aboutsummaryrefslogtreecommitdiff
path: root/src/main/java/com/xtremelabs/robolectric/shadows/ShadowLocation.java
blob: 07a48126ce66134918c873d1841a0b324c2776a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
package com.xtremelabs.robolectric.shadows;

import android.location.Location;
import android.os.Bundle;
import com.xtremelabs.robolectric.internal.Implementation;
import com.xtremelabs.robolectric.internal.Implements;

import static com.xtremelabs.robolectric.Robolectric.shadowOf_;

/**
 * Shadow of {@code Location} that treats it primarily as a data-holder
 * todo: support Location's static utility methods
 */

@SuppressWarnings({"UnusedDeclaration"})
@Implements(Location.class)
public class ShadowLocation {
    private long time;
    private String provider;
    private double latitude;
    private double longitude;
    private float accuracy;
    private float bearing;
    private double altitude;
    private float speed;
    private boolean hasAccuracy;
    private boolean hasAltitude;
    private boolean hasBearing;
    private boolean hasSpeed;

    // Cache the inputs and outputs of computeDistanceAndBearing
    // so calls to distanceTo() and bearingTo() can share work
    private double mLat1 = 0.0;
    private double mLon1 = 0.0;
    private double mLat2 = 0.0;
    private double mLon2 = 0.0;
    private float mDistance = 0.0f;
    private float mInitialBearing = 0.0f;
    // Scratchpad
    private final float[] mResults = new float[2];

    private Bundle extras = new Bundle();

    public void __constructor__(Location l) {
        set(l);
    }

    public void __constructor__(String provider) {
        this.provider = provider;
        time = System.currentTimeMillis();
    }

    @Implementation
    public void set(Location l) {
        time = l.getTime();
        provider = l.getProvider();
        latitude = l.getLatitude();
        longitude = l.getLongitude();
        accuracy = l.getAccuracy();
        bearing = l.getBearing();
        altitude = l.getAltitude();
        speed = l.getSpeed();

        hasAccuracy = l.hasAccuracy();
        hasAltitude = l.hasAltitude();
        hasBearing = l.hasBearing();
        hasSpeed = l.hasSpeed();
    }

    @Implementation
    public String getProvider() {
        return provider;
    }

    @Implementation
    public void setProvider(String provider) {
        this.provider = provider;
    }

    @Implementation
    public long getTime() {
        return time;
    }

    @Implementation
    public void setTime(long time) {
        this.time = time;
    }

    @Implementation
    public float getAccuracy() {
        return accuracy;
    }

    @Implementation
    public void setAccuracy(float accuracy) {
        this.accuracy = accuracy;
        this.hasAccuracy = true;
    }

    @Implementation
    public void removeAccuracy() {
        this.accuracy = 0.0f;
        this.hasAccuracy = false;
    }

    @Implementation
    public boolean hasAccuracy() {
        return hasAccuracy;
    }

    @Implementation
    public double getAltitude() {
        return altitude;
    }

    @Implementation
    public void setAltitude(double altitude) {
        this.altitude = altitude;
        this.hasAltitude = true;
    }

    @Implementation
    public void removeAltitude() {
        this.altitude = 0.0d;
        this.hasAltitude = false;
    }

    @Implementation
    public boolean hasAltitude() {
        return hasAltitude;
    }

    @Implementation
    public float getBearing() {
        return bearing;
    }

    @Implementation
    public void setBearing(float bearing) {
        this.bearing = bearing;
        this.hasBearing = true;
    }

    @Implementation
    public void removeBearing() {
        this.bearing = 0.0f;
        this.hasBearing = false;
    }

    @Implementation
    public boolean hasBearing() {
        return hasBearing;
    }


    @Implementation
    public double getLatitude() {
        return latitude;
    }

    @Implementation
    public void setLatitude(double latitude) {
        this.latitude = latitude;
    }

    @Implementation
    public double getLongitude() {
        return longitude;
    }

    @Implementation
    public void setLongitude(double longitude) {
        this.longitude = longitude;
    }

    @Implementation
    public float getSpeed() {
        return speed;
    }

    @Implementation
    public void setSpeed(float speed) {
        this.speed = speed;
        this.hasSpeed = true;
    }

    @Implementation
    public void removeSpeed() {
        this.hasSpeed = false;
        this.speed = 0.0f;
    }

    @Implementation
    public boolean hasSpeed() {
        return hasSpeed;
    }

    @Override @Implementation
    public boolean equals(Object o) {
        if (o == null) return false;
        o = shadowOf_(o);
        if (o == null) return false;
        if (getClass() != o.getClass()) return false;
        if (this == o) return true;

        ShadowLocation that = (ShadowLocation) o;

        if (Double.compare(that.latitude, latitude) != 0) return false;
        if (Double.compare(that.longitude, longitude) != 0) return false;
        if (time != that.time) return false;
        if (provider != null ? !provider.equals(that.provider) : that.provider != null) return false;
        if (accuracy != that.accuracy) return false;
        return true;
    }

    @Override @Implementation
    public int hashCode() {
        int result;
        long temp;
        result = (int) (time ^ (time >>> 32));
        result = 31 * result + (provider != null ? provider.hashCode() : 0);
        temp = latitude != +0.0d ? Double.doubleToLongBits(latitude) : 0L;
        result = 31 * result + (int) (temp ^ (temp >>> 32));
        temp = longitude != +0.0d ? Double.doubleToLongBits(longitude) : 0L;
        result = 31 * result + (int) (temp ^ (temp >>> 32));
        temp = accuracy != 0f ? Float.floatToIntBits(accuracy) : 0;
        result = 31 * result + (int) (temp ^ (temp >>> 32));
        return result;
    }

    @Override @Implementation
    public String toString() {
        return "Location{" +
                "time=" + time +
                ", provider='" + provider + '\'' +
                ", latitude=" + latitude +
                ", longitude=" + longitude +
                ", accuracy=" + accuracy +
                '}';
    }

    private static void computeDistanceAndBearing(double lat1, double lon1,
            double lat2, double lon2, float[] results) {
        // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
        // using the "Inverse Formula" (section 4)

        int MAXITERS = 20;
        // Convert lat/long to radians
        lat1 *= Math.PI / 180.0;
        lat2 *= Math.PI / 180.0;
        lon1 *= Math.PI / 180.0;
        lon2 *= Math.PI / 180.0;

        double a = 6378137.0; // WGS84 major axis
        double b = 6356752.3142; // WGS84 semi-major axis
        double f = (a - b) / a;
        double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);

        double L = lon2 - lon1;
        double A = 0.0;
        double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
        double U2 = Math.atan((1.0 - f) * Math.tan(lat2));

        double cosU1 = Math.cos(U1);
        double cosU2 = Math.cos(U2);
        double sinU1 = Math.sin(U1);
        double sinU2 = Math.sin(U2);
        double cosU1cosU2 = cosU1 * cosU2;
        double sinU1sinU2 = sinU1 * sinU2;

        double sigma = 0.0;
        double deltaSigma = 0.0;
        double cosSqAlpha = 0.0;
        double cos2SM = 0.0;
        double cosSigma = 0.0;
        double sinSigma = 0.0;
        double cosLambda = 0.0;
        double sinLambda = 0.0;

        double lambda = L; // initial guess
        for (int iter = 0; iter < MAXITERS; iter++) {
            double lambdaOrig = lambda;
            cosLambda = Math.cos(lambda);
            sinLambda = Math.sin(lambda);
            double t1 = cosU2 * sinLambda;
            double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
            double sinSqSigma = t1 * t1 + t2 * t2; // (14)
            sinSigma = Math.sqrt(sinSqSigma);
            cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
            sigma = Math.atan2(sinSigma, cosSigma); // (16)
            double sinAlpha = (sinSigma == 0) ? 0.0 :
                cosU1cosU2 * sinLambda / sinSigma; // (17)
            cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
            cos2SM = (cosSqAlpha == 0) ? 0.0 :
                cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)

            double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
            A = 1 + (uSquared / 16384.0) * // (3)
                (4096.0 + uSquared *
                 (-768 + uSquared * (320.0 - 175.0 * uSquared)));
            double B = (uSquared / 1024.0) * // (4)
                (256.0 + uSquared *
                 (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
            double C = (f / 16.0) *
                cosSqAlpha *
                (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
            double cos2SMSq = cos2SM * cos2SM;
            deltaSigma = B * sinSigma * // (6)
                (cos2SM + (B / 4.0) *
                 (cosSigma * (-1.0 + 2.0 * cos2SMSq) -
                  (B / 6.0) * cos2SM *
                  (-3.0 + 4.0 * sinSigma * sinSigma) *
                  (-3.0 + 4.0 * cos2SMSq)));

            lambda = L +
                (1.0 - C) * f * sinAlpha *
                (sigma + C * sinSigma *
                 (cos2SM + C * cosSigma *
                  (-1.0 + 2.0 * cos2SM * cos2SM))); // (11)

            double delta = (lambda - lambdaOrig) / lambda;
            if (Math.abs(delta) < 1.0e-12) {
                break;
            }
        }

        float distance = (float) (b * A * (sigma - deltaSigma));
        results[0] = distance;
        if (results.length > 1) {
            float initialBearing = (float) Math.atan2(cosU2 * sinLambda,
                cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
            initialBearing *= 180.0 / Math.PI;
            results[1] = initialBearing;
            if (results.length > 2) {
                float finalBearing = (float) Math.atan2(cosU1 * sinLambda,
                    -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
                finalBearing *= 180.0 / Math.PI;
                results[2] = finalBearing;
            }
        }
    }

    /**
     * Computes the approximate distance in meters between two
     * locations, and optionally the initial and final bearings of the
     * shortest path between them.  Distance and bearing are defined using the
     * WGS84 ellipsoid.
     *
     * <p> The computed distance is stored in results[0].  If results has length
     * 2 or greater, the initial bearing is stored in results[1]. If results has
     * length 3 or greater, the final bearing is stored in results[2].
     *
     * @param startLatitude the starting latitude
     * @param startLongitude the starting longitude
     * @param endLatitude the ending latitude
     * @param endLongitude the ending longitude
     * @param results an array of floats to hold the results
     *
     * @throws IllegalArgumentException if results is null or has length < 1
     */
    @Implementation
    public static void distanceBetween(double startLatitude, double startLongitude,
        double endLatitude, double endLongitude, float[] results) {
        if (results == null || results.length < 1) {
            throw new IllegalArgumentException("results is null or has length < 1");
        }
        computeDistanceAndBearing(startLatitude, startLongitude,
            endLatitude, endLongitude, results);
    }

    /**
     * Returns the approximate distance in meters between this
     * location and the given location.  Distance is defined using
     * the WGS84 ellipsoid.
     *
     * @param dest the destination location
     * @return the approximate distance in meters
     */
    @Implementation
    public float distanceTo(Location dest) {
        // See if we already have the result
        synchronized (mResults) {
            if (latitude != mLat1 || longitude != mLon1 ||
                dest.getLatitude() != mLat2 || dest.getLongitude() != mLon2) {
                computeDistanceAndBearing(latitude, longitude,
                    dest.getLatitude(), dest.getLongitude(), mResults);
                mLat1 = latitude;
                mLon1 = longitude;
                mLat2 = dest.getLatitude();
                mLon2 = dest.getLongitude();
                mDistance = mResults[0];
                mInitialBearing = mResults[1];
            }
            return mDistance;
        }
    }

    /**
     * Returns the approximate initial bearing in degrees East of true
     * North when traveling along the shortest path between this
     * location and the given location.  The shortest path is defined
     * using the WGS84 ellipsoid.  Locations that are (nearly)
     * antipodal may produce meaningless results.
     *
     * @param dest the destination location
     * @return the initial bearing in degrees
     */
    @Implementation
    public float bearingTo(Location dest) {
        synchronized (mResults) {
            // See if we already have the result
            if (latitude != mLat1 || longitude != mLon1 ||
                            dest.getLatitude() != mLat2 || dest.getLongitude() != mLon2) {
                computeDistanceAndBearing(latitude, longitude,
                    dest.getLatitude(), dest.getLongitude(), mResults);
                mLat1 = latitude;
                mLon1 = longitude;
                mLat2 = dest.getLatitude();
                mLon2 = dest.getLongitude();
                mDistance = mResults[0];
                mInitialBearing = mResults[1];
            }
            return mInitialBearing;
        }
    }

    @Implementation
    public Bundle getExtras() {
        return extras;
    }

    @Implementation
    public void setExtras(Bundle extras) {
        this.extras = extras;
    }
}