aboutsummaryrefslogtreecommitdiff
path: root/renderscript-toolkit/src/main/cpp/Blur.cpp
blob: 3b6fd01361a49653be208ab8f51683cbdd99173c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <cmath>
#include <cstdint>

#include "RenderScriptToolkit.h"
#include "TaskProcessor.h"
#include "Utils.h"

namespace renderscript {

#define LOG_TAG "renderscript.toolkit.Blur"

/**
 * Blurs an image or a section of an image.
 *
 * Our algorithm does two passes: a vertical blur followed by an horizontal blur.
 */
class BlurTask : public Task {
    // The image we're blurring.
    const uchar* mIn;
    // Where we store the blurred image.
    uchar* outArray;
    // The size of the kernel radius is limited to 25 in ScriptIntrinsicBlur.java.
    // So, the max kernel size is 51 (= 2 * 25 + 1).
    // Considering SSSE3 case, which requires the size is multiple of 4,
    // at least 52 words are necessary. Values outside of the kernel should be 0.
    float mFp[104];
    uint16_t mIp[104];

    // Working area to store the result of the vertical blur, to be used by the horizontal pass.
    // There's one area per thread. Since the needed working area may be too large to put on the
    // stack, we are allocating it from the heap. To avoid paying the allocation cost for each
    // tile, we cache the scratch area here.
    std::vector<void*> mScratch;       // Pointers to the scratch areas, one per thread.
    std::vector<size_t> mScratchSize;  // The size in bytes of the scratch areas, one per thread.

    // The radius of the blur, in floating point and integer format.
    float mRadius;
    int mIradius;

    void kernelU4(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
                  uint32_t threadIndex);
    void kernelU1(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY);
    void ComputeGaussianWeights();

    // Process a 2D tile of the overall work. threadIndex identifies which thread does the work.
    void processData(int threadIndex, size_t startX, size_t startY, size_t endX,
                     size_t endY) override;

   public:
    BlurTask(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, size_t vectorSize,
             uint32_t threadCount, float radius, const Restriction* restriction)
        : Task{sizeX, sizeY, vectorSize, false, restriction},
          mIn{in},
          outArray{out},
          mScratch{threadCount},
          mScratchSize{threadCount},
          mRadius{std::min(25.0f, radius)} {
        ComputeGaussianWeights();
    }

    ~BlurTask() {
        for (size_t i = 0; i < mScratch.size(); i++) {
            if (mScratch[i]) {
                free(mScratch[i]);
            }
        }
    }
};

void BlurTask::ComputeGaussianWeights() {
    memset(mFp, 0, sizeof(mFp));
    memset(mIp, 0, sizeof(mIp));

    // Compute gaussian weights for the blur
    // e is the euler's number
    float e = 2.718281828459045f;
    float pi = 3.1415926535897932f;
    // g(x) = (1 / (sqrt(2 * pi) * sigma)) * e ^ (-x^2 / (2 * sigma^2))
    // x is of the form [-radius .. 0 .. radius]
    // and sigma varies with the radius.
    // Based on some experimental radius values and sigmas,
    // we approximately fit sigma = f(radius) as
    // sigma = radius * 0.4  + 0.6
    // The larger the radius gets, the more our gaussian blur
    // will resemble a box blur since with large sigma
    // the gaussian curve begins to lose its shape
    float sigma = 0.4f * mRadius + 0.6f;

    // Now compute the coefficients. We will store some redundant values to save
    // some math during the blur calculations precompute some values
    float coeff1 = 1.0f / (sqrtf(2.0f * pi) * sigma);
    float coeff2 = - 1.0f / (2.0f * sigma * sigma);

    float normalizeFactor = 0.0f;
    float floatR = 0.0f;
    int r;
    mIradius = (float)ceil(mRadius) + 0.5f;
    for (r = -mIradius; r <= mIradius; r ++) {
        floatR = (float)r;
        mFp[r + mIradius] = coeff1 * powf(e, floatR * floatR * coeff2);
        normalizeFactor += mFp[r + mIradius];
    }

    // Now we need to normalize the weights because all our coefficients need to add up to one
    normalizeFactor = 1.0f / normalizeFactor;
    for (r = -mIradius; r <= mIradius; r ++) {
        mFp[r + mIradius] *= normalizeFactor;
        mIp[r + mIradius] = (uint16_t)(mFp[r + mIradius] * 65536.0f + 0.5f);
    }
}

/**
 * Vertical blur of a uchar4 line.
 *
 * @param sizeY Number of cells of the input array in the vertical direction.
 * @param out Where to place the computed value.
 * @param x Coordinate of the point we're blurring.
 * @param y Coordinate of the point we're blurring.
 * @param ptrIn Start of the input array.
 * @param iStride The size in byte of a row of the input array.
 * @param gPtr The gaussian coefficients.
 * @param iradius The radius of the blur.
 */
static void OneVU4(uint32_t sizeY, float4* out, int32_t x, int32_t y, const uchar* ptrIn,
                   int iStride, const float* gPtr, int iradius) {
    const uchar *pi = ptrIn + x*4;

    float4 blurredPixel = 0;
    for (int r = -iradius; r <= iradius; r ++) {
        int validY = std::max((y + r), 0);
        validY = std::min(validY, (int)(sizeY - 1));
        const uchar4 *pvy = (const uchar4 *)&pi[validY * iStride];
        float4 pf = convert<float4>(pvy[0]);
        blurredPixel += pf * gPtr[0];
        gPtr++;
    }

    out[0] = blurredPixel;
}

/**
 * Vertical blur of a uchar1 line.
 *
 * @param sizeY Number of cells of the input array in the vertical direction.
 * @param out Where to place the computed value.
 * @param x Coordinate of the point we're blurring.
 * @param y Coordinate of the point we're blurring.
 * @param ptrIn Start of the input array.
 * @param iStride The size in byte of a row of the input array.
 * @param gPtr The gaussian coefficients.
 * @param iradius The radius of the blur.
 */
static void OneVU1(uint32_t sizeY, float *out, int32_t x, int32_t y,
                   const uchar *ptrIn, int iStride, const float* gPtr, int iradius) {

    const uchar *pi = ptrIn + x;

    float blurredPixel = 0;
    for (int r = -iradius; r <= iradius; r ++) {
        int validY = std::max((y + r), 0);
        validY = std::min(validY, (int)(sizeY - 1));
        float pf = (float)pi[validY * iStride];
        blurredPixel += pf * gPtr[0];
        gPtr++;
    }

    out[0] = blurredPixel;
}


extern "C" void rsdIntrinsicBlurU1_K(uchar *out, uchar const *in, size_t w, size_t h,
                 size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);
extern "C" void rsdIntrinsicBlurU4_K(uchar4 *out, uchar4 const *in, size_t w, size_t h,
                 size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);

#if defined(ARCH_X86_HAVE_SSSE3)
extern void rsdIntrinsicBlurVFU4_K(void *dst, const void *pin, int stride, const void *gptr,
                                   int rct, int x1, int ct);
extern void rsdIntrinsicBlurHFU4_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
                                   int ct);
extern void rsdIntrinsicBlurHFU1_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
                                   int ct);
#endif

/**
 * Vertical blur of a line of RGBA, knowing that there's enough rows above and below us to avoid
 * dealing with boundary conditions.
 *
 * @param out Where to store the results. This is the input to the horizontal blur.
 * @param ptrIn The input data for this line.
 * @param iStride The width of the input.
 * @param gPtr The gaussian coefficients.
 * @param ct The diameter of the blur.
 * @param len How many cells to blur.
 * @param usesSimd Whether this processor supports SIMD.
 */
static void OneVFU4(float4 *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct,
                    int x2, bool usesSimd) {
    int x1 = 0;
#if defined(ARCH_X86_HAVE_SSSE3)
    if (usesSimd) {
        int t = (x2 - x1);
        t &= ~1;
        if (t) {
            rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, x1, x1 + t);
        }
        x1 += t;
        out += t;
        ptrIn += t << 2;
    }
#else
    (void) usesSimd; // Avoid unused parameter warning.
#endif
    while(x2 > x1) {
        const uchar *pi = ptrIn;
        float4 blurredPixel = 0;
        const float* gp = gPtr;

        for (int r = 0; r < ct; r++) {
            float4 pf = convert<float4>(((const uchar4 *)pi)[0]);
            blurredPixel += pf * gp[0];
            pi += iStride;
            gp++;
        }
        out->xyzw = blurredPixel;
        x1++;
        out++;
        ptrIn+=4;
    }
}

/**
 * Vertical blur of a line of U_8, knowing that there's enough rows above and below us to avoid
 * dealing with boundary conditions.
 *
 * @param out Where to store the results. This is the input to the horizontal blur.
 * @param ptrIn The input data for this line.
 * @param iStride The width of the input.
 * @param gPtr The gaussian coefficients.
 * @param ct The diameter of the blur.
 * @param len How many cells to blur.
 * @param usesSimd Whether this processor supports SIMD.
 */
static void OneVFU1(float* out, const uchar* ptrIn, int iStride, const float* gPtr, int ct, int len,
                    bool usesSimd) {
    int x1 = 0;

    while((len > x1) && (((uintptr_t)ptrIn) & 0x3)) {
        const uchar *pi = ptrIn;
        float blurredPixel = 0;
        const float* gp = gPtr;

        for (int r = 0; r < ct; r++) {
            float pf = (float)pi[0];
            blurredPixel += pf * gp[0];
            pi += iStride;
            gp++;
        }
        out[0] = blurredPixel;
        x1++;
        out++;
        ptrIn++;
        len--;
    }
#if defined(ARCH_X86_HAVE_SSSE3)
    if (usesSimd && (len > x1)) {
        int t = (len - x1) >> 2;
        t &= ~1;
        if (t) {
            rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, 0, t );
            len -= t << 2;
            ptrIn += t << 2;
            out += t << 2;
        }
    }
#else
    (void) usesSimd; // Avoid unused parameter warning.
#endif
    while(len > 0) {
        const uchar *pi = ptrIn;
        float blurredPixel = 0;
        const float* gp = gPtr;

        for (int r = 0; r < ct; r++) {
            float pf = (float)pi[0];
            blurredPixel += pf * gp[0];
            pi += iStride;
            gp++;
        }
        out[0] = blurredPixel;
        len--;
        out++;
        ptrIn++;
    }
}

/**
 * Horizontal blur of a uchar4 line.
 *
 * @param sizeX Number of cells of the input array in the horizontal direction.
 * @param out Where to place the computed value.
 * @param x Coordinate of the point we're blurring.
 * @param ptrIn The start of the input row from which we're indexing x.
 * @param gPtr The gaussian coefficients.
 * @param iradius The radius of the blur.
 */
static void OneHU4(uint32_t sizeX, uchar4* out, int32_t x, const float4* ptrIn, const float* gPtr,
                   int iradius) {
    float4 blurredPixel = 0;
    for (int r = -iradius; r <= iradius; r ++) {
        int validX = std::max((x + r), 0);
        validX = std::min(validX, (int)(sizeX - 1));
        float4 pf = ptrIn[validX];
        blurredPixel += pf * gPtr[0];
        gPtr++;
    }

    out->xyzw = convert<uchar4>(blurredPixel);
}

/**
 * Horizontal blur of a uchar line.
 *
 * @param sizeX Number of cells of the input array in the horizontal direction.
 * @param out Where to place the computed value.
 * @param x Coordinate of the point we're blurring.
 * @param ptrIn The start of the input row from which we're indexing x.
 * @param gPtr The gaussian coefficients.
 * @param iradius The radius of the blur.
 */
static void OneHU1(uint32_t sizeX, uchar* out, int32_t x, const float* ptrIn, const float* gPtr,
                   int iradius) {
    float blurredPixel = 0;
    for (int r = -iradius; r <= iradius; r ++) {
        int validX = std::max((x + r), 0);
        validX = std::min(validX, (int)(sizeX - 1));
        float pf = ptrIn[validX];
        blurredPixel += pf * gPtr[0];
        gPtr++;
    }

    out[0] = (uchar)blurredPixel;
}

/**
 * Full blur of a line of RGBA data.
 *
 * @param outPtr Where to store the results
 * @param xstart The index of the section we're starting to blur.
 * @param xend  The end index of the section.
 * @param currentY The index of the line we're blurring.
 * @param usesSimd Whether this processor supports SIMD.
 */
void BlurTask::kernelU4(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
                        uint32_t threadIndex) {
    float4 stackbuf[2048];
    float4 *buf = &stackbuf[0];
    const uint32_t stride = mSizeX * mVectorSize;

    uchar4 *out = (uchar4 *)outPtr;
    uint32_t x1 = xstart;
    uint32_t x2 = xend;

#if defined(ARCH_ARM_USE_INTRINSICS)
    if (mUsesSimd && mSizeX >= 4) {
      rsdIntrinsicBlurU4_K(out, (uchar4 const *)(mIn + stride * currentY),
                 mSizeX, mSizeY,
                 stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
        return;
    }
#endif

    if (mSizeX > 2048) {
        if ((mSizeX > mScratchSize[threadIndex]) || !mScratch[threadIndex]) {
            // Pad the side of the allocation by one unit to allow alignment later
            mScratch[threadIndex] = realloc(mScratch[threadIndex], (mSizeX + 1) * 16);
            mScratchSize[threadIndex] = mSizeX;
        }
        // realloc only aligns to 8 bytes so we manually align to 16.
        buf = (float4 *) ((((intptr_t)mScratch[threadIndex]) + 15) & ~0xf);
    }
    float4 *fout = (float4 *)buf;
    int y = currentY;
    if ((y > mIradius) && (y < ((int)mSizeY - mIradius))) {
        const uchar *pi = mIn + (y - mIradius) * stride;
        OneVFU4(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
    } else {
        x1 = 0;
        while(mSizeX > x1) {
            OneVU4(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
            fout++;
            x1++;
        }
    }

    x1 = xstart;
    while ((x1 < (uint32_t)mIradius) && (x1 < x2)) {
        OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
        out++;
        x1++;
    }
#if defined(ARCH_X86_HAVE_SSSE3)
    if (mUsesSimd) {
        if ((x1 + mIradius) < x2) {
            rsdIntrinsicBlurHFU4_K(out, buf - mIradius, mFp,
                                   mIradius * 2 + 1, x1, x2 - mIradius);
            out += (x2 - mIradius) - x1;
            x1 = x2 - mIradius;
        }
    }
#endif
    while(x2 > x1) {
        OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
        out++;
        x1++;
    }
}

/**
 * Full blur of a line of U_8 data.
 *
 * @param outPtr Where to store the results
 * @param xstart The index of the section we're starting to blur.
 * @param xend  The end index of the section.
 * @param currentY The index of the line we're blurring.
 */
void BlurTask::kernelU1(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY) {
    float buf[4 * 2048];
    const uint32_t stride = mSizeX * mVectorSize;

    uchar *out = (uchar *)outPtr;
    uint32_t x1 = xstart;
    uint32_t x2 = xend;

#if defined(ARCH_ARM_USE_INTRINSICS)
    if (mUsesSimd && mSizeX >= 16) {
        // The specialisation for r<=8 has an awkward prefill case, which is
        // fiddly to resolve, where starting close to the right edge can cause
        // a read beyond the end of input.  So avoid that case here.
        if (mIradius > 8 || (mSizeX - std::max(0, (int32_t)x1 - 8)) >= 16) {
            rsdIntrinsicBlurU1_K(out, mIn + stride * currentY, mSizeX, mSizeY,
                     stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
            return;
        }
    }
#endif

    float *fout = (float *)buf;
    int y = currentY;
    if ((y > mIradius) && (y < ((int)mSizeY - mIradius -1))) {
        const uchar *pi = mIn + (y - mIradius) * stride;
        OneVFU1(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
    } else {
        x1 = 0;
        while(mSizeX > x1) {
            OneVU1(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
            fout++;
            x1++;
        }
    }

    x1 = xstart;
    while ((x1 < x2) &&
           ((x1 < (uint32_t)mIradius) || (((uintptr_t)out) & 0x3))) {
        OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
        out++;
        x1++;
    }
#if defined(ARCH_X86_HAVE_SSSE3)
    if (mUsesSimd) {
        if ((x1 + mIradius) < x2) {
            uint32_t len = x2 - (x1 + mIradius);
            len &= ~3;

            // rsdIntrinsicBlurHFU1_K() processes each four float values in |buf| at once, so it
            // nees to ensure four more values can be accessed in order to avoid accessing
            // uninitialized buffer.
            if (len > 4) {
                len -= 4;
                rsdIntrinsicBlurHFU1_K(out, ((float *)buf) - mIradius, mFp,
                                       mIradius * 2 + 1, x1, x1 + len);
                out += len;
                x1 += len;
            }
        }
    }
#endif
    while(x2 > x1) {
        OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
        out++;
        x1++;
    }
}

void BlurTask::processData(int threadIndex, size_t startX, size_t startY, size_t endX,
                           size_t endY) {
    for (size_t y = startY; y < endY; y++) {
        void* outPtr = outArray + (mSizeX * y + startX) * mVectorSize;
        if (mVectorSize == 4) {
            kernelU4(outPtr, startX, endX, y, threadIndex);
        } else {
            kernelU1(outPtr, startX, endX, y);
        }
    }
}

void RenderScriptToolkit::blur(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY,
                               size_t vectorSize, int radius, const Restriction* restriction) {
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE
    if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) {
        return;
    }
    if (radius <= 0 || radius > 25) {
        ALOGE("The radius should be between 1 and 25. %d provided.", radius);
    }
    if (vectorSize != 1 && vectorSize != 4) {
        ALOGE("The vectorSize should be 1 or 4. %zu provided.", vectorSize);
    }
#endif

    BlurTask task(in, out, sizeX, sizeY, vectorSize, processor->getNumberOfThreads(), radius,
                  restriction);
    processor->doTask(&task);
}

}  // namespace renderscript