aboutsummaryrefslogtreecommitdiff
path: root/re2/bitstate.cc
blob: 5740daa486679549cfb33ef569d35c6225c72cfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright 2008 The RE2 Authors.  All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Tested by search_test.cc, exhaustive_test.cc, tester.cc

// Prog::SearchBitState is a regular expression search with submatch
// tracking for small regular expressions and texts.  Like
// testing/backtrack.cc, it allocates a bit vector with (length of
// text) * (length of prog) bits, to make sure it never explores the
// same (character position, instruction) state multiple times.  This
// limits the search to run in time linear in the length of the text.
//
// Unlike testing/backtrack.cc, SearchBitState is not recursive
// on the text.
//
// SearchBitState is a fast replacement for the NFA code on small
// regexps and texts when SearchOnePass cannot be used.

#include "re2/prog.h"
#include "re2/regexp.h"

namespace re2 {

struct Job {
  int id;
  int arg;
  const char* p;
};

class BitState {
 public:
  explicit BitState(Prog* prog);
  ~BitState();

  // The usual Search prototype.
  // Can only call Search once per BitState.
  bool Search(const StringPiece& text, const StringPiece& context,
              bool anchored, bool longest,
              StringPiece* submatch, int nsubmatch);

 private:
  inline bool ShouldVisit(int id, const char* p);
  void Push(int id, const char* p, int arg);
  bool GrowStack();
  bool TrySearch(int id, const char* p);

  // Search parameters
  Prog* prog_;              // program being run
  StringPiece text_;        // text being searched
  StringPiece context_;     // greater context of text being searched
  bool anchored_;           // whether search is anchored at text.begin()
  bool longest_;            // whether search wants leftmost-longest match
  bool endmatch_;           // whether match must end at text.end()
  StringPiece *submatch_;   // submatches to fill in
  int nsubmatch_;           //   # of submatches to fill in

  // Search state
  const char** cap_;        // capture registers
  int ncap_;

  static const int VisitedBits = 32;
  uint32 *visited_;         // bitmap: (Inst*, char*) pairs already backtracked
  int nvisited_;            //   # of words in bitmap

  Job *job_;                // stack of text positions to explore
  int njob_;
  int maxjob_;
};

BitState::BitState(Prog* prog)
  : prog_(prog),
    anchored_(false),
    longest_(false),
    endmatch_(false),
    submatch_(NULL),
    nsubmatch_(0),
    cap_(NULL),
    ncap_(0),
    visited_(NULL),
    nvisited_(0),
    job_(NULL),
    njob_(0),
    maxjob_(0) {
}

BitState::~BitState() {
  delete[] visited_;
  delete[] job_;
  delete[] cap_;
}

// Should the search visit the pair ip, p?
// If so, remember that it was visited so that the next time,
// we don't repeat the visit.
bool BitState::ShouldVisit(int id, const char* p) {
  size_t n = id * (text_.size() + 1) + (p - text_.begin());
  if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1))))
    return false;
  visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1));
  return true;
}

// Grow the stack.
bool BitState::GrowStack() {
  // VLOG(0) << "Reallocate.";
  maxjob_ *= 2;
  Job* newjob = new Job[maxjob_];
  memmove(newjob, job_, njob_*sizeof job_[0]);
  delete[] job_;
  job_ = newjob;
  if (njob_ >= maxjob_) {
    LOG(DFATAL) << "Job stack overflow.";
    return false;
  }
  return true;
}

// Push the triple (id, p, arg) onto the stack, growing it if necessary.
void BitState::Push(int id, const char* p, int arg) {
  if (njob_ >= maxjob_) {
    if (!GrowStack())
      return;
  }
  int op = prog_->inst(id)->opcode();
  if (op == kInstFail)
    return;

  // Only check ShouldVisit when arg == 0.
  // When arg > 0, we are continuing a previous visit.
  if (arg == 0 && !ShouldVisit(id, p))
    return;

  Job* j = &job_[njob_++];
  j->id = id;
  j->p = p;
  j->arg = arg;
}

// Try a search from instruction id0 in state p0.
// Return whether it succeeded.
bool BitState::TrySearch(int id0, const char* p0) {
  bool matched = false;
  const char* end = text_.end();
  njob_ = 0;
  Push(id0, p0, 0);
  while (njob_ > 0) {
    // Pop job off stack.
    --njob_;
    int id = job_[njob_].id;
    const char* p = job_[njob_].p;
    int arg = job_[njob_].arg;

    // Optimization: rather than push and pop,
    // code that is going to Push and continue
    // the loop simply updates ip, p, and arg
    // and jumps to CheckAndLoop.  We have to
    // do the ShouldVisit check that Push
    // would have, but we avoid the stack
    // manipulation.
    if (0) {
    CheckAndLoop:
      if (!ShouldVisit(id, p))
        continue;
    }

    // Visit ip, p.
    // VLOG(0) << "Job: " << ip->id() << " "
    //         << (p - text_.begin()) << " " << arg;
    Prog::Inst* ip = prog_->inst(id);
    switch (ip->opcode()) {
      case kInstFail:
        return false;

      default:
        LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg;
        return false;

      case kInstAlt:
        // Cannot just
        //   Push(ip->out1(), p, 0);
        //   Push(ip->out(), p, 0);
        // If, during the processing of ip->out(), we encounter
        // ip->out1() via another path, we want to process it then.
        // Pushing it here will inhibit that.  Instead, re-push
        // ip with arg==1 as a reminder to push ip->out1() later.
        switch (arg) {
          case 0:
            Push(id, p, 1);  // come back when we're done
            id = ip->out();
            goto CheckAndLoop;

          case 1:
            // Finished ip->out(); try ip->out1().
            arg = 0;
            id = ip->out1();
            goto CheckAndLoop;
        }
        LOG(DFATAL) << "Bad arg in kInstCapture: " << arg;
        continue;

      case kInstAltMatch:
        // One opcode is byte range; the other leads to match.
        if (ip->greedy(prog_)) {
          // out1 is the match
          Push(ip->out1(), p, 0);
          id = ip->out1();
          p = end;
          goto CheckAndLoop;
        }
        // out is the match - non-greedy
        Push(ip->out(), end, 0);
        id = ip->out();
        goto CheckAndLoop;

      case kInstByteRange: {
        int c = -1;
        if (p < end)
          c = *p & 0xFF;
        if (ip->Matches(c)) {
          id = ip->out();
          p++;
          goto CheckAndLoop;
        }
        continue;
      }

      case kInstCapture:
        switch (arg) {
          case 0:
            if (0 <= ip->cap() && ip->cap() < ncap_) {
              // Capture p to register, but save old value.
              Push(id, cap_[ip->cap()], 1);  // come back when we're done
              cap_[ip->cap()] = p;
            }
            // Continue on.
            id = ip->out();
            goto CheckAndLoop;
          case 1:
            // Finished ip->out(); restore the old value.
            cap_[ip->cap()] = p;
            continue;
        }
        LOG(DFATAL) << "Bad arg in kInstCapture: " << arg;
        continue;

      case kInstEmptyWidth:
        if (ip->empty() & ~Prog::EmptyFlags(context_, p))
          continue;
        id = ip->out();
        goto CheckAndLoop;

      case kInstNop:
        id = ip->out();
        goto CheckAndLoop;

      case kInstMatch: {
        if (endmatch_ && p != text_.end())
          continue;

        // VLOG(0) << "Found match.";
        // We found a match.  If the caller doesn't care
        // where the match is, no point going further.
        if (nsubmatch_ == 0)
          return true;

        // Record best match so far.
        // Only need to check end point, because this entire
        // call is only considering one start position.
        matched = true;
        cap_[1] = p;
        if (submatch_[0].data() == NULL ||
            (longest_ && p > submatch_[0].end())) {
          for (int i = 0; i < nsubmatch_; i++)
            submatch_[i].set(cap_[2*i],
                             static_cast<int>(cap_[2*i+1] - cap_[2*i]));
        }

        // If going for first match, we're done.
        if (!longest_)
          return true;

        // If we used the entire text, no longer match is possible.
        if (p == text_.end())
          return true;

        // Otherwise, continue on in hope of a longer match.
        continue;
      }
    }
  }
  return matched;
}

// Search text (within context) for prog_.
bool BitState::Search(const StringPiece& text, const StringPiece& context,
                      bool anchored, bool longest,
                      StringPiece* submatch, int nsubmatch) {
  // Search parameters.
  text_ = text;
  context_ = context;
  if (context_.begin() == NULL)
    context_ = text;
  if (prog_->anchor_start() && context_.begin() != text.begin())
    return false;
  if (prog_->anchor_end() && context_.end() != text.end())
    return false;
  anchored_ = anchored || prog_->anchor_start();
  longest_ = longest || prog_->anchor_end();
  endmatch_ = prog_->anchor_end();
  submatch_ = submatch;
  nsubmatch_ = nsubmatch;
  for (int i = 0; i < nsubmatch_; i++)
    submatch_[i] = NULL;

  // Allocate scratch space.
  nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits;
  visited_ = new uint32[nvisited_];
  memset(visited_, 0, nvisited_*sizeof visited_[0]);
  // VLOG(0) << "nvisited_ = " << nvisited_;

  ncap_ = 2*nsubmatch;
  if (ncap_ < 2)
    ncap_ = 2;
  cap_ = new const char*[ncap_];
  memset(cap_, 0, ncap_*sizeof cap_[0]);

  maxjob_ = 256;
  job_ = new Job[maxjob_];

  // Anchored search must start at text.begin().
  if (anchored_) {
    cap_[0] = text.begin();
    return TrySearch(prog_->start(), text.begin());
  }

  // Unanchored search, starting from each possible text position.
  // Notice that we have to try the empty string at the end of
  // the text, so the loop condition is p <= text.end(), not p < text.end().
  // This looks like it's quadratic in the size of the text,
  // but we are not clearing visited_ between calls to TrySearch,
  // so no work is duplicated and it ends up still being linear.
  for (const char* p = text.begin(); p <= text.end(); p++) {
    cap_[0] = p;
    if (TrySearch(prog_->start(), p))  // Match must be leftmost; done.
      return true;
  }
  return false;
}

// Bit-state search.
bool Prog::SearchBitState(const StringPiece& text,
                          const StringPiece& context,
                          Anchor anchor,
                          MatchKind kind,
                          StringPiece* match,
                          int nmatch) {
  // If full match, we ask for an anchored longest match
  // and then check that match[0] == text.
  // So make sure match[0] exists.
  StringPiece sp0;
  if (kind == kFullMatch) {
    anchor = kAnchored;
    if (nmatch < 1) {
      match = &sp0;
      nmatch = 1;
    }
  }

  // Run the search.
  BitState b(this);
  bool anchored = anchor == kAnchored;
  bool longest = kind != kFirstMatch;
  if (!b.Search(text, context, anchored, longest, match, nmatch))
    return false;
  if (kind == kFullMatch && match[0].end() != text.end())
    return false;
  return true;
}

}  // namespace re2