self, p):
- """ primary_expression : identifier """
- p[0] = p[1]
-
- def p_primary_expression_2(self, p):
- """ primary_expression : constant """
- p[0] = p[1]
-
- def p_primary_expression_3(self, p):
- """ primary_expression : unified_string_literal
- | unified_wstring_literal
- """
- p[0] = p[1]
-
- def p_primary_expression_4(self, p):
- """ primary_expression : LPAREN expression RPAREN """
- p[0] = p[2]
-
- def p_argument_expression_list(self, p):
- """ argument_expression_list : assignment_expression
- | argument_expression_list COMMA assignment_expression
- """
- if len(p) == 2: # single expr
- p[0] = c_ast.ExprList([p[1]], p[1].coord)
- else:
- p[1].exprs.append(p[3])
- p[0] = p[1]
-
- def p_identifier(self, p):
- """ identifier : ID """
- p[0] = c_ast.ID(p[1], self._coord(p.lineno(1)))
-
- def p_constant_1(self, p):
- """ constant : INT_CONST_DEC
- | INT_CONST_OCT
- | INT_CONST_HEX
- """
- p[0] = c_ast.Constant(
- 'int', p[1], self._coord(p.lineno(1)))
-
- def p_constant_2(self, p):
- """ constant : FLOAT_CONST """
- p[0] = c_ast.Constant(
- 'float', p[1], self._coord(p.lineno(1)))
-
- def p_constant_3(self, p):
- """ constant : CHAR_CONST
- | WCHAR_CONST
- """
- p[0] = c_ast.Constant(
- 'char', p[1], self._coord(p.lineno(1)))
-
- # The "unified" string and wstring literal rules are for supporting
- # concatenation of adjacent string literals.
- # I.e. "hello " "world" is seen by the C compiler as a single string literal
- # with the value "hello world"
- #
+ """ postfix_expression : LPAREN type_name RPAREN LBRACE initializer_list RBRACE
+ | LPAREN type_name RPAREN LBRACE initializer_list COMMA RBRACE
+ """
+ p[0] = c_ast.CompoundLiteral(p[2], p[5])
+
+ def p_primary_expression_1(self, p):
+ """ primary_expression : identifier """
+ p[0] = p[1]
+
+ def p_primary_expression_2(self, p):
+ """ primary_expression : constant """
+ p[0] = p[1]
+
+ def p_primary_expression_3(self, p):
+ """ primary_expression : unified_string_literal
+ | unified_wstring_literal
+ """
+ p[0] = p[1]
+
+ def p_primary_expression_4(self, p):
+ """ primary_expression : LPAREN expression RPAREN """
+ p[0] = p[2]
+
+ def p_argument_expression_list(self, p):
+ """ argument_expression_list : assignment_expression
+ | argument_expression_list COMMA assignment_expression
+ """
+ if len(p) == 2: # single expr
+ p[0] = c_ast.ExprList([p[1]], p[1].coord)
+ else:
+ p[1].exprs.append(p[3])
+ p[0] = p[1]
+
+ def p_identifier(self, p):
+ """ identifier : ID """
+ p[0] = c_ast.ID(p[1], self._coord(p.lineno(1)))
+
+ def p_constant_1(self, p):
+ """ constant : INT_CONST_DEC
+ | INT_CONST_OCT
+ | INT_CONST_HEX
+ """
+ p[0] = c_ast.Constant(
+ 'int', p[1], self._coord(p.lineno(1)))
+
+ def p_constant_2(self, p):
+ """ constant : FLOAT_CONST """
+ p[0] = c_ast.Constant(
+ 'float', p[1], self._coord(p.lineno(1)))
+
+ def p_constant_3(self, p):
+ """ constant : CHAR_CONST
+ | WCHAR_CONST
+ """
+ p[0] = c_ast.Constant(
+ 'char', p[1], self._coord(p.lineno(1)))
+
+ # The "unified" string and wstring literal rules are for supporting
+ # concatenation of adjacent string literals.
+ # I.e. "hello " "world" is seen by the C compiler as a single string literal
+ # with the value "hello world"
+ #
def p_unified_string_literal(self, p):
- """ unified_string_literal : STRING_LITERAL
+ """ unified_string_literal : STRING_LITERAL
| unified_string_literal STRING_LITERAL
- """
- if len(p) == 2: # single literal
- p[0] = c_ast.Constant(
- 'string', p[1], self._coord(p.lineno(1)))
- else:
- p[1].value = p[1].value[:-1] + p[2][1:]
- p[0] = p[1]
-
- def p_unified_wstring_literal(self, p):
- """ unified_wstring_literal : WSTRING_LITERAL
- | unified_wstring_literal WSTRING_LITERAL
- """
- if len(p) == 2: # single literal
- p[0] = c_ast.Constant(
- 'string', p[1], self._coord(p.lineno(1)))
- else:
- p[1].value = p[1].value.rstrip[:-1] + p[2][1:]
- p[0] = p[1]
-
- def p_empty(self, p):
- 'empty : '
- p[0] = None
-
- def p_error(self, p):
- if p:
- self._parse_error(
- 'before: %s' % p.value,
- self._coord(p.lineno))
- else:
- self._parse_error('At end of input', '')
-
-
-if __name__ == "__main__":
- import pprint
- import time
- from portability import printme
-
- t1 = time.time()
- parser = CParser(lex_optimize=True, yacc_debug=True, yacc_optimize=False)
- printme(time.time() - t1)
-
- buf = '''
- int (*k)(int);
- '''
-
- # set debuglevel to 2 for debugging
- t = parser.parse(buf, 'x.c', debuglevel=0)
- t.show(showcoord=True)
+ """
+ if len(p) == 2: # single literal
+ p[0] = c_ast.Constant(
+ 'string', p[1], self._coord(p.lineno(1)))
+ else:
+ p[1].value = p[1].value[:-1] + p[2][1:]
+ p[0] = p[1]
+
+ def p_unified_wstring_literal(self, p):
+ """ unified_wstring_literal : WSTRING_LITERAL
+ | unified_wstring_literal WSTRING_LITERAL
+ """
+ if len(p) == 2: # single literal
+ p[0] = c_ast.Constant(
+ 'string', p[1], self._coord(p.lineno(1)))
+ else:
+ p[1].value = p[1].value.rstrip[:-1] + p[2][1:]
+ p[0] = p[1]
+
+ def p_empty(self, p):
+ 'empty : '
+ p[0] = None
+
+ def p_error(self, p):
+ if p:
+ self._parse_error(
+ 'before: %s' % p.value,
+ self._coord(p.lineno))
+ else:
+ self._parse_error('At end of input', '')
+
+
+if __name__ == "__main__":
+ import pprint
+ import time
+ from portability import printme
+
+ t1 = time.time()
+ parser = CParser(lex_optimize=True, yacc_debug=True, yacc_optimize=False)
+ printme(time.time() - t1)
+
+ buf = '''
+ int (*k)(int);
+ '''
+
+ # set debuglevel to 2 for debugging
+ t = parser.parse(buf, 'x.c', debuglevel=0)
+ t.show(showcoord=True)