aboutsummaryrefslogtreecommitdiff
path: root/src/naive/datetime.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/naive/datetime.rs')
-rw-r--r--src/naive/datetime.rs2507
1 files changed, 2507 insertions, 0 deletions
diff --git a/src/naive/datetime.rs b/src/naive/datetime.rs
new file mode 100644
index 0000000..92d6c28
--- /dev/null
+++ b/src/naive/datetime.rs
@@ -0,0 +1,2507 @@
+// This is a part of Chrono.
+// See README.md and LICENSE.txt for details.
+
+//! ISO 8601 date and time without timezone.
+
+#[cfg(any(feature = "alloc", feature = "std", test))]
+use core::borrow::Borrow;
+use core::ops::{Add, AddAssign, Sub, SubAssign};
+use core::{fmt, hash, str};
+use num_traits::ToPrimitive;
+use oldtime::Duration as OldDuration;
+
+use div::div_mod_floor;
+#[cfg(any(feature = "alloc", feature = "std", test))]
+use format::DelayedFormat;
+use format::{parse, ParseError, ParseResult, Parsed, StrftimeItems};
+use format::{Fixed, Item, Numeric, Pad};
+use naive::date::{MAX_DATE, MIN_DATE};
+use naive::time::{MAX_TIME, MIN_TIME};
+use naive::{IsoWeek, NaiveDate, NaiveTime};
+use {Datelike, Timelike, Weekday};
+
+/// The tight upper bound guarantees that a duration with `|Duration| >= 2^MAX_SECS_BITS`
+/// will always overflow the addition with any date and time type.
+///
+/// So why is this needed? `Duration::seconds(rhs)` may overflow, and we don't have
+/// an alternative returning `Option` or `Result`. Thus we need some early bound to avoid
+/// touching that call when we are already sure that it WILL overflow...
+const MAX_SECS_BITS: usize = 44;
+
+/// The minimum possible `NaiveDateTime`.
+pub const MIN_DATETIME: NaiveDateTime = NaiveDateTime { date: MIN_DATE, time: MIN_TIME };
+/// The maximum possible `NaiveDateTime`.
+pub const MAX_DATETIME: NaiveDateTime = NaiveDateTime { date: MAX_DATE, time: MAX_TIME };
+
+/// ISO 8601 combined date and time without timezone.
+///
+/// # Example
+///
+/// `NaiveDateTime` is commonly created from [`NaiveDate`](./struct.NaiveDate.html).
+///
+/// ~~~~
+/// use chrono::{NaiveDate, NaiveDateTime};
+///
+/// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
+/// # let _ = dt;
+/// ~~~~
+///
+/// You can use typical [date-like](../trait.Datelike.html) and
+/// [time-like](../trait.Timelike.html) methods,
+/// provided that relevant traits are in the scope.
+///
+/// ~~~~
+/// # use chrono::{NaiveDate, NaiveDateTime};
+/// # let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
+/// use chrono::{Datelike, Timelike, Weekday};
+///
+/// assert_eq!(dt.weekday(), Weekday::Fri);
+/// assert_eq!(dt.num_seconds_from_midnight(), 33011);
+/// ~~~~
+#[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
+pub struct NaiveDateTime {
+ date: NaiveDate,
+ time: NaiveTime,
+}
+
+impl NaiveDateTime {
+ /// Makes a new `NaiveDateTime` from date and time components.
+ /// Equivalent to [`date.and_time(time)`](./struct.NaiveDate.html#method.and_time)
+ /// and many other helper constructors on `NaiveDate`.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveTime, NaiveDateTime};
+ ///
+ /// let d = NaiveDate::from_ymd(2015, 6, 3);
+ /// let t = NaiveTime::from_hms_milli(12, 34, 56, 789);
+ ///
+ /// let dt = NaiveDateTime::new(d, t);
+ /// assert_eq!(dt.date(), d);
+ /// assert_eq!(dt.time(), t);
+ /// ~~~~
+ #[inline]
+ pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime {
+ NaiveDateTime { date: date, time: time }
+ }
+
+ /// Makes a new `NaiveDateTime` corresponding to a UTC date and time,
+ /// from the number of non-leap seconds
+ /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
+ /// and the number of nanoseconds since the last whole non-leap second.
+ ///
+ /// For a non-naive version of this function see
+ /// [`TimeZone::timestamp`](../offset/trait.TimeZone.html#method.timestamp).
+ ///
+ /// The nanosecond part can exceed 1,000,000,000 in order to represent the
+ /// [leap second](./struct.NaiveTime.html#leap-second-handling). (The true "UNIX
+ /// timestamp" cannot represent a leap second unambiguously.)
+ ///
+ /// Panics on the out-of-range number of seconds and/or invalid nanosecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDateTime, NaiveDate};
+ ///
+ /// let dt = NaiveDateTime::from_timestamp(0, 42_000_000);
+ /// assert_eq!(dt, NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 0, 42));
+ ///
+ /// let dt = NaiveDateTime::from_timestamp(1_000_000_000, 0);
+ /// assert_eq!(dt, NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40));
+ /// ~~~~
+ #[inline]
+ pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime {
+ let datetime = NaiveDateTime::from_timestamp_opt(secs, nsecs);
+ datetime.expect("invalid or out-of-range datetime")
+ }
+
+ /// Makes a new `NaiveDateTime` corresponding to a UTC date and time,
+ /// from the number of non-leap seconds
+ /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
+ /// and the number of nanoseconds since the last whole non-leap second.
+ ///
+ /// The nanosecond part can exceed 1,000,000,000
+ /// in order to represent the [leap second](./struct.NaiveTime.html#leap-second-handling).
+ /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
+ ///
+ /// Returns `None` on the out-of-range number of seconds and/or invalid nanosecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDateTime, NaiveDate};
+ /// use std::i64;
+ ///
+ /// let from_timestamp_opt = NaiveDateTime::from_timestamp_opt;
+ ///
+ /// assert!(from_timestamp_opt(0, 0).is_some());
+ /// assert!(from_timestamp_opt(0, 999_999_999).is_some());
+ /// assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second
+ /// assert!(from_timestamp_opt(0, 2_000_000_000).is_none());
+ /// assert!(from_timestamp_opt(i64::MAX, 0).is_none());
+ /// ~~~~
+ #[inline]
+ pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime> {
+ let (days, secs) = div_mod_floor(secs, 86_400);
+ let date = days
+ .to_i32()
+ .and_then(|days| days.checked_add(719_163))
+ .and_then(NaiveDate::from_num_days_from_ce_opt);
+ let time = NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs);
+ match (date, time) {
+ (Some(date), Some(time)) => Some(NaiveDateTime { date: date, time: time }),
+ (_, _) => None,
+ }
+ }
+
+ /// Parses a string with the specified format string and returns a new `NaiveDateTime`.
+ /// See the [`format::strftime` module](../format/strftime/index.html)
+ /// on the supported escape sequences.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDateTime, NaiveDate};
+ ///
+ /// let parse_from_str = NaiveDateTime::parse_from_str;
+ ///
+ /// assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"),
+ /// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4)));
+ /// assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"),
+ /// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms_micro(13, 23, 45, 678_900)));
+ /// ~~~~
+ ///
+ /// Offset is ignored for the purpose of parsing.
+ ///
+ /// ~~~~
+ /// # use chrono::{NaiveDateTime, NaiveDate};
+ /// # let parse_from_str = NaiveDateTime::parse_from_str;
+ /// assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
+ /// Ok(NaiveDate::from_ymd(2014, 5, 17).and_hms(12, 34, 56)));
+ /// ~~~~
+ ///
+ /// [Leap seconds](./struct.NaiveTime.html#leap-second-handling) are correctly handled by
+ /// treating any time of the form `hh:mm:60` as a leap second.
+ /// (This equally applies to the formatting, so the round trip is possible.)
+ ///
+ /// ~~~~
+ /// # use chrono::{NaiveDateTime, NaiveDate};
+ /// # let parse_from_str = NaiveDateTime::parse_from_str;
+ /// assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"),
+ /// Ok(NaiveDate::from_ymd(2015, 7, 1).and_hms_milli(8, 59, 59, 1_123)));
+ /// ~~~~
+ ///
+ /// Missing seconds are assumed to be zero,
+ /// but out-of-bound times or insufficient fields are errors otherwise.
+ ///
+ /// ~~~~
+ /// # use chrono::{NaiveDateTime, NaiveDate};
+ /// # let parse_from_str = NaiveDateTime::parse_from_str;
+ /// assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"),
+ /// Ok(NaiveDate::from_ymd(1994, 9, 4).and_hms(7, 15, 0)));
+ ///
+ /// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
+ /// assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err());
+ /// assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err());
+ /// assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err());
+ /// ~~~~
+ ///
+ /// All parsed fields should be consistent to each other, otherwise it's an error.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveDateTime;
+ /// # let parse_from_str = NaiveDateTime::parse_from_str;
+ /// let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s";
+ /// assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok());
+ /// assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err());
+ /// ~~~~
+ pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime> {
+ let mut parsed = Parsed::new();
+ parse(&mut parsed, s, StrftimeItems::new(fmt))?;
+ parsed.to_naive_datetime_with_offset(0) // no offset adjustment
+ }
+
+ /// Retrieves a date component.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ ///
+ /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
+ /// assert_eq!(dt.date(), NaiveDate::from_ymd(2016, 7, 8));
+ /// ~~~~
+ #[inline]
+ pub fn date(&self) -> NaiveDate {
+ self.date
+ }
+
+ /// Retrieves a time component.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveTime};
+ ///
+ /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
+ /// assert_eq!(dt.time(), NaiveTime::from_hms(9, 10, 11));
+ /// ~~~~
+ #[inline]
+ pub fn time(&self) -> NaiveTime {
+ self.time
+ }
+
+ /// Returns the number of non-leap seconds since the midnight on January 1, 1970.
+ ///
+ /// Note that this does *not* account for the timezone!
+ /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ ///
+ /// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 980);
+ /// assert_eq!(dt.timestamp(), 1);
+ ///
+ /// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40);
+ /// assert_eq!(dt.timestamp(), 1_000_000_000);
+ ///
+ /// let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59);
+ /// assert_eq!(dt.timestamp(), -1);
+ ///
+ /// let dt = NaiveDate::from_ymd(-1, 1, 1).and_hms(0, 0, 0);
+ /// assert_eq!(dt.timestamp(), -62198755200);
+ /// ~~~~
+ #[inline]
+ pub fn timestamp(&self) -> i64 {
+ const UNIX_EPOCH_DAY: i64 = 719_163;
+ let gregorian_day = i64::from(self.date.num_days_from_ce());
+ let seconds_from_midnight = i64::from(self.time.num_seconds_from_midnight());
+ (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight
+ }
+
+ /// Returns the number of non-leap *milliseconds* since midnight on January 1, 1970.
+ ///
+ /// Note that this does *not* account for the timezone!
+ /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
+ ///
+ /// Note also that this does reduce the number of years that can be
+ /// represented from ~584 Billion to ~584 Million. (If this is a problem,
+ /// please file an issue to let me know what domain needs millisecond
+ /// precision over billions of years, I'm curious.)
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ ///
+ /// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 444);
+ /// assert_eq!(dt.timestamp_millis(), 1_444);
+ ///
+ /// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_milli(1, 46, 40, 555);
+ /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
+ ///
+ /// let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms_milli(23, 59, 59, 100);
+ /// assert_eq!(dt.timestamp_millis(), -900);
+ /// ~~~~
+ #[inline]
+ pub fn timestamp_millis(&self) -> i64 {
+ let as_ms = self.timestamp() * 1000;
+ as_ms + i64::from(self.timestamp_subsec_millis())
+ }
+
+ /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970.
+ ///
+ /// Note that this does *not* account for the timezone!
+ /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
+ ///
+ /// # Panics
+ ///
+ /// Note also that this does reduce the number of years that can be
+ /// represented from ~584 Billion to ~584 years. The dates that can be
+ /// represented as nanoseconds are between 1677-09-21T00:12:44.0 and
+ /// 2262-04-11T23:47:16.854775804.
+ ///
+ /// (If this is a problem, please file an issue to let me know what domain
+ /// needs nanosecond precision over millennia, I'm curious.)
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime};
+ ///
+ /// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_nano(0, 0, 1, 444);
+ /// assert_eq!(dt.timestamp_nanos(), 1_000_000_444);
+ ///
+ /// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_nano(1, 46, 40, 555);
+ ///
+ /// const A_BILLION: i64 = 1_000_000_000;
+ /// let nanos = dt.timestamp_nanos();
+ /// assert_eq!(nanos, 1_000_000_000_000_000_555);
+ /// assert_eq!(
+ /// dt,
+ /// NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
+ /// );
+ /// ~~~~
+ #[inline]
+ pub fn timestamp_nanos(&self) -> i64 {
+ let as_ns = self.timestamp() * 1_000_000_000;
+ as_ns + i64::from(self.timestamp_subsec_nanos())
+ }
+
+ /// Returns the number of milliseconds since the last whole non-leap second.
+ ///
+ /// The return value ranges from 0 to 999,
+ /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ ///
+ /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
+ /// assert_eq!(dt.timestamp_subsec_millis(), 123);
+ ///
+ /// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
+ /// assert_eq!(dt.timestamp_subsec_millis(), 1_234);
+ /// ~~~~
+ #[inline]
+ pub fn timestamp_subsec_millis(&self) -> u32 {
+ self.timestamp_subsec_nanos() / 1_000_000
+ }
+
+ /// Returns the number of microseconds since the last whole non-leap second.
+ ///
+ /// The return value ranges from 0 to 999,999,
+ /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ ///
+ /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
+ /// assert_eq!(dt.timestamp_subsec_micros(), 123_456);
+ ///
+ /// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
+ /// assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
+ /// ~~~~
+ #[inline]
+ pub fn timestamp_subsec_micros(&self) -> u32 {
+ self.timestamp_subsec_nanos() / 1_000
+ }
+
+ /// Returns the number of nanoseconds since the last whole non-leap second.
+ ///
+ /// The return value ranges from 0 to 999,999,999,
+ /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999,999.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ ///
+ /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
+ /// assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789);
+ ///
+ /// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
+ /// assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
+ /// ~~~~
+ #[inline]
+ pub fn timestamp_subsec_nanos(&self) -> u32 {
+ self.time.nanosecond()
+ }
+
+ /// Adds given `Duration` to the current date and time.
+ ///
+ /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
+ /// the addition assumes that **there is no leap second ever**,
+ /// except when the `NaiveDateTime` itself represents a leap second
+ /// in which case the assumption becomes that **there is exactly a single leap second ever**.
+ ///
+ /// Returns `None` when it will result in overflow.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// use chrono::{Duration, NaiveDate};
+ ///
+ /// let from_ymd = NaiveDate::from_ymd;
+ ///
+ /// let d = from_ymd(2016, 7, 8);
+ /// let hms = |h, m, s| d.and_hms(h, m, s);
+ /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()),
+ /// Some(hms(3, 5, 7)));
+ /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)),
+ /// Some(hms(3, 5, 8)));
+ /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)),
+ /// Some(hms(3, 5, 6)));
+ /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)),
+ /// Some(hms(4, 6, 7)));
+ /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)),
+ /// Some(from_ymd(2016, 7, 9).and_hms(3, 5, 7)));
+ ///
+ /// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
+ /// assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)),
+ /// Some(hmsm(3, 5, 8, 430)));
+ /// # }
+ /// ~~~~
+ ///
+ /// Overflow returns `None`.
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// # use chrono::{Duration, NaiveDate};
+ /// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s);
+ /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None);
+ /// # }
+ /// ~~~~
+ ///
+ /// Leap seconds are handled,
+ /// but the addition assumes that it is the only leap second happened.
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// # use chrono::{Duration, NaiveDate};
+ /// # let from_ymd = NaiveDate::from_ymd;
+ /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
+ /// let leap = hmsm(3, 5, 59, 1_300);
+ /// assert_eq!(leap.checked_add_signed(Duration::zero()),
+ /// Some(hmsm(3, 5, 59, 1_300)));
+ /// assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)),
+ /// Some(hmsm(3, 5, 59, 800)));
+ /// assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)),
+ /// Some(hmsm(3, 5, 59, 1_800)));
+ /// assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)),
+ /// Some(hmsm(3, 6, 0, 100)));
+ /// assert_eq!(leap.checked_add_signed(Duration::seconds(10)),
+ /// Some(hmsm(3, 6, 9, 300)));
+ /// assert_eq!(leap.checked_add_signed(Duration::seconds(-10)),
+ /// Some(hmsm(3, 5, 50, 300)));
+ /// assert_eq!(leap.checked_add_signed(Duration::days(1)),
+ /// Some(from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300)));
+ /// # }
+ /// ~~~~
+ pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime> {
+ let (time, rhs) = self.time.overflowing_add_signed(rhs);
+
+ // early checking to avoid overflow in OldDuration::seconds
+ if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) {
+ return None;
+ }
+
+ let date = try_opt!(self.date.checked_add_signed(OldDuration::seconds(rhs)));
+ Some(NaiveDateTime { date: date, time: time })
+ }
+
+ /// Subtracts given `Duration` from the current date and time.
+ ///
+ /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
+ /// the subtraction assumes that **there is no leap second ever**,
+ /// except when the `NaiveDateTime` itself represents a leap second
+ /// in which case the assumption becomes that **there is exactly a single leap second ever**.
+ ///
+ /// Returns `None` when it will result in overflow.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// use chrono::{Duration, NaiveDate};
+ ///
+ /// let from_ymd = NaiveDate::from_ymd;
+ ///
+ /// let d = from_ymd(2016, 7, 8);
+ /// let hms = |h, m, s| d.and_hms(h, m, s);
+ /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()),
+ /// Some(hms(3, 5, 7)));
+ /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)),
+ /// Some(hms(3, 5, 6)));
+ /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)),
+ /// Some(hms(3, 5, 8)));
+ /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)),
+ /// Some(hms(2, 4, 7)));
+ /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)),
+ /// Some(from_ymd(2016, 7, 7).and_hms(3, 5, 7)));
+ ///
+ /// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
+ /// assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)),
+ /// Some(hmsm(3, 5, 6, 780)));
+ /// # }
+ /// ~~~~
+ ///
+ /// Overflow returns `None`.
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// # use chrono::{Duration, NaiveDate};
+ /// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s);
+ /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None);
+ /// # }
+ /// ~~~~
+ ///
+ /// Leap seconds are handled,
+ /// but the subtraction assumes that it is the only leap second happened.
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// # use chrono::{Duration, NaiveDate};
+ /// # let from_ymd = NaiveDate::from_ymd;
+ /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
+ /// let leap = hmsm(3, 5, 59, 1_300);
+ /// assert_eq!(leap.checked_sub_signed(Duration::zero()),
+ /// Some(hmsm(3, 5, 59, 1_300)));
+ /// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)),
+ /// Some(hmsm(3, 5, 59, 1_100)));
+ /// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)),
+ /// Some(hmsm(3, 5, 59, 800)));
+ /// assert_eq!(leap.checked_sub_signed(Duration::seconds(60)),
+ /// Some(hmsm(3, 5, 0, 300)));
+ /// assert_eq!(leap.checked_sub_signed(Duration::days(1)),
+ /// Some(from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300)));
+ /// # }
+ /// ~~~~
+ pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime> {
+ let (time, rhs) = self.time.overflowing_sub_signed(rhs);
+
+ // early checking to avoid overflow in OldDuration::seconds
+ if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) {
+ return None;
+ }
+
+ let date = try_opt!(self.date.checked_sub_signed(OldDuration::seconds(rhs)));
+ Some(NaiveDateTime { date: date, time: time })
+ }
+
+ /// Subtracts another `NaiveDateTime` from the current date and time.
+ /// This does not overflow or underflow at all.
+ ///
+ /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
+ /// the subtraction assumes that **there is no leap second ever**,
+ /// except when any of the `NaiveDateTime`s themselves represents a leap second
+ /// in which case the assumption becomes that
+ /// **there are exactly one (or two) leap second(s) ever**.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// use chrono::{Duration, NaiveDate};
+ ///
+ /// let from_ymd = NaiveDate::from_ymd;
+ ///
+ /// let d = from_ymd(2016, 7, 8);
+ /// assert_eq!(d.and_hms(3, 5, 7).signed_duration_since(d.and_hms(2, 4, 6)),
+ /// Duration::seconds(3600 + 60 + 1));
+ ///
+ /// // July 8 is 190th day in the year 2016
+ /// let d0 = from_ymd(2016, 1, 1);
+ /// assert_eq!(d.and_hms_milli(0, 7, 6, 500).signed_duration_since(d0.and_hms(0, 0, 0)),
+ /// Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
+ /// # }
+ /// ~~~~
+ ///
+ /// Leap seconds are handled, but the subtraction assumes that
+ /// there were no other leap seconds happened.
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// # use chrono::{Duration, NaiveDate};
+ /// # let from_ymd = NaiveDate::from_ymd;
+ /// let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
+ /// assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms(23, 0, 0)),
+ /// Duration::seconds(3600) + Duration::milliseconds(500));
+ /// assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0).signed_duration_since(leap),
+ /// Duration::seconds(3600) - Duration::milliseconds(500));
+ /// # }
+ /// ~~~~
+ pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration {
+ self.date.signed_duration_since(rhs.date) + self.time.signed_duration_since(rhs.time)
+ }
+
+ /// Formats the combined date and time with the specified formatting items.
+ /// Otherwise it is the same as the ordinary [`format`](#method.format) method.
+ ///
+ /// The `Iterator` of items should be `Clone`able,
+ /// since the resulting `DelayedFormat` value may be formatted multiple times.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ /// use chrono::format::strftime::StrftimeItems;
+ ///
+ /// let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S");
+ /// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
+ /// assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04");
+ /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
+ /// ~~~~
+ ///
+ /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveDate;
+ /// # use chrono::format::strftime::StrftimeItems;
+ /// # let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S").clone();
+ /// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
+ /// assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04");
+ /// ~~~~
+ #[cfg(any(feature = "alloc", feature = "std", test))]
+ #[inline]
+ pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
+ where
+ I: Iterator<Item = B> + Clone,
+ B: Borrow<Item<'a>>,
+ {
+ DelayedFormat::new(Some(self.date), Some(self.time), items)
+ }
+
+ /// Formats the combined date and time with the specified format string.
+ /// See the [`format::strftime` module](../format/strftime/index.html)
+ /// on the supported escape sequences.
+ ///
+ /// This returns a `DelayedFormat`,
+ /// which gets converted to a string only when actual formatting happens.
+ /// You may use the `to_string` method to get a `String`,
+ /// or just feed it into `print!` and other formatting macros.
+ /// (In this way it avoids the redundant memory allocation.)
+ ///
+ /// A wrong format string does *not* issue an error immediately.
+ /// Rather, converting or formatting the `DelayedFormat` fails.
+ /// You are recommended to immediately use `DelayedFormat` for this reason.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveDate;
+ ///
+ /// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
+ /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
+ /// assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5");
+ /// ~~~~
+ ///
+ /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveDate;
+ /// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
+ /// assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04");
+ /// assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5");
+ /// ~~~~
+ #[cfg(any(feature = "alloc", feature = "std", test))]
+ #[inline]
+ pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
+ self.format_with_items(StrftimeItems::new(fmt))
+ }
+}
+
+impl Datelike for NaiveDateTime {
+ /// Returns the year number in the [calendar date](./index.html#calendar-date).
+ ///
+ /// See also the [`NaiveDate::year`](./struct.NaiveDate.html#method.year) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.year(), 2015);
+ /// ~~~~
+ #[inline]
+ fn year(&self) -> i32 {
+ self.date.year()
+ }
+
+ /// Returns the month number starting from 1.
+ ///
+ /// The return value ranges from 1 to 12.
+ ///
+ /// See also the [`NaiveDate::month`](./struct.NaiveDate.html#method.month) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.month(), 9);
+ /// ~~~~
+ #[inline]
+ fn month(&self) -> u32 {
+ self.date.month()
+ }
+
+ /// Returns the month number starting from 0.
+ ///
+ /// The return value ranges from 0 to 11.
+ ///
+ /// See also the [`NaiveDate::month0`](./struct.NaiveDate.html#method.month0) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.month0(), 8);
+ /// ~~~~
+ #[inline]
+ fn month0(&self) -> u32 {
+ self.date.month0()
+ }
+
+ /// Returns the day of month starting from 1.
+ ///
+ /// The return value ranges from 1 to 31. (The last day of month differs by months.)
+ ///
+ /// See also the [`NaiveDate::day`](./struct.NaiveDate.html#method.day) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.day(), 25);
+ /// ~~~~
+ #[inline]
+ fn day(&self) -> u32 {
+ self.date.day()
+ }
+
+ /// Returns the day of month starting from 0.
+ ///
+ /// The return value ranges from 0 to 30. (The last day of month differs by months.)
+ ///
+ /// See also the [`NaiveDate::day0`](./struct.NaiveDate.html#method.day0) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.day0(), 24);
+ /// ~~~~
+ #[inline]
+ fn day0(&self) -> u32 {
+ self.date.day0()
+ }
+
+ /// Returns the day of year starting from 1.
+ ///
+ /// The return value ranges from 1 to 366. (The last day of year differs by years.)
+ ///
+ /// See also the [`NaiveDate::ordinal`](./struct.NaiveDate.html#method.ordinal) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.ordinal(), 268);
+ /// ~~~~
+ #[inline]
+ fn ordinal(&self) -> u32 {
+ self.date.ordinal()
+ }
+
+ /// Returns the day of year starting from 0.
+ ///
+ /// The return value ranges from 0 to 365. (The last day of year differs by years.)
+ ///
+ /// See also the [`NaiveDate::ordinal0`](./struct.NaiveDate.html#method.ordinal0) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.ordinal0(), 267);
+ /// ~~~~
+ #[inline]
+ fn ordinal0(&self) -> u32 {
+ self.date.ordinal0()
+ }
+
+ /// Returns the day of week.
+ ///
+ /// See also the [`NaiveDate::weekday`](./struct.NaiveDate.html#method.weekday) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike, Weekday};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.weekday(), Weekday::Fri);
+ /// ~~~~
+ #[inline]
+ fn weekday(&self) -> Weekday {
+ self.date.weekday()
+ }
+
+ #[inline]
+ fn iso_week(&self) -> IsoWeek {
+ self.date.iso_week()
+ }
+
+ /// Makes a new `NaiveDateTime` with the year number changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveDate::with_year`](./struct.NaiveDate.html#method.with_year) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_year(2016), Some(NaiveDate::from_ymd(2016, 9, 25).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_year(-308), Some(NaiveDate::from_ymd(-308, 9, 25).and_hms(12, 34, 56)));
+ /// ~~~~
+ #[inline]
+ fn with_year(&self, year: i32) -> Option<NaiveDateTime> {
+ self.date.with_year(year).map(|d| NaiveDateTime { date: d, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the month number (starting from 1) changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveDate::with_month`](./struct.NaiveDate.html#method.with_month) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_month(10), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_month(13), None); // no month 13
+ /// assert_eq!(dt.with_month(2), None); // no February 30
+ /// ~~~~
+ #[inline]
+ fn with_month(&self, month: u32) -> Option<NaiveDateTime> {
+ self.date.with_month(month).map(|d| NaiveDateTime { date: d, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the month number (starting from 0) changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveDate::with_month0`](./struct.NaiveDate.html#method.with_month0) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_month0(9), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_month0(12), None); // no month 13
+ /// assert_eq!(dt.with_month0(1), None); // no February 30
+ /// ~~~~
+ #[inline]
+ fn with_month0(&self, month0: u32) -> Option<NaiveDateTime> {
+ self.date.with_month0(month0).map(|d| NaiveDateTime { date: d, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the day of month (starting from 1) changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveDate::with_day`](./struct.NaiveDate.html#method.with_day) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_day(30), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_day(31), None); // no September 31
+ /// ~~~~
+ #[inline]
+ fn with_day(&self, day: u32) -> Option<NaiveDateTime> {
+ self.date.with_day(day).map(|d| NaiveDateTime { date: d, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the day of month (starting from 0) changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveDate::with_day0`](./struct.NaiveDate.html#method.with_day0) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_day0(29), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_day0(30), None); // no September 31
+ /// ~~~~
+ #[inline]
+ fn with_day0(&self, day0: u32) -> Option<NaiveDateTime> {
+ self.date.with_day0(day0).map(|d| NaiveDateTime { date: d, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the day of year (starting from 1) changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveDate::with_ordinal`](./struct.NaiveDate.html#method.with_ordinal) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_ordinal(60),
+ /// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_ordinal(60),
+ /// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_ordinal(366),
+ /// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
+ /// ~~~~
+ #[inline]
+ fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime> {
+ self.date.with_ordinal(ordinal).map(|d| NaiveDateTime { date: d, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the day of year (starting from 0) changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveDate::with_ordinal0`](./struct.NaiveDate.html#method.with_ordinal0) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Datelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_ordinal0(59),
+ /// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56);
+ /// assert_eq!(dt.with_ordinal0(59),
+ /// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56)));
+ /// assert_eq!(dt.with_ordinal0(365),
+ /// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
+ /// ~~~~
+ #[inline]
+ fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime> {
+ self.date.with_ordinal0(ordinal0).map(|d| NaiveDateTime { date: d, ..*self })
+ }
+}
+
+impl Timelike for NaiveDateTime {
+ /// Returns the hour number from 0 to 23.
+ ///
+ /// See also the [`NaiveTime::hour`](./struct.NaiveTime.html#method.hour) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.hour(), 12);
+ /// ~~~~
+ #[inline]
+ fn hour(&self) -> u32 {
+ self.time.hour()
+ }
+
+ /// Returns the minute number from 0 to 59.
+ ///
+ /// See also the [`NaiveTime::minute`](./struct.NaiveTime.html#method.minute) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.minute(), 34);
+ /// ~~~~
+ #[inline]
+ fn minute(&self) -> u32 {
+ self.time.minute()
+ }
+
+ /// Returns the second number from 0 to 59.
+ ///
+ /// See also the [`NaiveTime::second`](./struct.NaiveTime.html#method.second) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.second(), 56);
+ /// ~~~~
+ #[inline]
+ fn second(&self) -> u32 {
+ self.time.second()
+ }
+
+ /// Returns the number of nanoseconds since the whole non-leap second.
+ /// The range from 1,000,000,000 to 1,999,999,999 represents
+ /// the [leap second](./struct.NaiveTime.html#leap-second-handling).
+ ///
+ /// See also the
+ /// [`NaiveTime::nanosecond`](./struct.NaiveTime.html#method.nanosecond) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.nanosecond(), 789_000_000);
+ /// ~~~~
+ #[inline]
+ fn nanosecond(&self) -> u32 {
+ self.time.nanosecond()
+ }
+
+ /// Makes a new `NaiveDateTime` with the hour number changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveTime::with_hour`](./struct.NaiveTime.html#method.with_hour) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.with_hour(7),
+ /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(7, 34, 56, 789)));
+ /// assert_eq!(dt.with_hour(24), None);
+ /// ~~~~
+ #[inline]
+ fn with_hour(&self, hour: u32) -> Option<NaiveDateTime> {
+ self.time.with_hour(hour).map(|t| NaiveDateTime { time: t, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the minute number changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ ///
+ /// See also the
+ /// [`NaiveTime::with_minute`](./struct.NaiveTime.html#method.with_minute) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.with_minute(45),
+ /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 45, 56, 789)));
+ /// assert_eq!(dt.with_minute(60), None);
+ /// ~~~~
+ #[inline]
+ fn with_minute(&self, min: u32) -> Option<NaiveDateTime> {
+ self.time.with_minute(min).map(|t| NaiveDateTime { time: t, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with the second number changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ /// As with the [`second`](#method.second) method,
+ /// the input range is restricted to 0 through 59.
+ ///
+ /// See also the
+ /// [`NaiveTime::with_second`](./struct.NaiveTime.html#method.with_second) method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.with_second(17),
+ /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 17, 789)));
+ /// assert_eq!(dt.with_second(60), None);
+ /// ~~~~
+ #[inline]
+ fn with_second(&self, sec: u32) -> Option<NaiveDateTime> {
+ self.time.with_second(sec).map(|t| NaiveDateTime { time: t, ..*self })
+ }
+
+ /// Makes a new `NaiveDateTime` with nanoseconds since the whole non-leap second changed.
+ ///
+ /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
+ /// As with the [`nanosecond`](#method.nanosecond) method,
+ /// the input range can exceed 1,000,000,000 for leap seconds.
+ ///
+ /// See also the
+ /// [`NaiveTime::with_nanosecond`](./struct.NaiveTime.html#method.with_nanosecond)
+ /// method.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveDate, NaiveDateTime, Timelike};
+ ///
+ /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
+ /// assert_eq!(dt.with_nanosecond(333_333_333),
+ /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 333_333_333)));
+ /// assert_eq!(dt.with_nanosecond(1_333_333_333), // leap second
+ /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 1_333_333_333)));
+ /// assert_eq!(dt.with_nanosecond(2_000_000_000), None);
+ /// ~~~~
+ #[inline]
+ fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime> {
+ self.time.with_nanosecond(nano).map(|t| NaiveDateTime { time: t, ..*self })
+ }
+}
+
+/// `NaiveDateTime` can be used as a key to the hash maps (in principle).
+///
+/// Practically this also takes account of fractional seconds, so it is not recommended.
+/// (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
+impl hash::Hash for NaiveDateTime {
+ fn hash<H: hash::Hasher>(&self, state: &mut H) {
+ self.date.hash(state);
+ self.time.hash(state);
+ }
+}
+
+/// An addition of `Duration` to `NaiveDateTime` yields another `NaiveDateTime`.
+///
+/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
+/// the addition assumes that **there is no leap second ever**,
+/// except when the `NaiveDateTime` itself represents a leap second
+/// in which case the assumption becomes that **there is exactly a single leap second ever**.
+///
+/// Panics on underflow or overflow.
+/// Use [`NaiveDateTime::checked_add_signed`](#method.checked_add_signed) to detect that.
+///
+/// # Example
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// use chrono::{Duration, NaiveDate};
+///
+/// let from_ymd = NaiveDate::from_ymd;
+///
+/// let d = from_ymd(2016, 7, 8);
+/// let hms = |h, m, s| d.and_hms(h, m, s);
+/// assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7));
+/// assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8));
+/// assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6));
+/// assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
+/// assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
+/// from_ymd(2016, 7, 9).and_hms(3, 5, 7));
+/// assert_eq!(hms(3, 5, 7) + Duration::days(365),
+/// from_ymd(2017, 7, 8).and_hms(3, 5, 7));
+///
+/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
+/// assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
+/// # }
+/// ~~~~
+///
+/// Leap seconds are handled,
+/// but the addition assumes that it is the only leap second happened.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveDate};
+/// # let from_ymd = NaiveDate::from_ymd;
+/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
+/// let leap = hmsm(3, 5, 59, 1_300);
+/// assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300));
+/// assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
+/// assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800));
+/// assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100));
+/// assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300));
+/// assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300));
+/// assert_eq!(leap + Duration::days(1),
+/// from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300));
+/// # }
+/// ~~~~
+impl Add<OldDuration> for NaiveDateTime {
+ type Output = NaiveDateTime;
+
+ #[inline]
+ fn add(self, rhs: OldDuration) -> NaiveDateTime {
+ self.checked_add_signed(rhs).expect("`NaiveDateTime + Duration` overflowed")
+ }
+}
+
+impl AddAssign<OldDuration> for NaiveDateTime {
+ #[inline]
+ fn add_assign(&mut self, rhs: OldDuration) {
+ *self = self.add(rhs);
+ }
+}
+
+/// A subtraction of `Duration` from `NaiveDateTime` yields another `NaiveDateTime`.
+/// It is the same as the addition with a negated `Duration`.
+///
+/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
+/// the addition assumes that **there is no leap second ever**,
+/// except when the `NaiveDateTime` itself represents a leap second
+/// in which case the assumption becomes that **there is exactly a single leap second ever**.
+///
+/// Panics on underflow or overflow.
+/// Use [`NaiveDateTime::checked_sub_signed`](#method.checked_sub_signed) to detect that.
+///
+/// # Example
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// use chrono::{Duration, NaiveDate};
+///
+/// let from_ymd = NaiveDate::from_ymd;
+///
+/// let d = from_ymd(2016, 7, 8);
+/// let hms = |h, m, s| d.and_hms(h, m, s);
+/// assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
+/// assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
+/// assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
+/// assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
+/// assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
+/// from_ymd(2016, 7, 7).and_hms(3, 5, 7));
+/// assert_eq!(hms(3, 5, 7) - Duration::days(365),
+/// from_ymd(2015, 7, 9).and_hms(3, 5, 7));
+///
+/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
+/// assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
+/// # }
+/// ~~~~
+///
+/// Leap seconds are handled,
+/// but the subtraction assumes that it is the only leap second happened.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveDate};
+/// # let from_ymd = NaiveDate::from_ymd;
+/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
+/// let leap = hmsm(3, 5, 59, 1_300);
+/// assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
+/// assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
+/// assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
+/// assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
+/// assert_eq!(leap - Duration::days(1),
+/// from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));
+/// # }
+/// ~~~~
+impl Sub<OldDuration> for NaiveDateTime {
+ type Output = NaiveDateTime;
+
+ #[inline]
+ fn sub(self, rhs: OldDuration) -> NaiveDateTime {
+ self.checked_sub_signed(rhs).expect("`NaiveDateTime - Duration` overflowed")
+ }
+}
+
+impl SubAssign<OldDuration> for NaiveDateTime {
+ #[inline]
+ fn sub_assign(&mut self, rhs: OldDuration) {
+ *self = self.sub(rhs);
+ }
+}
+
+/// Subtracts another `NaiveDateTime` from the current date and time.
+/// This does not overflow or underflow at all.
+///
+/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
+/// the subtraction assumes that **there is no leap second ever**,
+/// except when any of the `NaiveDateTime`s themselves represents a leap second
+/// in which case the assumption becomes that
+/// **there are exactly one (or two) leap second(s) ever**.
+///
+/// The implementation is a wrapper around
+/// [`NaiveDateTime::signed_duration_since`](#method.signed_duration_since).
+///
+/// # Example
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// use chrono::{Duration, NaiveDate};
+///
+/// let from_ymd = NaiveDate::from_ymd;
+///
+/// let d = from_ymd(2016, 7, 8);
+/// assert_eq!(d.and_hms(3, 5, 7) - d.and_hms(2, 4, 6), Duration::seconds(3600 + 60 + 1));
+///
+/// // July 8 is 190th day in the year 2016
+/// let d0 = from_ymd(2016, 1, 1);
+/// assert_eq!(d.and_hms_milli(0, 7, 6, 500) - d0.and_hms(0, 0, 0),
+/// Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
+/// # }
+/// ~~~~
+///
+/// Leap seconds are handled, but the subtraction assumes that
+/// there were no other leap seconds happened.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveDate};
+/// # let from_ymd = NaiveDate::from_ymd;
+/// let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
+/// assert_eq!(leap - from_ymd(2015, 6, 30).and_hms(23, 0, 0),
+/// Duration::seconds(3600) + Duration::milliseconds(500));
+/// assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0) - leap,
+/// Duration::seconds(3600) - Duration::milliseconds(500));
+/// # }
+/// ~~~~
+impl Sub<NaiveDateTime> for NaiveDateTime {
+ type Output = OldDuration;
+
+ #[inline]
+ fn sub(self, rhs: NaiveDateTime) -> OldDuration {
+ self.signed_duration_since(rhs)
+ }
+}
+
+/// The `Debug` output of the naive date and time `dt` is the same as
+/// [`dt.format("%Y-%m-%dT%H:%M:%S%.f")`](../format/strftime/index.html).
+///
+/// The string printed can be readily parsed via the `parse` method on `str`.
+///
+/// It should be noted that, for leap seconds not on the minute boundary,
+/// it may print a representation not distinguishable from non-leap seconds.
+/// This doesn't matter in practice, since such leap seconds never happened.
+/// (By the time of the first leap second on 1972-06-30,
+/// every time zone offset around the world has standardized to the 5-minute alignment.)
+///
+/// # Example
+///
+/// ~~~~
+/// use chrono::NaiveDate;
+///
+/// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24);
+/// assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24");
+/// ~~~~
+///
+/// Leap seconds may also be used.
+///
+/// ~~~~
+/// # use chrono::NaiveDate;
+/// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
+/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500");
+/// ~~~~
+impl fmt::Debug for NaiveDateTime {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "{:?}T{:?}", self.date, self.time)
+ }
+}
+
+/// The `Display` output of the naive date and time `dt` is the same as
+/// [`dt.format("%Y-%m-%d %H:%M:%S%.f")`](../format/strftime/index.html).
+///
+/// It should be noted that, for leap seconds not on the minute boundary,
+/// it may print a representation not distinguishable from non-leap seconds.
+/// This doesn't matter in practice, since such leap seconds never happened.
+/// (By the time of the first leap second on 1972-06-30,
+/// every time zone offset around the world has standardized to the 5-minute alignment.)
+///
+/// # Example
+///
+/// ~~~~
+/// use chrono::NaiveDate;
+///
+/// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24);
+/// assert_eq!(format!("{}", dt), "2016-11-15 07:39:24");
+/// ~~~~
+///
+/// Leap seconds may also be used.
+///
+/// ~~~~
+/// # use chrono::NaiveDate;
+/// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
+/// assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500");
+/// ~~~~
+impl fmt::Display for NaiveDateTime {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "{} {}", self.date, self.time)
+ }
+}
+
+/// Parsing a `str` into a `NaiveDateTime` uses the same format,
+/// [`%Y-%m-%dT%H:%M:%S%.f`](../format/strftime/index.html), as in `Debug`.
+///
+/// # Example
+///
+/// ~~~~
+/// use chrono::{NaiveDateTime, NaiveDate};
+///
+/// let dt = NaiveDate::from_ymd(2015, 9, 18).and_hms(23, 56, 4);
+/// assert_eq!("2015-09-18T23:56:04".parse::<NaiveDateTime>(), Ok(dt));
+///
+/// let dt = NaiveDate::from_ymd(12345, 6, 7).and_hms_milli(7, 59, 59, 1_500); // leap second
+/// assert_eq!("+12345-6-7T7:59:60.5".parse::<NaiveDateTime>(), Ok(dt));
+///
+/// assert!("foo".parse::<NaiveDateTime>().is_err());
+/// ~~~~
+impl str::FromStr for NaiveDateTime {
+ type Err = ParseError;
+
+ fn from_str(s: &str) -> ParseResult<NaiveDateTime> {
+ const ITEMS: &'static [Item<'static>] = &[
+ Item::Numeric(Numeric::Year, Pad::Zero),
+ Item::Space(""),
+ Item::Literal("-"),
+ Item::Numeric(Numeric::Month, Pad::Zero),
+ Item::Space(""),
+ Item::Literal("-"),
+ Item::Numeric(Numeric::Day, Pad::Zero),
+ Item::Space(""),
+ Item::Literal("T"), // XXX shouldn't this be case-insensitive?
+ Item::Numeric(Numeric::Hour, Pad::Zero),
+ Item::Space(""),
+ Item::Literal(":"),
+ Item::Numeric(Numeric::Minute, Pad::Zero),
+ Item::Space(""),
+ Item::Literal(":"),
+ Item::Numeric(Numeric::Second, Pad::Zero),
+ Item::Fixed(Fixed::Nanosecond),
+ Item::Space(""),
+ ];
+
+ let mut parsed = Parsed::new();
+ parse(&mut parsed, s, ITEMS.iter())?;
+ parsed.to_naive_datetime_with_offset(0)
+ }
+}
+
+#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
+fn test_encodable_json<F, E>(to_string: F)
+where
+ F: Fn(&NaiveDateTime) -> Result<String, E>,
+ E: ::std::fmt::Debug,
+{
+ use naive::{MAX_DATE, MIN_DATE};
+
+ assert_eq!(
+ to_string(&NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90)).ok(),
+ Some(r#""2016-07-08T09:10:48.090""#.into())
+ );
+ assert_eq!(
+ to_string(&NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6)).ok(),
+ Some(r#""2014-07-24T12:34:06""#.into())
+ );
+ assert_eq!(
+ to_string(&NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000)).ok(),
+ Some(r#""0000-01-01T00:00:60""#.into())
+ );
+ assert_eq!(
+ to_string(&NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7)).ok(),
+ Some(r#""-0001-12-31T23:59:59.000000007""#.into())
+ );
+ assert_eq!(
+ to_string(&MIN_DATE.and_hms(0, 0, 0)).ok(),
+ Some(r#""-262144-01-01T00:00:00""#.into())
+ );
+ assert_eq!(
+ to_string(&MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999)).ok(),
+ Some(r#""+262143-12-31T23:59:60.999999999""#.into())
+ );
+}
+
+#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
+fn test_decodable_json<F, E>(from_str: F)
+where
+ F: Fn(&str) -> Result<NaiveDateTime, E>,
+ E: ::std::fmt::Debug,
+{
+ use naive::{MAX_DATE, MIN_DATE};
+
+ assert_eq!(
+ from_str(r#""2016-07-08T09:10:48.090""#).ok(),
+ Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90))
+ );
+ assert_eq!(
+ from_str(r#""2016-7-8T9:10:48.09""#).ok(),
+ Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90))
+ );
+ assert_eq!(
+ from_str(r#""2014-07-24T12:34:06""#).ok(),
+ Some(NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6))
+ );
+ assert_eq!(
+ from_str(r#""0000-01-01T00:00:60""#).ok(),
+ Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000))
+ );
+ assert_eq!(
+ from_str(r#""0-1-1T0:0:60""#).ok(),
+ Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000))
+ );
+ assert_eq!(
+ from_str(r#""-0001-12-31T23:59:59.000000007""#).ok(),
+ Some(NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7))
+ );
+ assert_eq!(from_str(r#""-262144-01-01T00:00:00""#).ok(), Some(MIN_DATE.and_hms(0, 0, 0)));
+ assert_eq!(
+ from_str(r#""+262143-12-31T23:59:60.999999999""#).ok(),
+ Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999))
+ );
+ assert_eq!(
+ from_str(r#""+262143-12-31T23:59:60.9999999999997""#).ok(), // excess digits are ignored
+ Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999))
+ );
+
+ // bad formats
+ assert!(from_str(r#""""#).is_err());
+ assert!(from_str(r#""2016-07-08""#).is_err());
+ assert!(from_str(r#""09:10:48.090""#).is_err());
+ assert!(from_str(r#""20160708T091048.090""#).is_err());
+ assert!(from_str(r#""2000-00-00T00:00:00""#).is_err());
+ assert!(from_str(r#""2000-02-30T00:00:00""#).is_err());
+ assert!(from_str(r#""2001-02-29T00:00:00""#).is_err());
+ assert!(from_str(r#""2002-02-28T24:00:00""#).is_err());
+ assert!(from_str(r#""2002-02-28T23:60:00""#).is_err());
+ assert!(from_str(r#""2002-02-28T23:59:61""#).is_err());
+ assert!(from_str(r#""2016-07-08T09:10:48,090""#).is_err());
+ assert!(from_str(r#""2016-07-08 09:10:48.090""#).is_err());
+ assert!(from_str(r#""2016-007-08T09:10:48.090""#).is_err());
+ assert!(from_str(r#""yyyy-mm-ddThh:mm:ss.fffffffff""#).is_err());
+ assert!(from_str(r#"20160708000000"#).is_err());
+ assert!(from_str(r#"{}"#).is_err());
+ // pre-0.3.0 rustc-serialize format is now invalid
+ assert!(from_str(r#"{"date":{"ymdf":20},"time":{"secs":0,"frac":0}}"#).is_err());
+ assert!(from_str(r#"null"#).is_err());
+}
+
+#[cfg(all(test, feature = "rustc-serialize"))]
+fn test_decodable_json_timestamp<F, E>(from_str: F)
+where
+ F: Fn(&str) -> Result<rustc_serialize::TsSeconds, E>,
+ E: ::std::fmt::Debug,
+{
+ assert_eq!(
+ *from_str("0").unwrap(),
+ NaiveDate::from_ymd(1970, 1, 1).and_hms(0, 0, 0),
+ "should parse integers as timestamps"
+ );
+ assert_eq!(
+ *from_str("-1").unwrap(),
+ NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59),
+ "should parse integers as timestamps"
+ );
+}
+
+#[cfg(feature = "rustc-serialize")]
+pub mod rustc_serialize {
+ use super::NaiveDateTime;
+ use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
+ use std::ops::Deref;
+
+ impl Encodable for NaiveDateTime {
+ fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
+ format!("{:?}", self).encode(s)
+ }
+ }
+
+ impl Decodable for NaiveDateTime {
+ fn decode<D: Decoder>(d: &mut D) -> Result<NaiveDateTime, D::Error> {
+ d.read_str()?.parse().map_err(|_| d.error("invalid date time string"))
+ }
+ }
+
+ /// A `DateTime` that can be deserialized from a seconds-based timestamp
+ #[derive(Debug)]
+ #[deprecated(
+ since = "1.4.2",
+ note = "RustcSerialize will be removed before chrono 1.0, use Serde instead"
+ )]
+ pub struct TsSeconds(NaiveDateTime);
+
+ #[allow(deprecated)]
+ impl From<TsSeconds> for NaiveDateTime {
+ /// Pull the internal NaiveDateTime out
+ #[allow(deprecated)]
+ fn from(obj: TsSeconds) -> NaiveDateTime {
+ obj.0
+ }
+ }
+
+ #[allow(deprecated)]
+ impl Deref for TsSeconds {
+ type Target = NaiveDateTime;
+
+ #[allow(deprecated)]
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+ }
+
+ #[allow(deprecated)]
+ impl Decodable for TsSeconds {
+ #[allow(deprecated)]
+ fn decode<D: Decoder>(d: &mut D) -> Result<TsSeconds, D::Error> {
+ Ok(TsSeconds(
+ NaiveDateTime::from_timestamp_opt(d.read_i64()?, 0)
+ .ok_or_else(|| d.error("invalid timestamp"))?,
+ ))
+ }
+ }
+
+ #[cfg(test)]
+ use rustc_serialize::json;
+
+ #[test]
+ fn test_encodable() {
+ super::test_encodable_json(json::encode);
+ }
+
+ #[test]
+ fn test_decodable() {
+ super::test_decodable_json(json::decode);
+ }
+
+ #[test]
+ fn test_decodable_timestamps() {
+ super::test_decodable_json_timestamp(json::decode);
+ }
+}
+
+/// Tools to help serializing/deserializing `NaiveDateTime`s
+#[cfg(feature = "serde")]
+pub mod serde {
+ use super::NaiveDateTime;
+ use core::fmt;
+ use serdelib::{de, ser};
+
+ /// Serialize a `NaiveDateTime` as an RFC 3339 string
+ ///
+ /// See [the `serde` module](./serde/index.html) for alternate
+ /// serialization formats.
+ impl ser::Serialize for NaiveDateTime {
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: ser::Serializer,
+ {
+ struct FormatWrapped<'a, D: 'a> {
+ inner: &'a D,
+ }
+
+ impl<'a, D: fmt::Debug> fmt::Display for FormatWrapped<'a, D> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.inner.fmt(f)
+ }
+ }
+
+ serializer.collect_str(&FormatWrapped { inner: &self })
+ }
+ }
+
+ struct NaiveDateTimeVisitor;
+
+ impl<'de> de::Visitor<'de> for NaiveDateTimeVisitor {
+ type Value = NaiveDateTime;
+
+ fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ write!(formatter, "a formatted date and time string")
+ }
+
+ fn visit_str<E>(self, value: &str) -> Result<NaiveDateTime, E>
+ where
+ E: de::Error,
+ {
+ value.parse().map_err(E::custom)
+ }
+ }
+
+ impl<'de> de::Deserialize<'de> for NaiveDateTime {
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: de::Deserializer<'de>,
+ {
+ deserializer.deserialize_str(NaiveDateTimeVisitor)
+ }
+ }
+
+ /// Used to serialize/deserialize from nanosecond-precision timestamps
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # extern crate serde_json;
+ /// # extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
+ /// use chrono::naive::serde::ts_nanoseconds;
+ /// #[derive(Deserialize, Serialize)]
+ /// struct S {
+ /// #[serde(with = "ts_nanoseconds")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<S, serde_json::Error> {
+ /// let time = NaiveDate::from_ymd(2018, 5, 17).and_hms_nano(02, 04, 59, 918355733);
+ /// let my_s = S {
+ /// time: time.clone(),
+ /// };
+ ///
+ /// let as_string = serde_json::to_string(&my_s)?;
+ /// assert_eq!(as_string, r#"{"time":1526522699918355733}"#);
+ /// let my_s: S = serde_json::from_str(&as_string)?;
+ /// assert_eq!(my_s.time, time);
+ /// # Ok(my_s)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub mod ts_nanoseconds {
+ use core::fmt;
+ use serdelib::{de, ser};
+
+ use {ne_timestamp, NaiveDateTime};
+
+ /// Serialize a UTC datetime into an integer number of nanoseconds since the epoch
+ ///
+ /// Intended for use with `serde`s `serialize_with` attribute.
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # #[macro_use] extern crate serde_json;
+ /// # #[macro_use] extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
+ /// # use serde::Serialize;
+ /// use chrono::naive::serde::ts_nanoseconds::serialize as to_nano_ts;
+ /// #[derive(Serialize)]
+ /// struct S {
+ /// #[serde(serialize_with = "to_nano_ts")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<String, serde_json::Error> {
+ /// let my_s = S {
+ /// time: NaiveDate::from_ymd(2018, 5, 17).and_hms_nano(02, 04, 59, 918355733),
+ /// };
+ /// let as_string = serde_json::to_string(&my_s)?;
+ /// assert_eq!(as_string, r#"{"time":1526522699918355733}"#);
+ /// # Ok(as_string)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub fn serialize<S>(dt: &NaiveDateTime, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: ser::Serializer,
+ {
+ serializer.serialize_i64(dt.timestamp_nanos())
+ }
+
+ /// Deserialize a `DateTime` from a nanoseconds timestamp
+ ///
+ /// Intended for use with `serde`s `deserialize_with` attribute.
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # #[macro_use] extern crate serde_json;
+ /// # extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{NaiveDateTime, Utc};
+ /// # use serde::Deserialize;
+ /// use chrono::naive::serde::ts_nanoseconds::deserialize as from_nano_ts;
+ /// #[derive(Deserialize)]
+ /// struct S {
+ /// #[serde(deserialize_with = "from_nano_ts")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<S, serde_json::Error> {
+ /// let my_s: S = serde_json::from_str(r#"{ "time": 1526522699918355733 }"#)?;
+ /// # Ok(my_s)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub fn deserialize<'de, D>(d: D) -> Result<NaiveDateTime, D::Error>
+ where
+ D: de::Deserializer<'de>,
+ {
+ Ok(d.deserialize_i64(NaiveDateTimeFromNanoSecondsVisitor)?)
+ }
+
+ struct NaiveDateTimeFromNanoSecondsVisitor;
+
+ impl<'de> de::Visitor<'de> for NaiveDateTimeFromNanoSecondsVisitor {
+ type Value = NaiveDateTime;
+
+ fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ formatter.write_str("a unix timestamp")
+ }
+
+ fn visit_i64<E>(self, value: i64) -> Result<NaiveDateTime, E>
+ where
+ E: de::Error,
+ {
+ NaiveDateTime::from_timestamp_opt(
+ value / 1_000_000_000,
+ (value % 1_000_000_000) as u32,
+ )
+ .ok_or_else(|| E::custom(ne_timestamp(value)))
+ }
+
+ fn visit_u64<E>(self, value: u64) -> Result<NaiveDateTime, E>
+ where
+ E: de::Error,
+ {
+ NaiveDateTime::from_timestamp_opt(
+ value as i64 / 1_000_000_000,
+ (value as i64 % 1_000_000_000) as u32,
+ )
+ .ok_or_else(|| E::custom(ne_timestamp(value)))
+ }
+ }
+ }
+
+ /// Used to serialize/deserialize from millisecond-precision timestamps
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # extern crate serde_json;
+ /// # extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
+ /// use chrono::naive::serde::ts_milliseconds;
+ /// #[derive(Deserialize, Serialize)]
+ /// struct S {
+ /// #[serde(with = "ts_milliseconds")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<S, serde_json::Error> {
+ /// let time = NaiveDate::from_ymd(2018, 5, 17).and_hms_milli(02, 04, 59, 918);
+ /// let my_s = S {
+ /// time: time.clone(),
+ /// };
+ ///
+ /// let as_string = serde_json::to_string(&my_s)?;
+ /// assert_eq!(as_string, r#"{"time":1526522699918}"#);
+ /// let my_s: S = serde_json::from_str(&as_string)?;
+ /// assert_eq!(my_s.time, time);
+ /// # Ok(my_s)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub mod ts_milliseconds {
+ use core::fmt;
+ use serdelib::{de, ser};
+
+ use {ne_timestamp, NaiveDateTime};
+
+ /// Serialize a UTC datetime into an integer number of milliseconds since the epoch
+ ///
+ /// Intended for use with `serde`s `serialize_with` attribute.
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # #[macro_use] extern crate serde_json;
+ /// # #[macro_use] extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
+ /// # use serde::Serialize;
+ /// use chrono::naive::serde::ts_milliseconds::serialize as to_milli_ts;
+ /// #[derive(Serialize)]
+ /// struct S {
+ /// #[serde(serialize_with = "to_milli_ts")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<String, serde_json::Error> {
+ /// let my_s = S {
+ /// time: NaiveDate::from_ymd(2018, 5, 17).and_hms_milli(02, 04, 59, 918),
+ /// };
+ /// let as_string = serde_json::to_string(&my_s)?;
+ /// assert_eq!(as_string, r#"{"time":1526522699918}"#);
+ /// # Ok(as_string)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub fn serialize<S>(dt: &NaiveDateTime, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: ser::Serializer,
+ {
+ serializer.serialize_i64(dt.timestamp_millis())
+ }
+
+ /// Deserialize a `DateTime` from a milliseconds timestamp
+ ///
+ /// Intended for use with `serde`s `deserialize_with` attribute.
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # #[macro_use] extern crate serde_json;
+ /// # extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{NaiveDateTime, Utc};
+ /// # use serde::Deserialize;
+ /// use chrono::naive::serde::ts_milliseconds::deserialize as from_milli_ts;
+ /// #[derive(Deserialize)]
+ /// struct S {
+ /// #[serde(deserialize_with = "from_milli_ts")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<S, serde_json::Error> {
+ /// let my_s: S = serde_json::from_str(r#"{ "time": 1526522699918 }"#)?;
+ /// # Ok(my_s)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub fn deserialize<'de, D>(d: D) -> Result<NaiveDateTime, D::Error>
+ where
+ D: de::Deserializer<'de>,
+ {
+ Ok(d.deserialize_i64(NaiveDateTimeFromMilliSecondsVisitor)?)
+ }
+
+ struct NaiveDateTimeFromMilliSecondsVisitor;
+
+ impl<'de> de::Visitor<'de> for NaiveDateTimeFromMilliSecondsVisitor {
+ type Value = NaiveDateTime;
+
+ fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ formatter.write_str("a unix timestamp")
+ }
+
+ fn visit_i64<E>(self, value: i64) -> Result<NaiveDateTime, E>
+ where
+ E: de::Error,
+ {
+ NaiveDateTime::from_timestamp_opt(value / 1000, ((value % 1000) * 1_000_000) as u32)
+ .ok_or_else(|| E::custom(ne_timestamp(value)))
+ }
+
+ fn visit_u64<E>(self, value: u64) -> Result<NaiveDateTime, E>
+ where
+ E: de::Error,
+ {
+ NaiveDateTime::from_timestamp_opt(
+ (value / 1000) as i64,
+ ((value % 1000) * 1_000_000) as u32,
+ )
+ .ok_or_else(|| E::custom(ne_timestamp(value)))
+ }
+ }
+ }
+
+ /// Used to serialize/deserialize from second-precision timestamps
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # extern crate serde_json;
+ /// # extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
+ /// use chrono::naive::serde::ts_seconds;
+ /// #[derive(Deserialize, Serialize)]
+ /// struct S {
+ /// #[serde(with = "ts_seconds")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<S, serde_json::Error> {
+ /// let time = NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0);
+ /// let my_s = S {
+ /// time: time.clone(),
+ /// };
+ ///
+ /// let as_string = serde_json::to_string(&my_s)?;
+ /// assert_eq!(as_string, r#"{"time":1431684000}"#);
+ /// let my_s: S = serde_json::from_str(&as_string)?;
+ /// assert_eq!(my_s.time, time);
+ /// # Ok(my_s)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub mod ts_seconds {
+ use core::fmt;
+ use serdelib::{de, ser};
+
+ use {ne_timestamp, NaiveDateTime};
+
+ /// Serialize a UTC datetime into an integer number of seconds since the epoch
+ ///
+ /// Intended for use with `serde`s `serialize_with` attribute.
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # #[macro_use] extern crate serde_json;
+ /// # #[macro_use] extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
+ /// # use serde::Serialize;
+ /// use chrono::naive::serde::ts_seconds::serialize as to_ts;
+ /// #[derive(Serialize)]
+ /// struct S {
+ /// #[serde(serialize_with = "to_ts")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<String, serde_json::Error> {
+ /// let my_s = S {
+ /// time: NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0),
+ /// };
+ /// let as_string = serde_json::to_string(&my_s)?;
+ /// assert_eq!(as_string, r#"{"time":1431684000}"#);
+ /// # Ok(as_string)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub fn serialize<S>(dt: &NaiveDateTime, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: ser::Serializer,
+ {
+ serializer.serialize_i64(dt.timestamp())
+ }
+
+ /// Deserialize a `DateTime` from a seconds timestamp
+ ///
+ /// Intended for use with `serde`s `deserialize_with` attribute.
+ ///
+ /// # Example:
+ ///
+ /// ```rust
+ /// # // We mark this ignored so that we can test on 1.13 (which does not
+ /// # // support custom derive), and run tests with --ignored on beta and
+ /// # // nightly to actually trigger these.
+ /// #
+ /// # #[macro_use] extern crate serde_derive;
+ /// # #[macro_use] extern crate serde_json;
+ /// # extern crate serde;
+ /// # extern crate chrono;
+ /// # use chrono::{NaiveDateTime, Utc};
+ /// # use serde::Deserialize;
+ /// use chrono::naive::serde::ts_seconds::deserialize as from_ts;
+ /// #[derive(Deserialize)]
+ /// struct S {
+ /// #[serde(deserialize_with = "from_ts")]
+ /// time: NaiveDateTime
+ /// }
+ ///
+ /// # fn example() -> Result<S, serde_json::Error> {
+ /// let my_s: S = serde_json::from_str(r#"{ "time": 1431684000 }"#)?;
+ /// # Ok(my_s)
+ /// # }
+ /// # fn main() { example().unwrap(); }
+ /// ```
+ pub fn deserialize<'de, D>(d: D) -> Result<NaiveDateTime, D::Error>
+ where
+ D: de::Deserializer<'de>,
+ {
+ Ok(d.deserialize_i64(NaiveDateTimeFromSecondsVisitor)?)
+ }
+
+ struct NaiveDateTimeFromSecondsVisitor;
+
+ impl<'de> de::Visitor<'de> for NaiveDateTimeFromSecondsVisitor {
+ type Value = NaiveDateTime;
+
+ fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ formatter.write_str("a unix timestamp")
+ }
+
+ fn visit_i64<E>(self, value: i64) -> Result<NaiveDateTime, E>
+ where
+ E: de::Error,
+ {
+ NaiveDateTime::from_timestamp_opt(value, 0)
+ .ok_or_else(|| E::custom(ne_timestamp(value)))
+ }
+
+ fn visit_u64<E>(self, value: u64) -> Result<NaiveDateTime, E>
+ where
+ E: de::Error,
+ {
+ NaiveDateTime::from_timestamp_opt(value as i64, 0)
+ .ok_or_else(|| E::custom(ne_timestamp(value)))
+ }
+ }
+ }
+
+ #[cfg(test)]
+ extern crate bincode;
+ #[cfg(test)]
+ extern crate serde_derive;
+ #[cfg(test)]
+ extern crate serde_json;
+
+ #[test]
+ fn test_serde_serialize() {
+ super::test_encodable_json(self::serde_json::to_string);
+ }
+
+ #[test]
+ fn test_serde_deserialize() {
+ super::test_decodable_json(|input| self::serde_json::from_str(&input));
+ }
+
+ // Bincode is relevant to test separately from JSON because
+ // it is not self-describing.
+ #[test]
+ fn test_serde_bincode() {
+ use self::bincode::{deserialize, serialize, Infinite};
+ use naive::NaiveDate;
+
+ let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90);
+ let encoded = serialize(&dt, Infinite).unwrap();
+ let decoded: NaiveDateTime = deserialize(&encoded).unwrap();
+ assert_eq!(dt, decoded);
+ }
+
+ #[test]
+ fn test_serde_bincode_optional() {
+ use self::bincode::{deserialize, serialize, Infinite};
+ use self::serde_derive::{Deserialize, Serialize};
+ use prelude::*;
+ use serde::ts_nanoseconds_option;
+
+ #[derive(Debug, PartialEq, Eq, Serialize, Deserialize)]
+ struct Test {
+ one: Option<i64>,
+ #[serde(with = "ts_nanoseconds_option")]
+ two: Option<DateTime<Utc>>,
+ }
+
+ let expected = Test { one: Some(1), two: Some(Utc.ymd(1970, 1, 1).and_hms(0, 1, 1)) };
+ let bytes: Vec<u8> = serialize(&expected, Infinite).unwrap();
+ let actual = deserialize::<Test>(&(bytes)).unwrap();
+
+ assert_eq!(expected, actual);
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::NaiveDateTime;
+ use naive::{NaiveDate, MAX_DATE, MIN_DATE};
+ use oldtime::Duration;
+ use std::i64;
+ use Datelike;
+
+ #[test]
+ fn test_datetime_from_timestamp() {
+ let from_timestamp = |secs| NaiveDateTime::from_timestamp_opt(secs, 0);
+ let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
+ assert_eq!(from_timestamp(-1), Some(ymdhms(1969, 12, 31, 23, 59, 59)));
+ assert_eq!(from_timestamp(0), Some(ymdhms(1970, 1, 1, 0, 0, 0)));
+ assert_eq!(from_timestamp(1), Some(ymdhms(1970, 1, 1, 0, 0, 1)));
+ assert_eq!(from_timestamp(1_000_000_000), Some(ymdhms(2001, 9, 9, 1, 46, 40)));
+ assert_eq!(from_timestamp(0x7fffffff), Some(ymdhms(2038, 1, 19, 3, 14, 7)));
+ assert_eq!(from_timestamp(i64::MIN), None);
+ assert_eq!(from_timestamp(i64::MAX), None);
+ }
+
+ #[test]
+ fn test_datetime_add() {
+ fn check(
+ (y, m, d, h, n, s): (i32, u32, u32, u32, u32, u32),
+ rhs: Duration,
+ result: Option<(i32, u32, u32, u32, u32, u32)>,
+ ) {
+ let lhs = NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
+ let sum =
+ result.map(|(y, m, d, h, n, s)| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s));
+ assert_eq!(lhs.checked_add_signed(rhs), sum);
+ assert_eq!(lhs.checked_sub_signed(-rhs), sum);
+ };
+
+ check(
+ (2014, 5, 6, 7, 8, 9),
+ Duration::seconds(3600 + 60 + 1),
+ Some((2014, 5, 6, 8, 9, 10)),
+ );
+ check(
+ (2014, 5, 6, 7, 8, 9),
+ Duration::seconds(-(3600 + 60 + 1)),
+ Some((2014, 5, 6, 6, 7, 8)),
+ );
+ check((2014, 5, 6, 7, 8, 9), Duration::seconds(86399), Some((2014, 5, 7, 7, 8, 8)));
+ check((2014, 5, 6, 7, 8, 9), Duration::seconds(86_400 * 10), Some((2014, 5, 16, 7, 8, 9)));
+ check((2014, 5, 6, 7, 8, 9), Duration::seconds(-86_400 * 10), Some((2014, 4, 26, 7, 8, 9)));
+ check((2014, 5, 6, 7, 8, 9), Duration::seconds(86_400 * 10), Some((2014, 5, 16, 7, 8, 9)));
+
+ // overflow check
+ // assumes that we have correct values for MAX/MIN_DAYS_FROM_YEAR_0 from `naive::date`.
+ // (they are private constants, but the equivalence is tested in that module.)
+ let max_days_from_year_0 = MAX_DATE.signed_duration_since(NaiveDate::from_ymd(0, 1, 1));
+ check((0, 1, 1, 0, 0, 0), max_days_from_year_0, Some((MAX_DATE.year(), 12, 31, 0, 0, 0)));
+ check(
+ (0, 1, 1, 0, 0, 0),
+ max_days_from_year_0 + Duration::seconds(86399),
+ Some((MAX_DATE.year(), 12, 31, 23, 59, 59)),
+ );
+ check((0, 1, 1, 0, 0, 0), max_days_from_year_0 + Duration::seconds(86_400), None);
+ check((0, 1, 1, 0, 0, 0), Duration::max_value(), None);
+
+ let min_days_from_year_0 = MIN_DATE.signed_duration_since(NaiveDate::from_ymd(0, 1, 1));
+ check((0, 1, 1, 0, 0, 0), min_days_from_year_0, Some((MIN_DATE.year(), 1, 1, 0, 0, 0)));
+ check((0, 1, 1, 0, 0, 0), min_days_from_year_0 - Duration::seconds(1), None);
+ check((0, 1, 1, 0, 0, 0), Duration::min_value(), None);
+ }
+
+ #[test]
+ fn test_datetime_sub() {
+ let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
+ let since = NaiveDateTime::signed_duration_since;
+ assert_eq!(
+ since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 9)),
+ Duration::zero()
+ );
+ assert_eq!(
+ since(ymdhms(2014, 5, 6, 7, 8, 10), ymdhms(2014, 5, 6, 7, 8, 9)),
+ Duration::seconds(1)
+ );
+ assert_eq!(
+ since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)),
+ Duration::seconds(-1)
+ );
+ assert_eq!(
+ since(ymdhms(2014, 5, 7, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)),
+ Duration::seconds(86399)
+ );
+ assert_eq!(
+ since(ymdhms(2001, 9, 9, 1, 46, 39), ymdhms(1970, 1, 1, 0, 0, 0)),
+ Duration::seconds(999_999_999)
+ );
+ }
+
+ #[test]
+ fn test_datetime_addassignment() {
+ let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
+ let mut date = ymdhms(2016, 10, 1, 10, 10, 10);
+ date += Duration::minutes(10_000_000);
+ assert_eq!(date, ymdhms(2035, 10, 6, 20, 50, 10));
+ date += Duration::days(10);
+ assert_eq!(date, ymdhms(2035, 10, 16, 20, 50, 10));
+ }
+
+ #[test]
+ fn test_datetime_subassignment() {
+ let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
+ let mut date = ymdhms(2016, 10, 1, 10, 10, 10);
+ date -= Duration::minutes(10_000_000);
+ assert_eq!(date, ymdhms(1997, 9, 26, 23, 30, 10));
+ date -= Duration::days(10);
+ assert_eq!(date, ymdhms(1997, 9, 16, 23, 30, 10));
+ }
+
+ #[test]
+ fn test_datetime_timestamp() {
+ let to_timestamp =
+ |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s).timestamp();
+ assert_eq!(to_timestamp(1969, 12, 31, 23, 59, 59), -1);
+ assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 0), 0);
+ assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 1), 1);
+ assert_eq!(to_timestamp(2001, 9, 9, 1, 46, 40), 1_000_000_000);
+ assert_eq!(to_timestamp(2038, 1, 19, 3, 14, 7), 0x7fffffff);
+ }
+
+ #[test]
+ fn test_datetime_from_str() {
+ // valid cases
+ let valid = [
+ "2015-2-18T23:16:9.15",
+ "-77-02-18T23:16:09",
+ " +82701 - 05 - 6 T 15 : 9 : 60.898989898989 ",
+ ];
+ for &s in &valid {
+ let d = match s.parse::<NaiveDateTime>() {
+ Ok(d) => d,
+ Err(e) => panic!("parsing `{}` has failed: {}", s, e),
+ };
+ let s_ = format!("{:?}", d);
+ // `s` and `s_` may differ, but `s.parse()` and `s_.parse()` must be same
+ let d_ = match s_.parse::<NaiveDateTime>() {
+ Ok(d) => d,
+ Err(e) => {
+ panic!("`{}` is parsed into `{:?}`, but reparsing that has failed: {}", s, d, e)
+ }
+ };
+ assert!(
+ d == d_,
+ "`{}` is parsed into `{:?}`, but reparsed result \
+ `{:?}` does not match",
+ s,
+ d,
+ d_
+ );
+ }
+
+ // some invalid cases
+ // since `ParseErrorKind` is private, all we can do is to check if there was an error
+ assert!("".parse::<NaiveDateTime>().is_err());
+ assert!("x".parse::<NaiveDateTime>().is_err());
+ assert!("15".parse::<NaiveDateTime>().is_err());
+ assert!("15:8:9".parse::<NaiveDateTime>().is_err());
+ assert!("15-8-9".parse::<NaiveDateTime>().is_err());
+ assert!("2015-15-15T15:15:15".parse::<NaiveDateTime>().is_err());
+ assert!("2012-12-12T12:12:12x".parse::<NaiveDateTime>().is_err());
+ assert!("2012-123-12T12:12:12".parse::<NaiveDateTime>().is_err());
+ assert!("+ 82701-123-12T12:12:12".parse::<NaiveDateTime>().is_err());
+ assert!("+802701-123-12T12:12:12".parse::<NaiveDateTime>().is_err()); // out-of-bound
+ }
+
+ #[test]
+ fn test_datetime_parse_from_str() {
+ let ymdhms = |y, m, d, h, n, s| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
+ let ymdhmsn =
+ |y, m, d, h, n, s, nano| NaiveDate::from_ymd(y, m, d).and_hms_nano(h, n, s, nano);
+ assert_eq!(
+ NaiveDateTime::parse_from_str("2014-5-7T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
+ Ok(ymdhms(2014, 5, 7, 12, 34, 56))
+ ); // ignore offset
+ assert_eq!(
+ NaiveDateTime::parse_from_str("2015-W06-1 000000", "%G-W%V-%u%H%M%S"),
+ Ok(ymdhms(2015, 2, 2, 0, 0, 0))
+ );
+ assert_eq!(
+ NaiveDateTime::parse_from_str(
+ "Fri, 09 Aug 2013 23:54:35 GMT",
+ "%a, %d %b %Y %H:%M:%S GMT"
+ ),
+ Ok(ymdhms(2013, 8, 9, 23, 54, 35))
+ );
+ assert!(NaiveDateTime::parse_from_str(
+ "Sat, 09 Aug 2013 23:54:35 GMT",
+ "%a, %d %b %Y %H:%M:%S GMT"
+ )
+ .is_err());
+ assert!(NaiveDateTime::parse_from_str("2014-5-7 12:3456", "%Y-%m-%d %H:%M:%S").is_err());
+ assert!(NaiveDateTime::parse_from_str("12:34:56", "%H:%M:%S").is_err()); // insufficient
+ assert_eq!(
+ NaiveDateTime::parse_from_str("1441497364", "%s"),
+ Ok(ymdhms(2015, 9, 5, 23, 56, 4))
+ );
+ assert_eq!(
+ NaiveDateTime::parse_from_str("1283929614.1234", "%s.%f"),
+ Ok(ymdhmsn(2010, 9, 8, 7, 6, 54, 1234))
+ );
+ assert_eq!(
+ NaiveDateTime::parse_from_str("1441497364.649", "%s%.3f"),
+ Ok(ymdhmsn(2015, 9, 5, 23, 56, 4, 649000000))
+ );
+ assert_eq!(
+ NaiveDateTime::parse_from_str("1497854303.087654", "%s%.6f"),
+ Ok(ymdhmsn(2017, 6, 19, 6, 38, 23, 87654000))
+ );
+ assert_eq!(
+ NaiveDateTime::parse_from_str("1437742189.918273645", "%s%.9f"),
+ Ok(ymdhmsn(2015, 7, 24, 12, 49, 49, 918273645))
+ );
+ }
+
+ #[test]
+ fn test_datetime_format() {
+ let dt = NaiveDate::from_ymd(2010, 9, 8).and_hms_milli(7, 6, 54, 321);
+ assert_eq!(dt.format("%c").to_string(), "Wed Sep 8 07:06:54 2010");
+ assert_eq!(dt.format("%s").to_string(), "1283929614");
+ assert_eq!(dt.format("%t%n%%%n%t").to_string(), "\t\n%\n\t");
+
+ // a horror of leap second: coming near to you.
+ let dt = NaiveDate::from_ymd(2012, 6, 30).and_hms_milli(23, 59, 59, 1_000);
+ assert_eq!(dt.format("%c").to_string(), "Sat Jun 30 23:59:60 2012");
+ assert_eq!(dt.format("%s").to_string(), "1341100799"); // not 1341100800, it's intentional.
+ }
+
+ #[test]
+ fn test_datetime_add_sub_invariant() {
+ // issue #37
+ let base = NaiveDate::from_ymd(2000, 1, 1).and_hms(0, 0, 0);
+ let t = -946684799990000;
+ let time = base + Duration::microseconds(t);
+ assert_eq!(t, time.signed_duration_since(base).num_microseconds().unwrap());
+ }
+
+ #[test]
+ fn test_nanosecond_range() {
+ const A_BILLION: i64 = 1_000_000_000;
+ let maximum = "2262-04-11T23:47:16.854775804";
+ let parsed: NaiveDateTime = maximum.parse().unwrap();
+ let nanos = parsed.timestamp_nanos();
+ assert_eq!(
+ parsed,
+ NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
+ );
+
+ let minimum = "1677-09-21T00:12:44.000000000";
+ let parsed: NaiveDateTime = minimum.parse().unwrap();
+ let nanos = parsed.timestamp_nanos();
+ assert_eq!(
+ parsed,
+ NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
+ );
+ }
+}