use crate::{ address::{AccessSize, AddressSpace, GenericAddress, RawGenericAddress}, sdt::{ExtendedField, SdtHeader, Signature}, AcpiError, AcpiTable, }; use bit_field::BitField; #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum PowerProfile { Unspecified, Desktop, Mobile, Workstation, EnterpriseServer, SohoServer, AppliancePc, PerformanceServer, Tablet, Reserved(u8), } /// Represents the Fixed ACPI Description Table (FADT). This table contains various fixed hardware /// details, such as the addresses of the hardware register blocks. It also contains a pointer to /// the Differentiated Definition Block (DSDT). /// /// In cases where the FADT contains both a 32-bit and 64-bit field for the same address, we should /// always prefer the 64-bit one. Only if it's zero or the CPU will not allow us to access that /// address should the 32-bit one be used. #[repr(C, packed)] #[derive(Debug, Clone, Copy)] pub struct Fadt { header: SdtHeader, firmware_ctrl: u32, dsdt_address: u32, // Used in acpi 1.0; compatibility only, should be zero _reserved: u8, preferred_pm_profile: u8, /// On systems with an i8259 PIC, this is the vector the System Control Interrupt (SCI) is wired to. On other systems, this is /// the Global System Interrupt (GSI) number of the SCI. /// /// The SCI should be treated as a sharable, level, active-low interrupt. pub sci_interrupt: u16, /// The system port address of the SMI Command Port. This port should only be accessed from the boot processor. /// A value of `0` indicates that System Management Mode is not supported. /// /// - Writing the value in `acpi_enable` to this port will transfer control of the ACPI hardware registers /// from the firmware to the OS. You must synchronously wait for the transfer to complete, indicated by the /// setting of `SCI_EN`. /// - Writing the value in `acpi_disable` will relinquish ownership of the hardware registers to the /// firmware. This should only be done if you've previously acquired ownership. Before writing this value, /// the OS should mask all SCI interrupts and clear the `SCI_EN` bit. /// - Writing the value in `s4bios_req` requests that the firmware enter the S4 state through the S4BIOS /// feature. This is only supported if the `S4BIOS_F` flag in the FACS is set. /// - Writing the value in `pstate_control` yields control of the processor performance state to the OS. /// If this field is `0`, this feature is not supported. /// - Writing the value in `c_state_control` tells the firmware that the OS supports `_CST` AML objects and /// notifications of C State changes. pub smi_cmd_port: u32, pub acpi_enable: u8, pub acpi_disable: u8, pub s4bios_req: u8, pub pstate_control: u8, pm1a_event_block: u32, pm1b_event_block: u32, pm1a_control_block: u32, pm1b_control_block: u32, pm2_control_block: u32, pm_timer_block: u32, gpe0_block: u32, gpe1_block: u32, pm1_event_length: u8, pm1_control_length: u8, pm2_control_length: u8, pm_timer_length: u8, gpe0_block_length: u8, gpe1_block_length: u8, pub gpe1_base: u8, pub c_state_control: u8, /// The worst-case latency to enter and exit the C2 state, in microseconds. A value `>100` indicates that the /// system does not support the C2 state. pub worst_c2_latency: u16, /// The worst-case latency to enter and exit the C3 state, in microseconds. A value `>1000` indicates that the /// system does not support the C3 state. pub worst_c3_latency: u16, pub flush_size: u16, pub flush_stride: u16, pub duty_offset: u8, pub duty_width: u8, pub day_alarm: u8, pub month_alarm: u8, pub century: u8, pub iapc_boot_arch: IaPcBootArchFlags, _reserved2: u8, // must be 0 pub flags: FixedFeatureFlags, reset_reg: RawGenericAddress, pub reset_value: u8, pub arm_boot_arch: ArmBootArchFlags, fadt_minor_version: u8, x_firmware_ctrl: ExtendedField, x_dsdt_address: ExtendedField, x_pm1a_event_block: ExtendedField, x_pm1b_event_block: ExtendedField, x_pm1a_control_block: ExtendedField, x_pm1b_control_block: ExtendedField, x_pm2_control_block: ExtendedField, x_pm_timer_block: ExtendedField, x_gpe0_block: ExtendedField, x_gpe1_block: ExtendedField, sleep_control_reg: ExtendedField, sleep_status_reg: ExtendedField, hypervisor_vendor_id: ExtendedField, } /// ### Safety: Implementation properly represents a valid FADT. unsafe impl AcpiTable for Fadt { const SIGNATURE: Signature = Signature::FADT; fn header(&self) -> &SdtHeader { &self.header } } impl Fadt { pub fn validate(&self) -> Result<(), AcpiError> { self.header.validate(crate::sdt::Signature::FADT) } pub fn facs_address(&self) -> Result { unsafe { { self.x_firmware_ctrl } .access(self.header.revision) .filter(|&p| p != 0) .or(Some(self.firmware_ctrl as u64)) .filter(|&p| p != 0) .map(|p| p as usize) .ok_or(AcpiError::InvalidFacsAddress) } } pub fn dsdt_address(&self) -> Result { unsafe { { self.x_dsdt_address } .access(self.header.revision) .filter(|&p| p != 0) .or(Some(self.dsdt_address as u64)) .filter(|&p| p != 0) .map(|p| p as usize) .ok_or(AcpiError::InvalidDsdtAddress) } } pub fn power_profile(&self) -> PowerProfile { match self.preferred_pm_profile { 0 => PowerProfile::Unspecified, 1 => PowerProfile::Desktop, 2 => PowerProfile::Mobile, 3 => PowerProfile::Workstation, 4 => PowerProfile::EnterpriseServer, 5 => PowerProfile::SohoServer, 6 => PowerProfile::AppliancePc, 7 => PowerProfile::PerformanceServer, 8 => PowerProfile::Tablet, other => PowerProfile::Reserved(other), } } pub fn pm1a_event_block(&self) -> Result { if let Some(raw) = unsafe { self.x_pm1a_event_block.access(self.header().revision) } { if raw.address != 0x0 { return GenericAddress::from_raw(raw); } } Ok(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: self.pm1_event_length * 8, bit_offset: 0, access_size: AccessSize::Undefined, address: self.pm1a_event_block.into(), }) } pub fn pm1b_event_block(&self) -> Result, AcpiError> { if let Some(raw) = unsafe { self.x_pm1b_event_block.access(self.header().revision) } { if raw.address != 0x0 { return Ok(Some(GenericAddress::from_raw(raw)?)); } } if self.pm1b_event_block != 0 { Ok(Some(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: self.pm1_event_length * 8, bit_offset: 0, access_size: AccessSize::Undefined, address: self.pm1b_event_block.into(), })) } else { Ok(None) } } pub fn pm1a_control_block(&self) -> Result { if let Some(raw) = unsafe { self.x_pm1a_control_block.access(self.header().revision) } { if raw.address != 0x0 { return GenericAddress::from_raw(raw); } } Ok(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: self.pm1_control_length * 8, bit_offset: 0, access_size: AccessSize::Undefined, address: self.pm1a_control_block.into(), }) } pub fn pm1b_control_block(&self) -> Result, AcpiError> { if let Some(raw) = unsafe { self.x_pm1b_control_block.access(self.header().revision) } { if raw.address != 0x0 { return Ok(Some(GenericAddress::from_raw(raw)?)); } } if self.pm1b_control_block != 0 { Ok(Some(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: self.pm1_control_length * 8, bit_offset: 0, access_size: AccessSize::Undefined, address: self.pm1b_control_block.into(), })) } else { Ok(None) } } pub fn pm2_control_block(&self) -> Result, AcpiError> { if let Some(raw) = unsafe { self.x_pm2_control_block.access(self.header().revision) } { if raw.address != 0x0 { return Ok(Some(GenericAddress::from_raw(raw)?)); } } if self.pm2_control_block != 0 { Ok(Some(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: self.pm2_control_length * 8, bit_offset: 0, access_size: AccessSize::Undefined, address: self.pm2_control_block.into(), })) } else { Ok(None) } } /// Attempts to parse the FADT's PWM timer blocks, first returning the extended block, and falling back to /// parsing the legacy block into a `GenericAddress`. pub fn pm_timer_block(&self) -> Result, AcpiError> { // ACPI spec indicates `PM_TMR_LEN` should be 4, or otherwise the PM_TMR is not supported. if self.pm_timer_length != 4 { return Ok(None); } if let Some(raw) = unsafe { self.x_pm_timer_block.access(self.header().revision) } { if raw.address != 0x0 { return Ok(Some(GenericAddress::from_raw(raw)?)); } } if self.pm_timer_block != 0 { Ok(Some(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: 32, bit_offset: 0, access_size: AccessSize::Undefined, address: self.pm_timer_block.into(), })) } else { Ok(None) } } pub fn gpe0_block(&self) -> Result, AcpiError> { if let Some(raw) = unsafe { self.x_gpe0_block.access(self.header().revision) } { if raw.address != 0x0 { return Ok(Some(GenericAddress::from_raw(raw)?)); } } if self.gpe0_block != 0 { Ok(Some(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: self.gpe0_block_length * 8, bit_offset: 0, access_size: AccessSize::Undefined, address: self.gpe0_block.into(), })) } else { Ok(None) } } pub fn gpe1_block(&self) -> Result, AcpiError> { if let Some(raw) = unsafe { self.x_gpe1_block.access(self.header().revision) } { if raw.address != 0x0 { return Ok(Some(GenericAddress::from_raw(raw)?)); } } if self.gpe1_block != 0 { Ok(Some(GenericAddress { address_space: AddressSpace::SystemIo, bit_width: self.gpe1_block_length * 8, bit_offset: 0, access_size: AccessSize::Undefined, address: self.gpe1_block.into(), })) } else { Ok(None) } } pub fn reset_register(&self) -> Result { GenericAddress::from_raw(self.reset_reg) } pub fn sleep_control_register(&self) -> Result, AcpiError> { if let Some(raw) = unsafe { self.sleep_control_reg.access(self.header().revision) } { Ok(Some(GenericAddress::from_raw(raw)?)) } else { Ok(None) } } pub fn sleep_status_register(&self) -> Result, AcpiError> { if let Some(raw) = unsafe { self.sleep_status_reg.access(self.header().revision) } { Ok(Some(GenericAddress::from_raw(raw)?)) } else { Ok(None) } } } #[derive(Clone, Copy, Debug)] pub struct FixedFeatureFlags(u32); impl FixedFeatureFlags { /// If true, an equivalent to the x86 [WBINVD](https://www.felixcloutier.com/x86/wbinvd) instruction is supported. /// All caches will be flushed and invalidated upon completion of this instruction, /// and memory coherency is properly maintained. The cache *SHALL* only contain what OSPM references or allows to be cached. pub fn supports_equivalent_to_wbinvd(&self) -> bool { self.0.get_bit(0) } /// If true, [WBINVD](https://www.felixcloutier.com/x86/wbinvd) properly flushes all caches and memory coherency is maintained, but caches may not be invalidated. pub fn wbinvd_flushes_all_caches(&self) -> bool { self.0.get_bit(1) } /// If true, all processors implement the C1 power state. pub fn all_procs_support_c1_power_state(&self) -> bool { self.0.get_bit(2) } /// If true, the C2 power state is configured to work on a uniprocessor and multiprocessor system. pub fn c2_configured_for_mp_system(&self) -> bool { self.0.get_bit(3) } /// If true, the power button is handled as a control method device. /// If false, the power button is handled as a fixed-feature programming model. pub fn power_button_is_control_method(&self) -> bool { self.0.get_bit(4) } /// If true, the sleep button is handled as a control method device. /// If false, the sleep button is handled as a fixed-feature programming model. pub fn sleep_button_is_control_method(&self) -> bool { self.0.get_bit(5) } /// If true, the RTC wake status is not supported in fixed register space. pub fn no_rtc_wake_in_fixed_register_space(&self) -> bool { self.0.get_bit(6) } /// If true, the RTC alarm function can wake the system from an S4 sleep state. pub fn rtc_wakes_system_from_s4(&self) -> bool { self.0.get_bit(7) } /// If true, indicates that the PM timer is a 32-bit value. /// If false, the PM timer is a 24-bit value and the remaining 8 bits are clear. pub fn pm_timer_is_32_bit(&self) -> bool { self.0.get_bit(8) } /// If true, the system supports docking. pub fn supports_docking(&self) -> bool { self.0.get_bit(9) } /// If true, the system supports system reset via the reset_reg field of the FADT. pub fn supports_system_reset_via_fadt(&self) -> bool { self.0.get_bit(10) } /// If true, the system supports no expansion capabilities and the case is sealed. pub fn case_is_sealed(&self) -> bool { self.0.get_bit(11) } /// If true, the system cannot detect the monitor or keyboard/mouse devices. pub fn system_is_headless(&self) -> bool { self.0.get_bit(12) } /// If true, OSPM must use a processor instruction after writing to the SLP_TYPx register. pub fn use_instr_after_write_to_slp_typx(&self) -> bool { self.0.get_bit(13) } /// If set, the platform supports the `PCIEXP_WAKE_STS` and `PCIEXP_WAKE_EN` bits in the PM1 status and enable registers. pub fn supports_pciexp_wake_in_pm1(&self) -> bool { self.0.get_bit(14) } /// If true, OSPM should use the ACPI power management timer or HPET for monotonically-decreasing timers. pub fn use_pm_or_hpet_for_monotonically_decreasing_timers(&self) -> bool { self.0.get_bit(15) } /// If true, the contents of the `RTC_STS` register are valid after wakeup from S4. pub fn rtc_sts_is_valid_after_wakeup_from_s4(&self) -> bool { self.0.get_bit(16) } /// If true, the platform supports OSPM leaving GPE wake events armed prior to an S5 transition. pub fn ospm_may_leave_gpe_wake_events_armed_before_s5(&self) -> bool { self.0.get_bit(17) } /// If true, all LAPICs must be configured using the cluster destination model when delivering interrupts in logical mode. pub fn lapics_must_use_cluster_model_for_logical_mode(&self) -> bool { self.0.get_bit(18) } /// If true, all LXAPICs must be configured using physical destination mode. pub fn local_xapics_must_use_physical_destination_mode(&self) -> bool { self.0.get_bit(19) } /// If true, this system is a hardware-reduced ACPI platform, and software methods are used for fixed-feature functions defined in chapter 4 of the ACPI specification. pub fn system_is_hw_reduced_acpi(&self) -> bool { self.0.get_bit(20) } /// If true, the system can achieve equal or better power savings in an S0 power state, making an S3 transition useless. pub fn no_benefit_to_s3(&self) -> bool { self.0.get_bit(21) } } #[derive(Clone, Copy, Debug)] pub struct IaPcBootArchFlags(u16); impl IaPcBootArchFlags { /// If true, legacy user-accessible devices are available on the LPC and/or ISA buses. pub fn legacy_devices_are_accessible(&self) -> bool { self.0.get_bit(0) } /// If true, the motherboard exposes an IO port 60/64 keyboard controller, typically implemented as an 8042 microcontroller. pub fn motherboard_implements_8042(&self) -> bool { self.0.get_bit(1) } /// If true, OSPM *must not* blindly probe VGA hardware. /// VGA hardware is at MMIO addresses A0000h-BFFFFh and IO ports 3B0h-3BBh and 3C0h-3DFh. pub fn dont_probe_vga(&self) -> bool { self.0.get_bit(2) } /// If true, OSPM *must not* enable message-signaled interrupts. pub fn dont_enable_msi(&self) -> bool { self.0.get_bit(3) } /// If true, OSPM *must not* enable PCIe ASPM control. pub fn dont_enable_pcie_aspm(&self) -> bool { self.0.get_bit(4) } /// If true, OSPM *must not* use the RTC via its IO ports, either because it isn't implemented or is at other addresses; /// instead, OSPM *MUST* use the time and alarm namespace device control method. pub fn use_time_and_alarm_namespace_for_rtc(&self) -> bool { self.0.get_bit(5) } } #[derive(Clone, Copy, Debug)] pub struct ArmBootArchFlags(u16); impl ArmBootArchFlags { /// If true, the system implements PSCI. pub fn implements_psci(&self) -> bool { self.0.get_bit(0) } /// If true, OSPM must use HVC instead of SMC as the PSCI conduit. pub fn use_hvc_as_psci_conduit(&self) -> bool { self.0.get_bit(1) } }