aboutsummaryrefslogtreecommitdiff
path: root/renderscript-toolkit/src/main/cpp/YuvToRgb_neon.S
diff options
context:
space:
mode:
Diffstat (limited to 'renderscript-toolkit/src/main/cpp/YuvToRgb_neon.S')
-rw-r--r--renderscript-toolkit/src/main/cpp/YuvToRgb_neon.S298
1 files changed, 298 insertions, 0 deletions
diff --git a/renderscript-toolkit/src/main/cpp/YuvToRgb_neon.S b/renderscript-toolkit/src/main/cpp/YuvToRgb_neon.S
new file mode 100644
index 0000000..5c3bce4
--- /dev/null
+++ b/renderscript-toolkit/src/main/cpp/YuvToRgb_neon.S
@@ -0,0 +1,298 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define ENTRY(f) .text; .align 4; .globl f; .type f,#function; f: .fnstart
+#define END(f) .fnend; .size f, .-f;
+
+.eabi_attribute 25,1 @Tag_ABI_align8_preserved
+.arm
+
+/* Perform the actual YuvToRGB conversion in a macro, from register to
+ * register. This macro will be called from within several different wrapper
+ * variants for different data layouts. Y data starts in q8, but with the even
+ * and odd bytes split into d16 and d17 respectively. U and V are in d20
+ * and d21. Working constants are pre-loaded into q13-q15, and q3 is
+ * pre-loaded with a constant 0xff alpha channel.
+ *
+ * The complicated arithmetic is the result of refactoring the original
+ * equations to avoid 16-bit overflow without losing any precision.
+ */
+.macro yuvkern
+ vmov.i8 d15, #149
+
+ vmull.u8 q1, d16, d15 // g0 = y0 * 149
+ vmull.u8 q5, d17, d15 // g1 = y1 * 149
+
+ vmov.i8 d14, #50
+ vmov.i8 d15, #104
+ vmull.u8 q8, d20, d14 // g2 = u * 50 + v * 104
+ vmlal.u8 q8, d21, d15
+
+ vshr.u8 d14, d21, #1
+ vaddw.u8 q0, q1, d14 // r0 = y0 * 149 + (v >> 1)
+ vaddw.u8 q4, q5, d14 // r1 = y1 * 149 + (v >> 1)
+
+ vshll.u8 q7, d20, #2
+ vadd.u16 q2, q1, q7 // b0 = y0 * 149 + (u << 2)
+ vadd.u16 q6, q5, q7 // b1 = y1 * 149 + (u << 2)
+
+ vmov.i8 d14, #204
+ vmov.i8 d15, #254
+ vmull.u8 q11, d21, d14 // r2 = v * 204
+ vmull.u8 q12, d20, d15 // b2 = u * 254
+
+ vhadd.u16 q0, q11 // r0 = (r0 + r2) >> 1
+ vhadd.u16 q4, q11 // r1 = (r1 + r2) >> 1
+ vqadd.u16 q1, q14 // g0 = satu16(g0 + (-16 * 149 + 128 * 50 + 128 * 104) >> 0)
+ vqadd.u16 q5, q14 // g1 = satu16(g1 + (-16 * 149 + 128 * 50 + 128 * 104) >> 0)
+ vhadd.u16 q2, q12 // b0 = (b0 + b2) >> 1
+ vhadd.u16 q6, q12 // b1 = (b1 + b2) >> 1
+
+ vqsub.u16 q0, q13 // r0 = satu16(r0 - (16 * 149 + (128 >> 1) + 128 * 204) >> 1)
+ vqsub.u16 q4, q13 // r1 = satu16(r1 - (16 * 149 + (128 >> 1) + 128 * 204) >> 1)
+ vqsub.u16 q1, q8 // g0 = satu16(g0 - g2)
+ vqsub.u16 q5, q8 // g1 = satu16(g1 - g2)
+ vqsub.u16 q2, q15 // b0 = satu16(b0 - (16 * 149 + (128 << 2) + 128 * 254) >> 1)
+ vqsub.u16 q6, q15 // b1 = satu16(b1 - (16 * 149 + (128 << 2) + 128 * 254) >> 1)
+
+ vqrshrn.u16 d0, q0, #6
+ vqrshrn.u16 d1, q1, #7
+ vqrshrn.u16 d2, q4, #6
+ vqrshrn.u16 d3, q5, #7
+ vqrshrn.u16 d4, q2, #6
+ vqrshrn.u16 d5, q6, #6
+
+ vzip.u8 q0, q1
+ vzip.u8 d4, d5
+.endm
+
+/* Define the wrapper code which will load and store the data, iterate the
+ * correct number of times, and safely handle the remainder at the end of the
+ * loop. Some sections of code are switched out depending on the data packing
+ * being handled.
+ */
+.macro wrap_line kernel, interleaved=0, swapuv=0
+
+ movw r5, #((16 * 149 + (128 >> 1) + 128 * 204) >> 1)
+ vdup.i16 q13, r5
+ movw r5, #((-16 * 149 + 128 * 50 + 128 * 104) >> 0)
+ vdup.i16 q14, r5
+ movw r5, #((16 * 149 + (128 << 2) + 128 * 254) >> 1)
+ vdup.i16 q15, r5
+
+ vmov.i8 q3, #0xff
+
+ subs r2, #16
+ bhs 1f
+ b 2f
+
+ .align 4
+1: vld2.u8 {d16,d17}, [r1]!
+ pld [r1, #256]
+ .if \interleaved
+ vld2.u8 {d20,d21}, [r3]!
+ .if \swapuv
+ vswp d20, d21
+ .endif
+ pld [r3, #256]
+ .else
+ vld1.u8 d20, [r3]!
+ vld1.u8 d21, [r4]!
+ pld [r3, #128]
+ pld [r4, #128]
+ .endif
+
+ \kernel
+
+ subs r2, #16
+
+ vst4.u8 {d0,d2,d4,d6}, [r0]!
+ vst4.u8 {d1,d3,d5,d7}, [r0]!
+
+ bhs 1b
+
+2: adds r2, #16
+ beq 2f
+
+ /* To handle the tail portion of the data (something less than 16
+ * bytes) load small power-of-two chunks into working registers. It
+ * doesn't matter where they end up in the register; the same process
+ * will store them back out using the same positions and the
+ * interaction between neighbouring pixels is constrained to odd
+ * boundaries where the load operations don't interfere.
+ */
+ vmov.i8 q8, #0
+ vmov.i8 q10, #0
+
+ tst r2, #8
+ beq 1f
+ vld1.u8 d17, [r1]!
+ .if \interleaved
+ vld1.u8 d21, [r3]!
+ .else
+ vld1.u32 d20[1], [r3]!
+ vld1.u32 d21[1], [r4]!
+ .endif
+
+1: tst r2, #4
+ beq 1f
+ vld1.u32 d16[1], [r1]!
+ .if \interleaved
+ vld1.u32 d20[1], [r3]!
+ .else
+ vld1.u16 d20[1], [r3]!
+ vld1.u16 d21[1], [r4]!
+ .endif
+1: tst r2, #2
+ beq 1f
+ vld1.u16 d16[1], [r1]!
+ .if \interleaved
+ vld1.u16 d20[1], [r3]!
+ .else
+ vld1.u8 d20[1], [r3]!
+ vld1.u8 d21[1], [r4]!
+ .endif
+1: tst r2, #1
+ beq 1f
+ vld1.u8 d16[1], [r1]!
+ .if \interleaved
+ vld1.u16 d20[0], [r3]!
+ .else
+ vld1.u8 d20[0], [r3]!
+ vld1.u8 d21[0], [r4]!
+ .endif
+
+ /* One small impediment in the process above is that some of the load
+ * operations can't perform byte-wise structure deinterleaving at the
+ * same time as loading only part of a register. So the data is loaded
+ * linearly and unpacked manually at this point if necessary.
+ */
+1: vuzp.8 d16, d17
+ .if \interleaved
+ vuzp.8 d20, d21
+ .if \swapuv
+ vswp d20, d21
+ .endif
+ .endif
+
+ \kernel
+
+ /* As above but with the output; structured stores for partial vectors
+ * aren't available, so the data is re-packed first and stored linearly.
+ */
+ vzip.8 q0, q2
+ vzip.8 q1, q3
+ vzip.8 q0, q1
+ vzip.8 q2, q3
+
+1: tst r2, #8
+ beq 1f
+ vst1.u8 {d4,d5,d6,d7}, [r0]!
+
+1: tst r2, #4
+ beq 1f
+ vst1.u8 {d2,d3}, [r0]!
+1: tst r2, #2
+ beq 1f
+ vst1.u8 d1, [r0]!
+1: tst r2, #1
+ beq 2f
+ vst1.u32 d0[1], [r0]!
+2:
+.endm
+
+
+/* void rsdIntrinsicYuv2_K(
+ * void *out, // r0
+ * void const *yin, // r1
+ * void const *uin, // r2
+ * void const *vin, // r3
+ * size_t xstart, // [sp]
+ * size_t xend); // [sp+#4]
+ */
+ENTRY(rsdIntrinsicYuv2_K)
+ push {r4,r5}
+ ldr r5, [sp, #8]
+ mov r4, r3
+ mov r3, r2
+ ldr r2, [sp, #12]
+
+ add r0, r5, LSL #2
+ add r1, r5
+ add r3, r5, LSR #1
+ add r4, r5, LSR #1
+ sub r2, r5
+
+ vpush {d8-d15}
+
+ wrap_line yuvkern, 0
+
+ vpop {d8-d15}
+ pop {r4,r5}
+ bx lr
+END(rsdIntrinsicYuv2_K)
+
+/* void rsdIntrinsicYuv_K(
+ * void *out, // r0
+ * void const *yin, // r1
+ * void const *uvin, // r2
+ * size_t xstart, // r3
+ * size_t xend); // [sp]
+ */
+ENTRY(rsdIntrinsicYuv_K)
+ push {r4,r5}
+ bic r4, r3, #1
+ add r3, r2, r4
+ ldr r2, [sp, #8]
+
+ add r0, r4, LSL #2
+ add r1, r4
+ sub r2, r4
+
+ vpush {d8-d15}
+
+ wrap_line yuvkern, 1, 1
+
+ vpop {d8-d15}
+ pop {r4,r5}
+ bx lr
+END(rsdIntrinsicYuv_K)
+
+/* void rsdIntrinsicYuvR_K(
+ * void *out, // r0
+ * void const *yin, // r1
+ * void const *uvin, // r2
+ * size_t xstart, // r3
+ * size_t xend); // [sp]
+ */
+ENTRY(rsdIntrinsicYuvR_K)
+ push {r4,r5}
+ bic r4, r3, #1
+ add r3, r2, r4
+ ldr r2, [sp, #8]
+
+ add r0, r4, LSL #2
+ add r1, r4
+ sub r2, r4
+
+ vpush {d8-d15}
+
+ wrap_line yuvkern, 1
+
+ vpop {d8-d15}
+ pop {r4,r5}
+ bx lr
+END(rsdIntrinsicYuvR_K)