aboutsummaryrefslogtreecommitdiff
path: root/pycparser/c_parser.py
blob: bef217613df265c76aa89ee9f6d092eb70f382b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
#-----------------------------------------------------------------
# pycparser: c_parser.py
#
# CParser class: Parser and AST builder for the C language
#
# Copyright (C) 2008-2010, Eli Bendersky
# License: LGPL
#-----------------------------------------------------------------

import re

import ply.yacc

from . import c_ast
from .c_lexer import CLexer
from .plyparser import PLYParser, Coord, ParseError


class CParser(PLYParser):    
    def __init__(
            self, 
            lex_optimize=True,
            lextab='pycparser.lextab',
            yacc_optimize=True,
            yacctab='pycparser.yacctab',
            yacc_debug=False):
        """ Create a new CParser.
        
            Some arguments for controlling the debug/optimization
            level of the parser are provided. The defaults are 
            tuned for release/performance mode. 
            The simple rules for using them are:
            *) When tweaking CParser/CLexer, set these to False
            *) When releasing a stable parser, set to True
            
            lex_optimize:
                Set to False when you're modifying the lexer.
                Otherwise, changes in the lexer won't be used, if
                some lextab.py file exists.
                When releasing with a stable lexer, set to True
                to save the re-generation of the lexer table on 
                each run.
            
            lextab:
                Points to the lex table that's used for optimized
                mode. Only if you're modifying the lexer and want
                some tests to avoid re-generating the table, make 
                this point to a local lex table file (that's been
                earlier generated with lex_optimize=True)
            
            yacc_optimize:
                Set to False when you're modifying the parser.
                Otherwise, changes in the parser won't be used, if
                some parsetab.py file exists.
                When releasing with a stable parser, set to True
                to save the re-generation of the parser table on 
                each run.
            
            yacctab:
                Points to the yacc table that's used for optimized
                mode. Only if you're modifying the parser, make 
                this point to a local yacc table file
                        
            yacc_debug:
                Generate a parser.out file that explains how yacc
                built the parsing table from the grammar.
        """
        self.clex = CLexer(
            error_func=self._lex_error_func,
            type_lookup_func=self._lex_type_lookup_func)
            
        self.clex.build(
            optimize=lex_optimize,
            lextab=lextab)
        self.tokens = self.clex.tokens
        
        rules_with_opt = [
            'abstract_declarator',
            'constant_expression',
            'declaration_list',
            'declaration_specifiers',
            'expression',
            'identifier_list',
            'init_declarator_list',
            'parameter_type_list',
            'specifier_qualifier_list',
            'statement_list',
            'type_qualifier_list',
        ]
        
        for rule in rules_with_opt:
            self._create_opt_rule(rule)
        
        self.cparser = ply.yacc.yacc(
            module=self, 
            start='translation_unit',
            debug=yacc_debug,
            optimize=yacc_optimize,
            tabmodule=yacctab)
        
        # A table of identifiers defined as typedef types during
        # parsing.
        #
        self.typedef_table = set([])
    
    def parse(self, text, filename='', debuglevel=0):
        """ Parses C code and returns an AST.
        
            text:
                A string containing the C source code
            
            filename:
                Name of the file being parsed (for meaningful
                error messages)
            
            debuglevel:
                Debug level to yacc
        """
        self.clex.filename = filename
        self.clex.reset_lineno()
        self.typedef_table = set([])
        return self.cparser.parse(text, lexer=self.clex, debug=debuglevel)
    
    ######################--   PRIVATE   --######################
    
    def _lex_error_func(self, msg, line, column):
        self._parse_error(msg, self._coord(line, column))
    
    def _lex_type_lookup_func(self, name):
        """ Looks up types that were previously defined with
            typedef. 
            Passed to the lexer for recognizing identifiers that
            are types.
        """
        return name in self.typedef_table
    
    def _add_typedef_type(self, name):
        """ Adds names that were defined as new types with 
            typedef.
        """
        self.typedef_table.add(name)
    
    # To understand what's going on here, read sections A.8.5 and 
    # A.8.6 of K&R2 very carefully.
    # 
    # A C type consists of a basic type declaration, with a list
    # of modifiers. For example:
    #
    # int *c[5];
    #
    # The basic declaration here is 'int x', and the pointer and
    # the array are the modifiers.
    #
    # Basic declarations are represented by TypeDecl (from module
    # c_ast) and the modifiers are FuncDecl, PtrDecl and 
    # ArrayDecl.
    #
    # The standard states that whenever a new modifier is parsed,
    # it should be added to the end of the list of modifiers. For
    # example:
    #
    # K&R2 A.8.6.2: Array Declarators
    #
    # In a declaration T D where D has the form  
    #   D1 [constant-expression-opt]  
    # and the type of the identifier in the declaration T D1 is 
    # "type-modifier T", the type of the 
    # identifier of D is "type-modifier array of T"
    #
    # This is what this method does. The declarator it receives
    # can be a list of declarators ending with TypeDecl. It 
    # tacks the modifier to the end of this list, just before 
    # the TypeDecl.
    #
    # Additionally, the modifier may be a list itself. This is 
    # useful for pointers, that can come as a chain from the rule
    # p_pointer. In this case, the whole modifier list is spliced 
    # into the new location.
    #
    def _type_modify_decl(self, decl, modifier):
        """ Tacks a type modifier on a declarator, and returns
            the modified declarator.
            
            Note: the declarator and modifier may be modified
        """
        #~ print '****'
        #~ decl.show(offset=3)
        #~ modifier.show(offset=3)
        #~ print '****'
        
        modifier_head = modifier
        modifier_tail = modifier
        
        # The modifier may be a nested list. Reach its tail.
        #
        while modifier_tail.type: 
            modifier_tail = modifier_tail.type
        
        # If the decl is a basic type, just tack the modifier onto
        # it
        #
        if isinstance(decl, c_ast.TypeDecl):
            modifier_tail.type = decl
            return modifier
        else:
            # Otherwise, the decl is a list of modifiers. Reach
            # its tail and splice the modifier onto the tail,
            # pointing to the underlying basic type.
            #
            decl_tail = decl
            
            while not isinstance(decl_tail.type, c_ast.TypeDecl):
                decl_tail = decl_tail.type
            
            modifier_tail.type = decl_tail.type
            decl_tail.type = modifier_head
            return decl

    # Due to the order in which declarators are constructed,
    # they have to be fixed in order to look like a normal AST.
    # 
    # When a declaration arrives from syntax construction, it has
    # these problems:
    # * The innermost TypeDecl has no type (because the basic
    #   type is only known at the uppermost declaration level)
    # * The declaration has no variable name, since that is saved
    #   in the innermost TypeDecl
    # * The typename of the declaration is a list of type 
    #   specifiers, and not a node. Here, basic identifier types
    #   should be separated from more complex types like enums
    #   and structs.
    #
    # This method fixes these problem.
    #
    def _fix_decl_name_type(self, decl, typename):
        """ Fixes a declaration. Modifies decl.
        """
        # Reach the underlying basic type
        #
        type = decl
        while not isinstance(type, c_ast.TypeDecl):
            type = type.type
        
        decl.name = type.declname
        type.quals = decl.quals
        
        # The typename is a list of types. If any type in this 
        # list isn't a simple string type, it must be the only
        # type in the list (it's illegal to declare "int enum .."
        # If all the types are basic, they're collected in the
        # IdentifierType holder.
        #
        for tn in typename:
            if not isinstance(tn, str):
                if len(typename) > 1:
                    self._parse_error(
                        "Invalid multiple types specified", tn.coord)
                else:
                    type.type = tn
                    return decl
        
        type.type = c_ast.IdentifierType(typename)
        return decl
    
    def _add_declaration_specifier(self, declspec, newspec, kind):
        """ Declaration specifiers are represented by a dictionary
            with 3 entries:
            * qual: a list of type qualifiers
            * storage: a list of storage type qualifiers
            * type: a list of type specifiers
            
            This method is given a declaration specifier, and a 
            new specifier of a given kind.
            Returns the declaration specifier, with the new 
            specifier incorporated.
        """
        spec = declspec or dict(qual=[], storage=[], type=[])
        spec[kind].append(newspec)
        return spec
    
    def _build_function_definition(self, decl, spec, param_decls, body):
        """ Builds a function definition.
        """
        declaration = c_ast.Decl(
            name=None,
            quals=spec['qual'],
            storage=spec['storage'],
            type=decl, 
            init=None, 
            bitsize=None, 
            coord=decl.coord)
        
        typename = spec['type']
        declaration = self._fix_decl_name_type(declaration, typename)
        return c_ast.FuncDef(
            decl=declaration,
            param_decls=param_decls,
            body=body,
            coord=decl.coord)

    def _select_struct_union_class(self, token):
        """ Given a token (either STRUCT or UNION), selects the
            appropriate AST class.
        """
        if token == 'struct':
            return c_ast.Struct
        else:
            return c_ast.Union

    ##
    ## Precedence and associativity of operators
    ##
    precedence = (
        ('left', 'LOR'),
        ('left', 'LAND'),
        ('left', 'OR'),
        ('left', 'XOR'),
        ('left', 'AND'),
        ('left', 'EQ', 'NE'),
        ('left', 'GT', 'GE', 'LT', 'LE'),
        ('left', 'RSHIFT', 'LSHIFT'),
        ('left', 'PLUS', 'MINUS'),
        ('left', 'TIMES', 'DIVIDE', 'MOD')
    )
    
    ##
    ## Grammar productions
    ## Implementation of the BNF defined in K&R2 A.13
    ##
    def p_translation_unit_1(self, p):
        """ translation_unit    : external_declaration 
        """
        # Note: external_declaration is already a list
        #
        p[0] = c_ast.FileAST(p[1])
    
    def p_translation_unit_2(self, p):
        """ translation_unit    : translation_unit external_declaration
        """
        p[1].ext.extend(p[2])
        p[0] = p[1]
    
    # Declarations always come as lists (because they can be
    # several in one line), so we wrap the function definition 
    # into a list as well, to make the return value of 
    # external_declaration homogenous.
    #
    def p_external_declaration_1(self, p):
        """ external_declaration    : function_definition
        """
        p[0] = [p[1]]
    
    def p_external_declaration_2(self, p):
        """ external_declaration    : declaration
        """
        p[0] = p[1]

    def p_external_declaration_3(self, p):
        """ external_declaration    : pp_directive
        """
        p[0] = p[1]

    def p_pp_directive(self, p):
        """ pp_directive  : PPHASH 
        """
        self._parse_error('Directives not supported yet', 
            self._coord(p.lineno(1)))

    # In function definitions, the declarator can be followed by
    # a declaration list, for old "K&R style" function definitios.
    #
    def p_function_definition_1(self, p):
        """ function_definition : declarator declaration_list_opt compound_statement
        """
        # no declaration specifiers
        spec = dict(qual=[], storage=[], type=[])

        p[0] = self._build_function_definition(
            decl=p[1],
            spec=spec, 
            param_decls=p[2],
            body=p[3])
                    
    def p_function_definition_2(self, p):
        """ function_definition : declaration_specifiers declarator declaration_list_opt compound_statement
        """
        spec = p[1]

        p[0] = self._build_function_definition(
            decl=p[2],
            spec=spec, 
            param_decls=p[3],
            body=p[4])
        
    def p_statement(self, p):
        """ statement   : labeled_statement
                        | expression_statement
                        | compound_statement
                        | selection_statement
                        | iteration_statement    
                        | jump_statement
        """
        p[0] = p[1]

    # In C, declarations can come several in a line:
    #   int x, *px, romulo = 5;
    #
    # However, for the AST, we will split them to separate Decl
    # nodes.
    #
    # This rule splits its declarations and always returns a list
    # of Decl nodes, even if it's one element long.
    #
    def p_decl_body(self, p):
        """ decl_body : declaration_specifiers init_declarator_list_opt
        """
        spec = p[1]
        is_typedef = 'typedef' in spec['storage']
        decls = []

        # p[2] (init_declarator_list_opt) is either a list or None
        #
        if p[2] is None:
            # Then it's a declaration of a struct / enum tag,
            # without an actual declarator.
            #
            type = spec['type']
            if len(type) > 1:
                coord = '?'
                for t in type:
                    if hasattr(t, 'coord'):
                        coord = t.coord
                        break
                        
                self._parse_error('Multiple type specifiers with a type tag', coord)
            
            decl = c_ast.Decl(
                name=None,
                quals=spec['qual'],
                storage=spec['storage'],
                type=type[0],
                init=None,
                bitsize=None,
                coord=type[0].coord)
            decls = [decl]
        else:
            for decl, init in p[2] or []:
                if is_typedef:
                    decl = c_ast.Typedef(
                        name=None,
                        quals=spec['qual'],
                        storage=spec['storage'],
                        type=decl,
                        coord=decl.coord)
                else:
                    decl = c_ast.Decl(
                        name=None,
                        quals=spec['qual'],
                        storage=spec['storage'],
                        type=decl, 
                        init=init, 
                        bitsize=None, 
                        coord=decl.coord)
                
                typename = spec['type']
                fixed_decl = self._fix_decl_name_type(decl, typename)

                # Add the type name defined by typedef to a
                # symbol table (for usage in the lexer)
                # 
                if is_typedef:
                    self._add_typedef_type(fixed_decl.name)

                decls.append(fixed_decl)

        p[0] = decls

    # The declaration has been split to a decl_body sub-rule and
    # SEMI, because having them in a single rule created a problem
    # for defining typedefs.
    #
    # If a typedef line was directly followed by a line using the
    # type defined with the typedef, the type would not be 
    # recognized. This is because to reduce the declaration rule,
    # the parser's lookahead asked for the token after SEMI, which
    # was the type from the next line, and the lexer had no chance
    # to see the updated type symbol table.
    #
    # Splitting solves this problem, because after seeing SEMI,
    # the parser reduces decl_body, which actually adds the new
    # type into the table to be seen by the lexer before the next
    # line is reached.
    #
    def p_declaration(self, p):
        """ declaration : decl_body SEMI 
        """
        p[0] = p[1]

    # Since each declaration is a list of declarations, this
    # rule will combine all the declarations and return a single
    # list
    # 
    def p_declaration_list(self, p):
        """ declaration_list    : declaration
                                | declaration_list declaration
        """
        p[0] = p[1] if len(p) == 2 else p[1] + p[2]
    
    def p_declaration_specifiers_1(self, p):
        """ declaration_specifiers  : type_qualifier declaration_specifiers_opt 
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')
        
    def p_declaration_specifiers_2(self, p):
        """ declaration_specifiers  : type_specifier declaration_specifiers_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'type')
        
    def p_declaration_specifiers_3(self, p):
        """ declaration_specifiers  : storage_class_specifier declaration_specifiers_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'storage')
        
    def p_storage_class_specifier(self, p):
        """ storage_class_specifier : AUTO
                                    | REGISTER
                                    | STATIC
                                    | EXTERN
                                    | TYPEDEF
        """
        p[0] = p[1]
        
    def p_type_specifier_1(self, p):
        """ type_specifier  : VOID
                            | CHAR
                            | SHORT
                            | INT
                            | LONG
                            | FLOAT
                            | DOUBLE
                            | SIGNED
                            | UNSIGNED
                            | typedef_name
                            | enum_specifier
                            | struct_or_union_specifier
        """
        p[0] = p[1]
    
    def p_type_qualifier(self, p):
        """ type_qualifier  : CONST
                            | VOLATILE
        """
        p[0] = p[1]
    
    def p_init_declarator_list(self, p):
        """ init_declarator_list    : init_declarator
                                    | init_declarator_list COMMA init_declarator
        """
        p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]

    # Returns a (declarator, intializer) pair
    # If there's no initializer, returns (declarator, None)
    #
    def p_init_declarator(self, p):
        """ init_declarator : declarator
                            | declarator EQUALS initializer
        """
        p[0] = (p[1], p[3] if len(p) > 2 else None)        
    
    def p_specifier_qualifier_list_1(self, p):
        """ specifier_qualifier_list    : type_qualifier specifier_qualifier_list_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')
        
    def p_specifier_qualifier_list_2(self, p):
        """ specifier_qualifier_list    : type_specifier specifier_qualifier_list_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'type')

    # TYPEID is allowed here (and in other struct/enum related tag names), because
    # struct/enum tags reside in their own namespace and can be named the same as types
    #
    def p_struct_or_union_specifier_1(self, p):
        """ struct_or_union_specifier   : struct_or_union ID
                                        | struct_or_union TYPEID
        """
        klass = self._select_struct_union_class(p[1])
        p[0] = klass(
            name=p[2], 
            decls=None, 
            coord=self._coord(p.lineno(2)))

    def p_struct_or_union_specifier_2(self, p):
        """ struct_or_union_specifier : struct_or_union LBRACE struct_declaration_list RBRACE
        """
        klass = self._select_struct_union_class(p[1])
        p[0] = klass(
            name=None,
            decls=p[3],
            coord=self._coord(p.lineno(2)))

    def p_struct_or_union_specifier_3(self, p):
        """ struct_or_union_specifier   : struct_or_union ID LBRACE struct_declaration_list RBRACE
                                        | struct_or_union TYPEID LBRACE struct_declaration_list RBRACE
        """
        klass = self._select_struct_union_class(p[1])
        p[0] = klass(
            name=p[2],
            decls=p[4],
            coord=self._coord(p.lineno(2)))

    def p_struct_or_union(self, p):
        """ struct_or_union : STRUCT 
                            | UNION
        """
        p[0] = p[1]

    # Combine all declarations into a single list
    #
    def p_struct_declaration_list(self, p):
        """ struct_declaration_list     : struct_declaration
                                        | struct_declaration_list struct_declaration
        """
        p[0] = p[1] if len(p) == 2 else p[1] + p[2]

    def p_struct_declaration_1(self, p):
        """ struct_declaration : specifier_qualifier_list struct_declarator_list SEMI
        """
        spec = p[1]
        decls = []
        
        for struct_decl in p[2]:
            decl = c_ast.Decl(
                name=None,
                quals=spec['qual'],
                storage=spec['storage'],
                type=struct_decl['decl'],
                init=None,
                bitsize=struct_decl['bitsize'],
                coord=struct_decl['decl'].coord)
            
            typename = spec['type']
            decls.append(self._fix_decl_name_type(decl, typename))
        
        p[0] = decls
    
    def p_struct_declarator_list(self, p):
        """ struct_declarator_list  : struct_declarator
                                    | struct_declarator_list COMMA struct_declarator
        """
        p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]
    
    # struct_declarator passes up a dict with the keys: decl (for
    # the underlying declarator) and bitsize (for the bitsize)
    #
    def p_struct_declarator_1(self, p):
        """ struct_declarator : declarator
        """
        p[0] = {'decl': p[1], 'bitsize': None}
    
    def p_struct_declarator_2(self, p):
        """ struct_declarator   : declarator COLON constant_expression
                                | COLON constant_expression
        """
        if len(p) > 3:
            p[0] = {'decl': p[1], 'bitsize': p[3]}
        else:
            p[0] = {'decl': None, 'bitsize': p[2]}
    
    def p_enum_specifier_1(self, p):
        """ enum_specifier  : ENUM ID
                            | ENUM TYPEID
        """
        p[0] = c_ast.Enum(p[2], None, self._coord(p.lineno(1)))
    
    def p_enum_specifier_2(self, p):
        """ enum_specifier  : ENUM LBRACE enumerator_list RBRACE
        """
        p[0] = c_ast.Enum(None, p[3], self._coord(p.lineno(1)))
    
    def p_enum_specifier_3(self, p):
        """ enum_specifier  : ENUM ID LBRACE enumerator_list RBRACE
                            | ENUM TYPEID LBRACE enumerator_list RBRACE
        """
        p[0] = c_ast.Enum(p[2], p[4], self._coord(p.lineno(1)))
        
    def p_enumerator_list(self, p):
        """ enumerator_list : enumerator
                            | enumerator_list COMMA
                            | enumerator_list COMMA enumerator
        """
        if len(p) == 2:
            p[0] = c_ast.EnumeratorList([p[1]], p[1].coord)
        elif len(p) == 3:
            p[0] = p[1]
        else:
            p[1].enumerators.append(p[3])
            p[0] = p[1]

    def p_enumerator(self, p):
        """ enumerator  : ID
                        | ID EQUALS constant_expression
        """
        if len(p) == 2:
            p[0] = c_ast.Enumerator(
                        p[1], None, 
                        self._coord(p.lineno(1)))
        else:
            p[0] = c_ast.Enumerator(
                        p[1], p[3], 
                        self._coord(p.lineno(1)))
    
    def p_declarator_1(self, p):
        """ declarator  : direct_declarator 
        """
        p[0] = p[1]
    
    def p_declarator_2(self, p):
        """ declarator  : pointer direct_declarator 
        """
        p[0] = self._type_modify_decl(p[2], p[1])
    
    def p_direct_declarator_1(self, p):
        """ direct_declarator   : ID 
        """
        p[0] = c_ast.TypeDecl(
            declname=p[1], 
            type=None, 
            quals=None,
            coord=self._coord(p.lineno(1)))
        
    def p_direct_declarator_2(self, p):
        """ direct_declarator   : LPAREN declarator RPAREN 
        """
        p[0] = p[2]
        
    def p_direct_declarator_3(self, p):
        """ direct_declarator   : direct_declarator LBRACKET constant_expression_opt RBRACKET 
        """
        arr = c_ast.ArrayDecl(
            type=None,
            dim=p[3],
            coord=p[1].coord)
        
        p[0] = self._type_modify_decl(decl=p[1], modifier=arr)

    def p_direct_declarator_4(self, p):
        """ direct_declarator   : direct_declarator LPAREN parameter_type_list RPAREN 
                                | direct_declarator LPAREN identifier_list_opt RPAREN
        """
        func = c_ast.FuncDecl(
            args=p[3],
            type=None,
            coord=p[1].coord)
        
        p[0] = self._type_modify_decl(decl=p[1], modifier=func)
    
    def p_pointer(self, p):
        """ pointer : TIMES type_qualifier_list_opt
                    | TIMES type_qualifier_list_opt pointer
        """
        coord = self._coord(p.lineno(1))
        
        p[0] = c_ast.PtrDecl(
            quals=p[2] or [],
            type=p[3] if len(p) > 3 else None,
            coord=coord)
    
    def p_type_qualifier_list(self, p):
        """ type_qualifier_list : type_qualifier
                                | type_qualifier_list type_qualifier
        """
        p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]]
    
    def p_parameter_type_list(self, p):
        """ parameter_type_list : parameter_list
                                | parameter_list COMMA ELLIPSIS
        """
        if len(p) > 2: 
            p[1].params.append(c_ast.EllipsisParam())
        
        p[0] = p[1]

    def p_parameter_list(self, p):
        """ parameter_list  : parameter_declaration
                            | parameter_list COMMA parameter_declaration
        """
        if len(p) == 2: # single parameter
            p[0] = c_ast.ParamList([p[1]], p[1].coord)
        else:
            p[1].params.append(p[3])
            p[0] = p[1]

    def p_parameter_declaration_1(self, p):
        """ parameter_declaration   : declaration_specifiers declarator
        """
        spec = p[1]
        decl = p[2]
        
        decl = c_ast.Decl(
            name=None,
            quals=spec['qual'],
            storage=spec['storage'],
            type=decl, 
            init=None, 
            bitsize=None, 
            coord=decl.coord)
        
        typename = spec['type'] or ['int']
        p[0] = self._fix_decl_name_type(decl, typename)
        
    def p_parameter_declaration_2(self, p):
        """ parameter_declaration   : declaration_specifiers abstract_declarator_opt
        """
        spec = p[1]
        decl = c_ast.Typename(
            quals=spec['qual'], 
            type=p[2] or c_ast.TypeDecl(None, None, None))
            
        typename = spec['type'] or ['int']
        
        p[0] = self._fix_decl_name_type(decl, typename)        
    
    def p_identifier_list(self, p):
        """ identifier_list : identifier
                            | identifier_list COMMA identifier
        """
        if len(p) == 2: # single parameter
            p[0] = c_ast.ParamList([p[1]], p[1].coord)
        else:
            p[1].params.append(p[3])
            p[0] = p[1]

    def p_initializer_1(self, p):
        """ initializer : assignment_expression
        """
        p[0] = p[1]
    
    def p_initializer_2(self, p):
        """ initializer : LBRACE initializer_list RBRACE
                        | LBRACE initializer_list COMMA RBRACE
        """
        p[0] = p[2]

    def p_initializer_list(self, p):
        """ initializer_list    : initializer
                                | initializer_list COMMA initializer
        """
        if len(p) == 2: # single initializer
            p[0] = c_ast.ExprList([p[1]], p[1].coord)
        else:
            p[1].exprs.append(p[3])
            p[0] = p[1]
        
    def p_type_name(self, p):
        """ type_name   : specifier_qualifier_list abstract_declarator_opt 
        """
        #~ print '=========='
        #~ print p[1]
        #~ print p[2]
        #~ print p[2].children()
        #~ print '=========='
        
        typename = c_ast.Typename(
            quals=p[1]['qual'], 
            type=p[2] or c_ast.TypeDecl(None, None, None))
        
        p[0] = self._fix_decl_name_type(typename, p[1]['type'])

    def p_abstract_declarator_1(self, p):
        """ abstract_declarator     : pointer
        """
        dummytype = c_ast.TypeDecl(None, None, None)
        p[0] = self._type_modify_decl(
            decl=dummytype, 
            modifier=p[1])
        
    def p_abstract_declarator_2(self, p):
        """ abstract_declarator     : pointer direct_abstract_declarator
        """
        p[0] = self._type_modify_decl(p[2], p[1])
        
    def p_abstract_declarator_3(self, p):
        """ abstract_declarator     : direct_abstract_declarator
        """
        p[0] = p[1]
    
    # Creating and using direct_abstract_declarator_opt here 
    # instead of listing both direct_abstract_declarator and the
    # lack of it in the beginning of _1 and _2 caused two 
    # shift/reduce errors.
    #
    def p_direct_abstract_declarator_1(self, p):
        """ direct_abstract_declarator  : LPAREN abstract_declarator RPAREN """
        p[0] = p[2]
    
    def p_direct_abstract_declarator_2(self, p):
        """ direct_abstract_declarator  : direct_abstract_declarator LBRACKET constant_expression_opt RBRACKET 
        """
        arr = c_ast.ArrayDecl(
            type=None,
            dim=p[3],
            coord=p[1].coord)
        
        p[0] = self._type_modify_decl(decl=p[1], modifier=arr)
        
    def p_direct_abstract_declarator_3(self, p):
        """ direct_abstract_declarator  : LBRACKET constant_expression_opt RBRACKET 
        """
        p[0] = c_ast.ArrayDecl(
            type=c_ast.TypeDecl(None, None, None),
            dim=p[2],
            coord=self._coord(p.lineno(1)))
        
    def p_direct_abstract_declarator_4(self, p):
        """ direct_abstract_declarator  : direct_abstract_declarator LPAREN parameter_type_list_opt RPAREN 
        """
        func = c_ast.FuncDecl(
            args=p[3],
            type=None,
            coord=p[1].coord)
        
        p[0] = self._type_modify_decl(decl=p[1], modifier=func)
        
    def p_direct_abstract_declarator_5(self, p):
        """ direct_abstract_declarator  : LPAREN parameter_type_list_opt RPAREN 
        """
        p[0] = c_ast.FuncDecl(
            args=p[2],
            type=c_ast.TypeDecl(None, None, None),
            coord=self._coord(p.lineno(1)))
        
    def p_compound_statement_1(self, p):
        """ compound_statement : LBRACE statement_list_opt RBRACE """
        p[0] = c_ast.Compound(
            decls=None, 
            stmts=p[2], 
            coord=self._coord(p.lineno(1)))
    
    def p_compound_statement_2(self, p):
        """ compound_statement : LBRACE declaration_list RBRACE """
        p[0] = c_ast.Compound(
            decls=p[2], 
            stmts=None, 
            coord=self._coord(p.lineno(1)))
    
    def p_compound_statement_3(self, p):
        """ compound_statement : LBRACE declaration_list statement_list RBRACE """
        #~ print '(((((('
        #~ print p[2]
        #~ print p[3]
        #~ print '(((((('
        p[0] = c_ast.Compound(
            decls=p[2], 
            stmts=p[3], 
            coord=self._coord(p.lineno(1)))
    
    # Note: this doesn't create an AST node, but a list of AST 
    # nodes that will be used as the statement list of a compound
    #
    def p_statement_list(self, p):
        """ statement_list  : statement 
                            | statement_list statement
        """
        if len(p) == 2: # single expr
            p[0] = [p[1]] if p[1] else [] 
        else:
            p[0] = p[1] + ([p[2]] if p[2] else [])
    
    def p_labeled_statement_1(self, p):
        """ labeled_statement : ID COLON statement """
        p[0] = c_ast.Label(p[1], p[3], self._coord(p.lineno(1)))
    
    def p_labeled_statement_2(self, p):
        """ labeled_statement : CASE constant_expression COLON statement """
        p[0] = c_ast.Case(p[2], p[4], self._coord(p.lineno(1)))
        
    def p_labeled_statement_3(self, p):
        """ labeled_statement : DEFAULT COLON statement """
        p[0] = c_ast.Default(p[3], self._coord(p.lineno(1)))
        
    def p_selection_statement_1(self, p):
        """ selection_statement : IF LPAREN expression RPAREN statement """
        p[0] = c_ast.If(p[3], p[5], None, self._coord(p.lineno(1)))
    
    def p_selection_statement_2(self, p):
        """ selection_statement : IF LPAREN expression RPAREN statement ELSE statement """
        p[0] = c_ast.If(p[3], p[5], p[7], self._coord(p.lineno(1)))
    
    def p_selection_statement_3(self, p):
        """ selection_statement : SWITCH LPAREN expression RPAREN statement """
        p[0] = c_ast.Switch(p[3], p[5], self._coord(p.lineno(1)))
    
    def p_iteration_statement_1(self, p):
        """ iteration_statement : WHILE LPAREN expression RPAREN statement """
        p[0] = c_ast.While(p[3], p[5], self._coord(p.lineno(1)))
    
    def p_iteration_statement_2(self, p):
        """ iteration_statement : DO statement WHILE LPAREN expression RPAREN SEMI """
        p[0] = c_ast.DoWhile(p[5], p[2], self._coord(p.lineno(1)))
    
    def p_iteration_statement_3(self, p):
        """ iteration_statement : FOR LPAREN expression_opt SEMI expression_opt SEMI expression_opt RPAREN statement """
        p[0] = c_ast.For(p[3], p[5], p[7], p[9], self._coord(p.lineno(1)))
    
    def p_jump_statement_1(self, p):
        """ jump_statement  : GOTO ID SEMI """
        p[0] = c_ast.Goto(p[2], self._coord(p.lineno(1)))
    
    def p_jump_statement_2(self, p):
        """ jump_statement  : BREAK SEMI """
        p[0] = c_ast.Break(self._coord(p.lineno(1)))
    
    def p_jump_statement_3(self, p):
        """ jump_statement  : CONTINUE SEMI """
        p[0] = c_ast.Continue(self._coord(p.lineno(1)))
        
    def p_jump_statement_4(self, p):
        """ jump_statement  : RETURN expression SEMI  
                            | RETURN SEMI 
        """
        p[0] = c_ast.Return(p[2] if len(p) == 4 else None, self._coord(p.lineno(1)))
    
    def p_expression_statement(self, p):
        """ expression_statement : expression_opt SEMI """
        p[0] = p[1]
    
    def p_expression(self, p):
        """ expression  : assignment_expression 
                        | expression COMMA assignment_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            if not isinstance(p[1], c_ast.ExprList):
                p[1] = c_ast.ExprList([p[1]], p[1].coord)
            
            p[1].exprs.append(p[3])
            p[0] = p[1] 

    def p_typedef_name(self, p):
        """ typedef_name : TYPEID """
        p[0] = p[1]

    def p_assignment_expression(self, p):
        """ assignment_expression   : conditional_expression
                                    | unary_expression assignment_operator assignment_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            p[0] = c_ast.Assignment(p[2], p[1], p[3], p[1].coord)

    # K&R2 defines these as many separate rules, to encode 
    # precedence and associativity. Why work hard ? I'll just use
    # the built in precedence/associativity specification feature
    # of PLY. (see precedence declaration above)
    #
    def p_assignment_operator(self, p):
        """ assignment_operator : EQUALS
                                | XOREQUAL   
                                | TIMESEQUAL  
                                | DIVEQUAL    
                                | MODEQUAL    
                                | PLUSEQUAL   
                                | MINUSEQUAL  
                                | LSHIFTEQUAL 
                                | RSHIFTEQUAL 
                                | ANDEQUAL    
                                | OREQUAL     
        """
        p[0] = p[1]
        
    def p_constant_expression(self, p):
        """ constant_expression : conditional_expression """
        p[0] = p[1]
    
    def p_conditional_expression(self, p):
        """ conditional_expression  : binary_expression
                                    | binary_expression CONDOP expression COLON conditional_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            p[0] = c_ast.TernaryOp(p[1], p[3], p[5], p[1].coord)
    
    def p_binary_expression(self, p):
        """ binary_expression   : cast_expression
                                | binary_expression TIMES binary_expression
                                | binary_expression DIVIDE binary_expression
                                | binary_expression MOD binary_expression
                                | binary_expression PLUS binary_expression
                                | binary_expression MINUS binary_expression
                                | binary_expression RSHIFT binary_expression
                                | binary_expression LSHIFT binary_expression
                                | binary_expression LT binary_expression
                                | binary_expression LE binary_expression
                                | binary_expression GE binary_expression
                                | binary_expression GT binary_expression
                                | binary_expression EQ binary_expression
                                | binary_expression NE binary_expression
                                | binary_expression AND binary_expression
                                | binary_expression OR binary_expression
                                | binary_expression XOR binary_expression
                                | binary_expression LAND binary_expression
                                | binary_expression LOR binary_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            p[0] = c_ast.BinaryOp(p[2], p[1], p[3], p[1].coord)
    
    def p_cast_expression_1(self, p):
        """ cast_expression : unary_expression """
        p[0] = p[1]
        
    def p_cast_expression_2(self, p):
        """ cast_expression : LPAREN type_name RPAREN cast_expression """
        p[0] = c_ast.Cast(p[2], p[4], p[2].coord)
    
    def p_unary_expression_1(self, p):
        """ unary_expression    : postfix_expression """
        p[0] = p[1]
    
    def p_unary_expression_2(self, p):
        """ unary_expression    : PLUSPLUS unary_expression 
                                | MINUSMINUS unary_expression
                                | unary_operator cast_expression
        """
        p[0] = c_ast.UnaryOp(p[1], p[2], p[2].coord)
    
    def p_unary_expression_3(self, p):
        """ unary_expression    : SIZEOF unary_expression 
                                | SIZEOF LPAREN type_name RPAREN
        """
        p[0] = c_ast.UnaryOp(
            p[1], 
            p[2] if len(p) == 3 else p[3], 
            self._coord(p.lineno(1)))
    
    def p_unary_operator(self, p):
        """ unary_operator  : AND
                            | TIMES
                            | PLUS
                            | MINUS
                            | NOT
                            | LNOT
        """
        p[0] = p[1]
                                
    def p_postfix_exptession_1(self, p):
        """ postfix_expression  : primary_expression """
        p[0] = p[1]
    
    def p_postfix_exptession_2(self, p):
        """ postfix_expression  : postfix_expression LBRACKET expression RBRACKET """
        p[0] = c_ast.ArrayRef(p[1], p[3], p[1].coord)
    
    def p_postfix_exptession_3(self, p):
        """ postfix_expression  : postfix_expression LPAREN argument_expression_list RPAREN
                                | postfix_expression LPAREN RPAREN
        """
        p[0] = c_ast.FuncCall(p[1], p[3] if len(p) == 5 else None, p[1].coord)
    
    def p_postfix_expression_4(self, p):
        """ postfix_expression  : postfix_expression PERIOD identifier
                                | postfix_expression ARROW identifier
        """
        p[0] = c_ast.StructRef(p[1], p[2], p[3], p[1].coord)

    def p_postfix_expression_5(self, p):
        """ postfix_expression  : postfix_expression PLUSPLUS 
                                | postfix_expression MINUSMINUS
        """
        p[0] = c_ast.UnaryOp('p' + p[2], p[1], p[1].coord)

    def p_primary_expression_1(self, p):
        """ primary_expression  : identifier """
        p[0] = p[1]
        
    def p_primary_expression_2(self, p):
        """ primary_expression  : constant """
        p[0] = p[1]
        
    def p_primary_expression_3(self, p):
        """ primary_expression  : unified_string_literal 
                                | unified_wstring_literal
        """
        p[0] = p[1]
            
    def p_primary_expression_4(self, p):
        """ primary_expression  : LPAREN expression RPAREN """
        p[0] = p[2]
        
    def p_argument_expression_list(self, p):
        """ argument_expression_list    : assignment_expression 
                                        | argument_expression_list COMMA assignment_expression
        """
        if len(p) == 2: # single expr
            p[0] = c_ast.ExprList([p[1]], p[1].coord)
        else:
            p[1].exprs.append(p[3])
            p[0] = p[1]
        
    def p_identifier(self, p):
        """ identifier  : ID """
        p[0] = c_ast.ID(p[1], self._coord(p.lineno(1)))
        
    def p_constant_1(self, p):
        """ constant    : INT_CONST_DEC
                        | INT_CONST_OCT
                        | INT_CONST_HEX
        """
        p[0] = c_ast.Constant(
            'int', p[1], self._coord(p.lineno(1)))
            
    def p_constant_2(self, p):
        """ constant    : FLOAT_CONST """
        p[0] = c_ast.Constant(
            'float', p[1], self._coord(p.lineno(1)))
    
    def p_constant_3(self, p):
        """ constant    : CHAR_CONST
                        | WCHAR_CONST
        """
        p[0] = c_ast.Constant(
            'char', p[1], self._coord(p.lineno(1)))
    
    # The "unified" string and wstring literal rules are for supporting 
    # concatenation of adjacent string literals.
    # I.e. "hello " "world" is seen by the C compiler as a single string literal
    # with the value "hello world"
    #
    def p_unified_string_literal(self, p):
        """ unified_string_literal  : STRING_LITERAL
                                    | unified_string_literal STRING_LITERAL  
        """
        if len(p) == 2: # single literal
            p[0] = c_ast.Constant(
                'string', p[1], self._coord(p.lineno(1)))
        else:
            p[1].value = p[1].value[:-1] + p[2][1:]
            p[0] = p[1]
            
    def p_unified_wstring_literal(self, p):
        """ unified_wstring_literal : WSTRING_LITERAL
                                    | unified_wstring_literal WSTRING_LITERAL  
        """
        if len(p) == 2: # single literal
            p[0] = c_ast.Constant(
                'string', p[1], self._coord(p.lineno(1)))
        else:
            p[1].value = p[1].value.rstrip[:-1] + p[2][1:]
            p[0] = p[1]
            
    def p_empty(self, p):
        'empty : '
        p[0] = None
        
    def p_error(self, p):
        if p:
            self._parse_error(
                'before: %s' % p.value, 
                self._coord(p.lineno))
        else:
            self._parse_error('At end of input', '')


if __name__ == "__main__":
    import pprint
    import time
    from portability import printme
    
    t1 = time.time()
    parser = CParser(lex_optimize=True, yacc_debug=True, yacc_optimize=False)
    printme(time.time() - t1)
    
    buf = ''' 
        int (*k)(int);
    '''
    
    # set debuglevel to 2 for debugging
    t = parser.parse(buf, 'x.c', debuglevel=0)
    t.show(showcoord=True)