aboutsummaryrefslogtreecommitdiff
path: root/re2/nfa.cc
blob: 66ab882439cb584ea87079aba1a4f167b88dd894 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
// Copyright 2006-2007 The RE2 Authors.  All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Tested by search_test.cc.
//
// Prog::SearchNFA, an NFA search.
// This is an actual NFA like the theorists talk about,
// not the pseudo-NFA found in backtracking regexp implementations.
//
// IMPLEMENTATION
//
// This algorithm is a variant of one that appeared in Rob Pike's sam editor,
// which is a variant of the one described in Thompson's 1968 CACM paper.
// See http://swtch.com/~rsc/regexp/ for various history.  The main feature
// over the DFA implementation is that it tracks submatch boundaries.
//
// When the choice of submatch boundaries is ambiguous, this particular
// implementation makes the same choices that traditional backtracking
// implementations (in particular, Perl and PCRE) do.
// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential
// time in the length of the input.
//
// Like Thompson's original machine and like the DFA implementation, this
// implementation notices a match only once it is one byte past it.

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <string>
#include <utility>
#include <vector>

#include "re2/prog.h"
#include "re2/regexp.h"
#include "util/logging.h"
#include "util/pod_array.h"
#include "util/sparse_array.h"
#include "util/sparse_set.h"
#include "util/strutil.h"

namespace re2 {

static const bool ExtraDebug = false;

class NFA {
 public:
  NFA(Prog* prog);
  ~NFA();

  // Searches for a matching string.
  //   * If anchored is true, only considers matches starting at offset.
  //     Otherwise finds lefmost match at or after offset.
  //   * If longest is true, returns the longest match starting
  //     at the chosen start point.  Otherwise returns the so-called
  //     left-biased match, the one traditional backtracking engines
  //     (like Perl and PCRE) find.
  // Records submatch boundaries in submatch[1..nsubmatch-1].
  // Submatch[0] is the entire match.  When there is a choice in
  // which text matches each subexpression, the submatch boundaries
  // are chosen to match what a backtracking implementation would choose.
  bool Search(const StringPiece& text, const StringPiece& context,
              bool anchored, bool longest,
              StringPiece* submatch, int nsubmatch);

 private:
  struct Thread {
    union {
      int ref;
      Thread* next;  // when on free list
    };
    const char** capture;
  };

  // State for explicit stack in AddToThreadq.
  struct AddState {
    int id;     // Inst to process
    Thread* t;  // if not null, set t0 = t before processing id

    AddState()
        : id(0), t(NULL) {}
    explicit AddState(int id)
        : id(id), t(NULL) {}
    AddState(int id, Thread* t)
        : id(id), t(t) {}
  };

  // Threadq is a list of threads.  The list is sorted by the order
  // in which Perl would explore that particular state -- the earlier
  // choices appear earlier in the list.
  typedef SparseArray<Thread*> Threadq;

  inline Thread* AllocThread();
  inline Thread* Incref(Thread* t);
  inline void Decref(Thread* t);

  // Follows all empty arrows from id0 and enqueues all the states reached.
  // Enqueues only the ByteRange instructions that match byte c.
  // context is used (with p) for evaluating empty-width specials.
  // p is the current input position, and t0 is the current thread.
  void AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
                    const char* p, Thread* t0);

  // Run runq on byte c, appending new states to nextq.
  // Updates matched_ and match_ as new, better matches are found.
  // context is used (with p) for evaluating empty-width specials.
  // p is the position of byte c in the input string for AddToThreadq;
  // p-1 will be used when processing Match instructions.
  // Frees all the threads on runq.
  // If there is a shortcut to the end, returns that shortcut.
  int Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
           const char* p);

  // Returns text version of capture information, for debugging.
  string FormatCapture(const char** capture);

  inline void CopyCapture(const char** dst, const char** src);

  Prog* prog_;                // underlying program
  int start_;                 // start instruction in program
  int ncapture_;              // number of submatches to track
  bool longest_;              // whether searching for longest match
  bool endmatch_;             // whether match must end at text.end()
  const char* btext_;         // beginning of text being matched (for FormatSubmatch)
  const char* etext_;         // end of text being matched (for endmatch_)
  Threadq q0_, q1_;           // pre-allocated for Search.
  PODArray<AddState> stack_;  // pre-allocated for AddToThreadq
  Thread* free_threads_;      // free list
  const char** match_;        // best match so far
  bool matched_;              // any match so far?

  NFA(const NFA&) = delete;
  NFA& operator=(const NFA&) = delete;
};

NFA::NFA(Prog* prog) {
  prog_ = prog;
  start_ = prog_->start();
  ncapture_ = 0;
  longest_ = false;
  endmatch_ = false;
  btext_ = NULL;
  etext_ = NULL;
  q0_.resize(prog_->size());
  q1_.resize(prog_->size());
  // See NFA::AddToThreadq() for why this is so.
  int nstack = 2*prog_->inst_count(kInstCapture) +
               prog_->inst_count(kInstEmptyWidth) +
               prog_->inst_count(kInstNop) + 1;  // + 1 for start inst
  stack_ = PODArray<AddState>(nstack);
  free_threads_ = NULL;
  match_ = NULL;
  matched_ = false;
}

NFA::~NFA() {
  delete[] match_;
  Thread* next;
  for (Thread* t = free_threads_; t; t = next) {
    next = t->next;
    delete[] t->capture;
    delete t;
  }
}

NFA::Thread* NFA::AllocThread() {
  Thread* t = free_threads_;
  if (t == NULL) {
    t = new Thread;
    t->ref = 1;
    t->capture = new const char*[ncapture_];
    return t;
  }
  free_threads_ = t->next;
  t->ref = 1;
  return t;
}

NFA::Thread* NFA::Incref(Thread* t) {
  DCHECK(t != NULL);
  t->ref++;
  return t;
}

void NFA::Decref(Thread* t) {
  if (t == NULL)
    return;
  t->ref--;
  if (t->ref > 0)
    return;
  DCHECK_EQ(t->ref, 0);
  t->next = free_threads_;
  free_threads_ = t;
}

void NFA::CopyCapture(const char** dst, const char** src) {
  for (int i = 0; i < ncapture_; i+=2) {
    dst[i] = src[i];
    dst[i+1] = src[i+1];
  }
}

// Follows all empty arrows from id0 and enqueues all the states reached.
// Enqueues only the ByteRange instructions that match byte c.
// context is used (with p) for evaluating empty-width specials.
// p is the current input position, and t0 is the current thread.
void NFA::AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
                       const char* p, Thread* t0) {
  if (id0 == 0)
    return;

  // Use stack_ to hold our stack of instructions yet to process.
  // It was preallocated as follows:
  //   two entries per Capture;
  //   one entry per EmptyWidth; and
  //   one entry per Nop.
  // This reflects the maximum number of stack pushes that each can
  // perform. (Each instruction can be processed at most once.)
  AddState* stk = stack_.data();
  int nstk = 0;

  stk[nstk++] = AddState(id0);
  while (nstk > 0) {
    DCHECK_LE(nstk, stack_.size());
    AddState a = stk[--nstk];

  Loop:
    if (a.t != NULL) {
      // t0 was a thread that we allocated and copied in order to
      // record the capture, so we must now decref it.
      Decref(t0);
      t0 = a.t;
    }

    int id = a.id;
    if (id == 0)
      continue;
    if (q->has_index(id)) {
      if (ExtraDebug)
        fprintf(stderr, "  [%d%s]\n", id, FormatCapture(t0->capture).c_str());
      continue;
    }

    // Create entry in q no matter what.  We might fill it in below,
    // or we might not.  Even if not, it is necessary to have it,
    // so that we don't revisit id0 during the recursion.
    q->set_new(id, NULL);

    Thread** tp = &q->find(id)->second;
    int j;
    Thread* t;
    Prog::Inst* ip = prog_->inst(id);
    switch (ip->opcode()) {
    default:
      LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq";
      break;

    case kInstFail:
      break;

    case kInstAltMatch:
      // Save state; will pick up at next byte.
      t = Incref(t0);
      *tp = t;

      DCHECK(!ip->last());
      a = AddState(id+1);
      goto Loop;

    case kInstNop:
      if (!ip->last())
        stk[nstk++] = AddState(id+1);

      // Continue on.
      a = AddState(ip->out());
      goto Loop;

    case kInstCapture:
      if (!ip->last())
        stk[nstk++] = AddState(id+1);

      if ((j=ip->cap()) < ncapture_) {
        // Push a dummy whose only job is to restore t0
        // once we finish exploring this possibility.
        stk[nstk++] = AddState(0, t0);

        // Record capture.
        t = AllocThread();
        CopyCapture(t->capture, t0->capture);
        t->capture[j] = p;
        t0 = t;
      }
      a = AddState(ip->out());
      goto Loop;

    case kInstByteRange:
      if (!ip->Matches(c))
        goto Next;
      FALLTHROUGH_INTENDED;

    case kInstMatch:
      // Save state; will pick up at next byte.
      t = Incref(t0);
      *tp = t;
      if (ExtraDebug)
        fprintf(stderr, " + %d%s\n", id, FormatCapture(t0->capture).c_str());

    Next:
      if (ip->last())
        break;
      a = AddState(id+1);
      goto Loop;

    case kInstEmptyWidth:
      if (!ip->last())
        stk[nstk++] = AddState(id+1);

      // Continue on if we have all the right flag bits.
      if (ip->empty() & ~Prog::EmptyFlags(context, p))
        break;
      a = AddState(ip->out());
      goto Loop;
    }
  }
}

// Run runq on byte c, appending new states to nextq.
// Updates matched_ and match_ as new, better matches are found.
// context is used (with p) for evaluating empty-width specials.
// p is the position of byte c in the input string for AddToThreadq;
// p-1 will be used when processing Match instructions.
// Frees all the threads on runq.
// If there is a shortcut to the end, returns that shortcut.
int NFA::Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
              const char* p) {
  nextq->clear();

  for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
    Thread* t = i->second;
    if (t == NULL)
      continue;

    if (longest_) {
      // Can skip any threads started after our current best match.
      if (matched_ && match_[0] < t->capture[0]) {
        Decref(t);
        continue;
      }
    }

    int id = i->index();
    Prog::Inst* ip = prog_->inst(id);

    switch (ip->opcode()) {
      default:
        // Should only see the values handled below.
        LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step";
        break;

      case kInstByteRange:
        AddToThreadq(nextq, ip->out(), c, context, p, t);
        break;

      case kInstAltMatch:
        if (i != runq->begin())
          break;
        // The match is ours if we want it.
        if (ip->greedy(prog_) || longest_) {
          CopyCapture(match_, t->capture);
          matched_ = true;

          Decref(t);
          for (++i; i != runq->end(); ++i)
            Decref(i->second);
          runq->clear();
          if (ip->greedy(prog_))
            return ip->out1();
          return ip->out();
        }
        break;

      case kInstMatch: {
        // Avoid invoking undefined behavior when p happens
        // to be null - and p-1 would be meaningless anyway.
        if (p == NULL)
          break;

        if (endmatch_ && p-1 != etext_)
          break;

        if (longest_) {
          // Leftmost-longest mode: save this match only if
          // it is either farther to the left or at the same
          // point but longer than an existing match.
          if (!matched_ || t->capture[0] < match_[0] ||
              (t->capture[0] == match_[0] && p-1 > match_[1])) {
            CopyCapture(match_, t->capture);
            match_[1] = p-1;
            matched_ = true;
          }
        } else {
          // Leftmost-biased mode: this match is by definition
          // better than what we've already found (see next line).
          CopyCapture(match_, t->capture);
          match_[1] = p-1;
          matched_ = true;

          // Cut off the threads that can only find matches
          // worse than the one we just found: don't run the
          // rest of the current Threadq.
          Decref(t);
          for (++i; i != runq->end(); ++i)
            Decref(i->second);
          runq->clear();
          return 0;
        }
        break;
      }
    }
    Decref(t);
  }
  runq->clear();
  return 0;
}

string NFA::FormatCapture(const char** capture) {
  string s;

  for (int i = 0; i < ncapture_; i+=2) {
    if (capture[i] == NULL)
      StringAppendF(&s, "(?,?)");
    else if (capture[i+1] == NULL)
      StringAppendF(&s, "(%d,?)", (int)(capture[i] - btext_));
    else
      StringAppendF(&s, "(%d,%d)",
                    (int)(capture[i] - btext_),
                    (int)(capture[i+1] - btext_));
  }
  return s;
}

bool NFA::Search(const StringPiece& text, const StringPiece& const_context,
            bool anchored, bool longest,
            StringPiece* submatch, int nsubmatch) {
  if (start_ == 0)
    return false;

  StringPiece context = const_context;
  if (context.begin() == NULL)
    context = text;

  // Sanity check: make sure that text lies within context.
  if (text.begin() < context.begin() || text.end() > context.end()) {
    LOG(DFATAL) << "context does not contain text";
    return false;
  }

  if (prog_->anchor_start() && context.begin() != text.begin())
    return false;
  if (prog_->anchor_end() && context.end() != text.end())
    return false;
  anchored |= prog_->anchor_start();
  if (prog_->anchor_end()) {
    longest = true;
    endmatch_ = true;
    etext_ = text.end();
  }

  if (nsubmatch < 0) {
    LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch;
    return false;
  }

  // Save search parameters.
  ncapture_ = 2*nsubmatch;
  longest_ = longest;

  if (nsubmatch == 0) {
    // We need to maintain match[0], both to distinguish the
    // longest match (if longest is true) and also to tell
    // whether we've seen any matches at all.
    ncapture_ = 2;
  }

  match_ = new const char*[ncapture_];
  matched_ = false;

  // For debugging prints.
  btext_ = context.begin();

  if (ExtraDebug)
    fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n",
            string(text).c_str(), string(context).c_str(), anchored, longest);

  // Set up search.
  Threadq* runq = &q0_;
  Threadq* nextq = &q1_;
  runq->clear();
  nextq->clear();
  memset(&match_[0], 0, ncapture_*sizeof match_[0]);

  // Loop over the text, stepping the machine.
  for (const char* p = text.begin();; p++) {
    if (ExtraDebug) {
      int c = 0;
      if (p == context.begin())
        c = '^';
      else if (p > text.end())
        c = '$';
      else if (p < text.end())
        c = p[0] & 0xFF;

      fprintf(stderr, "%c:", c);
      for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
        Thread* t = i->second;
        if (t == NULL)
          continue;
        fprintf(stderr, " %d%s", i->index(), FormatCapture(t->capture).c_str());
      }
      fprintf(stderr, "\n");
    }

    // This is a no-op the first time around the loop because runq is empty.
    int id = Step(runq, nextq, p < text.end() ? p[0] & 0xFF : -1, context, p);
    DCHECK_EQ(runq->size(), 0);
    using std::swap;
    swap(nextq, runq);
    nextq->clear();
    if (id != 0) {
      // We're done: full match ahead.
      p = text.end();
      for (;;) {
        Prog::Inst* ip = prog_->inst(id);
        switch (ip->opcode()) {
          default:
            LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode();
            break;

          case kInstCapture:
            if (ip->cap() < ncapture_)
              match_[ip->cap()] = p;
            id = ip->out();
            continue;

          case kInstNop:
            id = ip->out();
            continue;

          case kInstMatch:
            match_[1] = p;
            matched_ = true;
            break;
        }
        break;
      }
      break;
    }

    if (p > text.end())
      break;

    // Start a new thread if there have not been any matches.
    // (No point in starting a new thread if there have been
    // matches, since it would be to the right of the match
    // we already found.)
    if (!matched_ && (!anchored || p == text.begin())) {
      // If there's a required first byte for an unanchored search
      // and we're not in the middle of any possible matches,
      // use memchr to search for the byte quickly.
      int fb = prog_->first_byte();
      if (!anchored && runq->size() == 0 &&
          fb >= 0 && p < text.end() && (p[0] & 0xFF) != fb) {
        p = reinterpret_cast<const char*>(memchr(p, fb, text.end() - p));
        if (p == NULL) {
          p = text.end();
        }
      }

      Thread* t = AllocThread();
      CopyCapture(t->capture, match_);
      t->capture[0] = p;
      AddToThreadq(runq, start_, p < text.end() ? p[0] & 0xFF : -1, context, p,
                   t);
      Decref(t);
    }

    // If all the threads have died, stop early.
    if (runq->size() == 0) {
      if (ExtraDebug)
        fprintf(stderr, "dead\n");
      break;
    }
  }

  for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i)
    Decref(i->second);

  if (matched_) {
    for (int i = 0; i < nsubmatch; i++)
      submatch[i] =
          StringPiece(match_[2 * i],
                      static_cast<size_t>(match_[2 * i + 1] - match_[2 * i]));
    if (ExtraDebug)
      fprintf(stderr, "match (%td,%td)\n",
              match_[0] - btext_, match_[1] - btext_);
    return true;
  }
  return false;
}

// Computes whether all successful matches have a common first byte,
// and if so, returns that byte.  If not, returns -1.
int Prog::ComputeFirstByte() {
  int b = -1;
  SparseSet q(size());
  q.insert(start());
  for (SparseSet::iterator it = q.begin(); it != q.end(); ++it) {
    int id = *it;
    Prog::Inst* ip = inst(id);
    switch (ip->opcode()) {
      default:
        LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte";
        break;

      case kInstMatch:
        // The empty string matches: no first byte.
        return -1;

      case kInstByteRange:
        if (!ip->last())
          q.insert(id+1);

        // Must match only a single byte
        if (ip->lo() != ip->hi())
          return -1;
        if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z')
          return -1;
        // If we haven't seen any bytes yet, record it;
        // otherwise must match the one we saw before.
        if (b == -1)
          b = ip->lo();
        else if (b != ip->lo())
          return -1;
        break;

      case kInstNop:
      case kInstCapture:
      case kInstEmptyWidth:
        if (!ip->last())
          q.insert(id+1);

        // Continue on.
        // Ignore ip->empty() flags for kInstEmptyWidth
        // in order to be as conservative as possible
        // (assume all possible empty-width flags are true).
        if (ip->out())
          q.insert(ip->out());
        break;

      case kInstAltMatch:
        DCHECK(!ip->last());
        q.insert(id+1);
        break;

      case kInstFail:
        break;
    }
  }
  return b;
}

bool
Prog::SearchNFA(const StringPiece& text, const StringPiece& context,
                Anchor anchor, MatchKind kind,
                StringPiece* match, int nmatch) {
  if (ExtraDebug)
    Dump();

  NFA nfa(this);
  StringPiece sp;
  if (kind == kFullMatch) {
    anchor = kAnchored;
    if (nmatch == 0) {
      match = &sp;
      nmatch = 1;
    }
  }
  if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch))
    return false;
  if (kind == kFullMatch && match[0].end() != text.end())
    return false;
  return true;
}

// For each instruction i in the program reachable from the start, compute the
// number of instructions reachable from i by following only empty transitions
// and record that count as fanout[i].
//
// fanout holds the results and is also the work queue for the outer iteration.
// reachable holds the reached nodes for the inner iteration.
void Prog::Fanout(SparseArray<int>* fanout) {
  DCHECK_EQ(fanout->max_size(), size());
  SparseSet reachable(size());
  fanout->clear();
  fanout->set_new(start(), 0);
  for (SparseArray<int>::iterator i = fanout->begin(); i != fanout->end(); ++i) {
    int* count = &i->second;
    reachable.clear();
    reachable.insert(i->index());
    for (SparseSet::iterator j = reachable.begin(); j != reachable.end(); ++j) {
      int id = *j;
      Prog::Inst* ip = inst(id);
      switch (ip->opcode()) {
        default:
          LOG(DFATAL) << "unhandled " << ip->opcode() << " in Prog::Fanout()";
          break;

        case kInstByteRange:
          if (!ip->last())
            reachable.insert(id+1);

          (*count)++;
          if (!fanout->has_index(ip->out())) {
            fanout->set_new(ip->out(), 0);
          }
          break;

        case kInstAltMatch:
          DCHECK(!ip->last());
          reachable.insert(id+1);
          break;

        case kInstCapture:
        case kInstEmptyWidth:
        case kInstNop:
          if (!ip->last())
            reachable.insert(id+1);

          reachable.insert(ip->out());
          break;

        case kInstMatch:
          if (!ip->last())
            reachable.insert(id+1);
          break;

        case kInstFail:
          break;
      }
    }
  }
}

}  // namespace re2