aboutsummaryrefslogtreecommitdiff
path: root/client/cpp/encoder.cc
blob: c50e0355481f33a97a5eca759b1c235909ed5845 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "encoder.h"
#include "openssl_hash_impl.h"

#include <assert.h>
#include <stdio.h>
#include <stdarg.h>  // va_list, etc.
#include <vector>

namespace rappor {

void log(const char* fmt, ...) {
  va_list args;
  va_start(args, fmt);
  vfprintf(stderr, fmt, args);
  va_end(args);
  fprintf(stderr, "\n");
}

//
// Functions for debugging
//

static void PrintHex(const std::vector<uint8_t>& h) {
  for (size_t i = 0; i < h.size(); ++i) {
    fprintf(stderr, "%02x", h[i]);
  }
  fprintf(stderr, "\n");
}

// We use 1 *byte* of a HMAC-SHA256 value per BIT to generate the PRR.  SHA256
// has 32 bytes, so the max is 32 bits.
static const int kMaxBits = 32;

// Can't be more than the number of bytes in MD5.
static const int kMaxHashes = 16;

// Probabilities should be in the interval [0.0, 1.0].
static void CheckValidProbability(float prob, const char* var_name) {
  if (prob < 0.0f || prob > 1.0f) {
    log("%s should be between 0.0 and 1.0 inclusive (got %.2f)", var_name,
        prob);
    assert(false);
  }
}

// Used to 1) turn cohort into a string, and 2) Turn raw bits into a string.
// Return by value since it's small.
static std::string ToBigEndian(uint32_t u) {
  std::string result(4, '\0');

  // rely on truncation to char
  result[0] = u >> 24;
  result[1] = u >> 16;
  result[2] = u >> 8;
  result[3] = u;

  return result;
}

static const char* kHmacCohortPrefix = "\x00";
static const char* kHmacPrrPrefix = "\x01";


//
// Encoder
//

uint32_t Encoder::AssignCohort(const Deps& deps, int num_cohorts) {
  std::vector<uint8_t> sha256;
  if (!deps.hmac_func_(deps.client_secret_, kHmacCohortPrefix, &sha256)) {
    log("HMAC failed");
    assert(false);
  }

  // Either we are using SHA256 to have exactly 32 bytes,
  // or we're using HmacDrbg for any number of bytes.
  if ((sha256.size() == kMaxBits)
      || (deps.hmac_func_ == rappor::HmacDrbg)) {
    // Hash size ok.
  } else {
    log("Bad hash size.");
    assert(false);
  }

  // Interpret first 4 bytes of sha256 as a uint32_t.
  uint32_t c = *(reinterpret_cast<uint32_t*>(sha256.data()));
  // e.g. for 128 cohorts, 0x80 - 1 = 0x7f
  uint32_t cohort_mask = num_cohorts - 1;
  return c & cohort_mask;
}

Encoder::Encoder(const std::string& encoder_id, const Params& params,
                 const Deps& deps)
    : encoder_id_(encoder_id),
      params_(params),
      deps_(deps),
      cohort_(AssignCohort(deps, params.num_cohorts_)),
      cohort_str_(ToBigEndian(cohort_)) {

  if (params_.num_bits_ <= 0) {
    log("num_bits must be positive");
    assert(false);
  }
  if (params_.num_hashes_ <= 0) {
    log("num_hashes must be positive");
    assert(false);
  }
  if (params_.num_cohorts_ <= 0) {
    log("num_cohorts must be positive");
    assert(false);
  }

  // Check Maximum values.
  if (deps_.hmac_func_ == rappor::HmacDrbg) {
    // Using HmacDrbg
    if (params_.num_bits_ % 8 != 0) {
      log("num_bits (%d) must be divisible by 8 when using HmacDrbg.",
          params.num_bits_);
      assert(false);
    }
  } else {
    // Using SHA256
    if (params_.num_bits_ > kMaxBits) {
        log("num_bits (%d) can't be greater than %d", params_.num_bits_,
            kMaxBits);
        assert(false);
    }
  }

  if (params_.num_hashes_ > kMaxHashes) {
    log("num_hashes (%d) can't be greater than %d", params_.num_hashes_,
        kMaxHashes);
    assert(false);
  }
  int m = params_.num_cohorts_;
  if ((m & (m - 1)) != 0) {
    log("num_cohorts (%d) must be a power of 2 (and not 0)", m);
    assert(false);
  }
  // TODO: check max cohorts?

  CheckValidProbability(params_.prob_f_, "prob_f");
  CheckValidProbability(params_.prob_p_, "prob_p");
  CheckValidProbability(params_.prob_q_, "prob_q");
}

bool Encoder::MakeBloomFilter(const std::string& value, Bits* bloom_out) const {
  const int num_bits = params_.num_bits_;
  const int num_hashes = params_.num_hashes_;

  Bits bloom = 0;

  // 4 byte cohort string + true value
  std::string hash_input(cohort_str_ + value);

  // First do hashing.
  std::vector<uint8_t> hash_output;
  deps_.hash_func_(hash_input, &hash_output);

  // Error check
  if (hash_output.size() < static_cast<size_t>(num_hashes)) {
    log("Hash function didn't return enough bytes");
    return false;
  }

  // To determine which bit to set in the bloom filter, use a byte of the MD5.
  for (int i = 0; i < num_hashes; ++i) {
    int bit_to_set = hash_output[i] % num_bits;
    bloom |= 1 << bit_to_set;
  }

  *bloom_out = bloom;
  return true;
}

// Write a Bloom filter into a vector of bytes, used for num_bits > 32.
bool Encoder::MakeBloomFilter(const std::string& value,
                              std::vector<uint8_t>* bloom_out) const {
  const int num_bits = params_.num_bits_;
  const int num_hashes = params_.num_hashes_;

  bloom_out->resize(params_.num_bits_ / 8, 0);

  // Generate the hash.
  std::vector<uint8_t> hash_output;
  deps_.hash_func_(std::string(cohort_str_ + value), &hash_output);

  // Check that we have enough bytes of hash available.
  int exponent = 0;
  int bytes_needed = 0;
  while ((1 << exponent) < num_bits) {
    exponent++;
  }
  bytes_needed = ((exponent - 1) / 8) + 1;
  if (bytes_needed > 4) {
    log("Can only use 4 bytes of hash at a time, needed %d "
        "to address %d bits.", bytes_needed, num_bits);
    return false;
  }
  if (hash_output.size() < static_cast<size_t>(bytes_needed * num_hashes)) {
    log("Hash function returned %d bytes, but we needed "
        "%d bytes * %d hashes. Choose lower num_hashes or "
        "a different hash function.",
        hash_output.size(), bytes_needed, num_hashes);
    return false;
  }

  // To determine which bit to set in the Bloom filter, use 1 or more
  // bytes of the MD5.
  int hash_byte = 0;
  for (int i = 0; i < num_hashes; ++i) {
    int bit_to_set = 0;
    for (int j = 0; j < bytes_needed; ++j) {
      bit_to_set |= hash_output[hash_byte] << (j * 8);
      ++hash_byte;
    }
    bit_to_set %= num_bits;
    // Start at end of array to be consistent with the Bits implementation.
    int index = (bloom_out->size() - 1) - (bit_to_set / 8);
    (*bloom_out)[index] |= 1 << (bit_to_set % 8);
  }
  return true;
}

// Helper method for PRR
bool Encoder::GetPrrMasks(const Bits bits, Bits* uniform_out,
                          Bits* f_mask_out) const {
  // Create HMAC(secret, value), and use its bits to construct f_mask and
  // uniform bits.
  std::vector<uint8_t> sha256;

  std::string hmac_value = kHmacPrrPrefix + encoder_id_ + ToBigEndian(bits);

  deps_.hmac_func_(deps_.client_secret_, hmac_value, &sha256);
  if (sha256.size() != kMaxBits) {  // sanity check
    return false;
  }

  // We should have already checked this.
  if (params_.num_bits_ > kMaxBits) {
    log("num_bits exceeds maximum.");
    assert(false);
  }

  uint8_t threshold128 = static_cast<uint8_t>(params_.prob_f_ * 128);

  Bits uniform = 0;
  Bits f_mask = 0;

  for (int i = 0; i < params_.num_bits_; ++i) {
    uint8_t byte = sha256[i];

    uint8_t u_bit = byte & 0x01;  // 1 bit of entropy
    uniform |= (u_bit << i);  // maybe set bit in mask

    uint8_t rand128 = byte >> 1;  // 7 bits of entropy
    uint8_t noise_bit = (rand128 < threshold128);
    f_mask |= (noise_bit << i);  // maybe set bit in mask
  }

  *uniform_out = uniform;
  *f_mask_out = f_mask;
  return true;
}

bool Encoder::_EncodeBitsInternal(const Bits bits, Bits* prr_out,
                                  Bits* irr_out) const {
  // Compute Permanent Randomized Response (PRR).
  Bits uniform;
  Bits f_mask;
  if (!GetPrrMasks(bits, &uniform, &f_mask)) {
    log("GetPrrMasks failed");
    return false;
  }

  Bits prr = (bits & ~f_mask) | (uniform & f_mask);
  *prr_out = prr;

  // Compute Instantaneous Randomized Response (IRR).

  // NOTE: These can fail if say a read() from /dev/urandom fails.
  Bits p_bits;
  Bits q_bits;
  if (!deps_.irr_rand_.GetMask(params_.prob_p_, params_.num_bits_, &p_bits)) {
    log("PMask failed");
    return false;
  }
  if (!deps_.irr_rand_.GetMask(params_.prob_q_, params_.num_bits_, &q_bits)) {
    log("QMask failed");
    return false;
  };

  Bits irr = (p_bits & ~prr) | (q_bits & prr);
  *irr_out = irr;

  return true;
}

bool Encoder::_EncodeStringInternal(const std::string& value, Bits* bloom_out,
    Bits* prr_out, Bits* irr_out) const {
  if (!MakeBloomFilter(value, bloom_out)) {
    log("Bloom filter calculation failed");
    return false;
  }
  return _EncodeBitsInternal(*bloom_out, prr_out, irr_out);
}

bool Encoder::EncodeBits(const Bits bits, Bits* irr_out) const {
  Bits unused_prr;
  return _EncodeBitsInternal(bits, &unused_prr, irr_out);
}

bool Encoder::EncodeString(const std::string& value, Bits* irr_out) const {
  Bits unused_bloom;
  Bits unused_prr;
  return _EncodeStringInternal(value, &unused_bloom, &unused_prr, irr_out);
}

static uint8_t shifted(const Bits& bits, const int& index) {
  // For an array of bytes, select the appopriate byte from a 4-byte
  // integer value. Bytes are enumerated in big-endian order, i.e.
  // index = 0 is the MSB, index = 3 is the LSB.
  int shift = 8 * (3 - (index % 4)); // Byte 0 shifts by 24 bits, 1 by 16, etc.
  return (uint8_t)((bits >> shift) & 0xFF);  // Return the correct byte.
}

bool Encoder::EncodeString(const std::string& value,
                           std::vector<uint8_t>* irr_out) const {
  std::vector<uint8_t> bloom_out;
  std::vector<uint8_t> hmac_out;
  std::vector<uint8_t> uniform;
  std::vector<uint8_t> f_mask;
  const int num_bits = params_.num_bits_;

  uniform.resize(num_bits / 8, 0);
  f_mask.resize(num_bits / 8, 0);
  irr_out->resize(num_bits / 8, 0);

  // Set bloom_out.
  if (!MakeBloomFilter(value, &bloom_out)) {
    log("Bloom filter calculation failed");
    return false;
  }

  // Set hmac_out.
  hmac_out.resize(num_bits);  // Signal to HmacDrbg about desired output size.
  // Call HmacDrbg
  std::string hmac_value =  kHmacPrrPrefix + encoder_id_;
  for (int i = 0; i < bloom_out.size(); ++i) {
    hmac_value.append(reinterpret_cast<char *>(&bloom_out[i]), 1);
  }
  deps_.hmac_func_(deps_.client_secret_, hmac_value, &hmac_out);
  if (hmac_out.size() != num_bits) {
    log("Needed %d bytes from Hmac function, received %d bytes.",
        num_bits, hmac_out.size());
    return false;
  }

  // We'll be using 7 bits of each byte of the MAC as our random
  // number for the f_mask.
  uint8_t threshold128 = static_cast<uint8_t>(params_.prob_f_ * 128);

  // Construct uniform and f_mask bitwise.
  for (int i = 0; i < num_bits; i++) {
    uint8_t byte = hmac_out[i];
    uint8_t u_bit = byte & 0x01;  // 1 bit of entropy.
    int vector_index = (num_bits - 1 - i) / 8;
    uint8_t rand128 = byte >> 1;  // 7 bits of entropy.
    uint8_t noise_bit = (rand128 < threshold128);
    uniform[vector_index] |= (u_bit << (i % 8));
    f_mask[vector_index] |= (noise_bit << (i % 8));
  }

  for (int i = 0; i < bloom_out.size(); i++) {
    Bits p_bits;
    Bits q_bits;
    uint8_t prr;
    prr = (bloom_out[i] & ~f_mask[i]) | (uniform[i] & f_mask[i]);
    // GetMask operates on Uint32, so we generate a new p_bits every 4
    // bytes, and use each of its bytes once.
    if (i % 4 == 0) {
      // Need new p_bits, q_bits values to work with.
      if (!deps_.irr_rand_.GetMask(params_.prob_p_, 32, &p_bits)) {
        log("PMask failed");
        return false;
      }
      if (!deps_.irr_rand_.GetMask(params_.prob_q_, 32, &q_bits)) {
        log("QMask failed");
        return false;
      }
    }
    (*irr_out)[i] = (shifted(p_bits, i) & ~prr)
        | (shifted(q_bits, i) & prr);
  }
}

void Encoder::set_cohort(uint32_t cohort) {
  cohort_ = cohort;
  cohort_str_ = ToBigEndian(cohort_);
}

}  // namespace rappor