aboutsummaryrefslogtreecommitdiff
path: root/src/naive/time.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/naive/time.rs')
-rw-r--r--src/naive/time.rs1814
1 files changed, 1814 insertions, 0 deletions
diff --git a/src/naive/time.rs b/src/naive/time.rs
new file mode 100644
index 0000000..1ddc9fb
--- /dev/null
+++ b/src/naive/time.rs
@@ -0,0 +1,1814 @@
+// This is a part of Chrono.
+// See README.md and LICENSE.txt for details.
+
+//! ISO 8601 time without timezone.
+
+#[cfg(any(feature = "alloc", feature = "std", test))]
+use core::borrow::Borrow;
+use core::ops::{Add, AddAssign, Sub, SubAssign};
+use core::{fmt, hash, str};
+use oldtime::Duration as OldDuration;
+
+use div::div_mod_floor;
+#[cfg(any(feature = "alloc", feature = "std", test))]
+use format::DelayedFormat;
+use format::{parse, ParseError, ParseResult, Parsed, StrftimeItems};
+use format::{Fixed, Item, Numeric, Pad};
+use Timelike;
+
+pub const MIN_TIME: NaiveTime = NaiveTime { secs: 0, frac: 0 };
+pub const MAX_TIME: NaiveTime = NaiveTime { secs: 23 * 3600 + 59 * 60 + 59, frac: 999_999_999 };
+
+/// ISO 8601 time without timezone.
+/// Allows for the nanosecond precision and optional leap second representation.
+///
+/// # Leap Second Handling
+///
+/// Since 1960s, the manmade atomic clock has been so accurate that
+/// it is much more accurate than Earth's own motion.
+/// It became desirable to define the civil time in terms of the atomic clock,
+/// but that risks the desynchronization of the civil time from Earth.
+/// To account for this, the designers of the Coordinated Universal Time (UTC)
+/// made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time.
+/// When the mean solar day is longer than the ideal (86,400 seconds),
+/// the error slowly accumulates and it is necessary to add a **leap second**
+/// to slow the UTC down a bit.
+/// (We may also remove a second to speed the UTC up a bit, but it never happened.)
+/// The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC.
+///
+/// Fast forward to the 21st century,
+/// we have seen 26 leap seconds from January 1972 to December 2015.
+/// Yes, 26 seconds. Probably you can read this paragraph within 26 seconds.
+/// But those 26 seconds, and possibly more in the future, are never predictable,
+/// and whether to add a leap second or not is known only before 6 months.
+/// Internet-based clocks (via NTP) do account for known leap seconds,
+/// but the system API normally doesn't (and often can't, with no network connection)
+/// and there is no reliable way to retrieve leap second information.
+///
+/// Chrono does not try to accurately implement leap seconds; it is impossible.
+/// Rather, **it allows for leap seconds but behaves as if there are *no other* leap seconds.**
+/// Various operations will ignore any possible leap second(s)
+/// except when any of the operands were actually leap seconds.
+///
+/// If you cannot tolerate this behavior,
+/// you must use a separate `TimeZone` for the International Atomic Time (TAI).
+/// TAI is like UTC but has no leap seconds, and thus slightly differs from UTC.
+/// Chrono does not yet provide such implementation, but it is planned.
+///
+/// ## Representing Leap Seconds
+///
+/// The leap second is indicated via fractional seconds more than 1 second.
+/// This makes possible to treat a leap second as the prior non-leap second
+/// if you don't care about sub-second accuracy.
+/// You should use the proper formatting to get the raw leap second.
+///
+/// All methods accepting fractional seconds will accept such values.
+///
+/// ~~~~
+/// use chrono::{NaiveDate, NaiveTime, Utc, TimeZone};
+///
+/// let t = NaiveTime::from_hms_milli(8, 59, 59, 1_000);
+///
+/// let dt1 = NaiveDate::from_ymd(2015, 7, 1).and_hms_micro(8, 59, 59, 1_000_000);
+///
+/// let dt2 = Utc.ymd(2015, 6, 30).and_hms_nano(23, 59, 59, 1_000_000_000);
+/// # let _ = (t, dt1, dt2);
+/// ~~~~
+///
+/// Note that the leap second can happen anytime given an appropriate time zone;
+/// 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed.
+/// Practically speaking, though, by the time of the first leap second on 1972-06-30,
+/// every time zone offset around the world has standardized to the 5-minute alignment.
+///
+/// ## Date And Time Arithmetics
+///
+/// As a concrete example, let's assume that `03:00:60` and `04:00:60` are leap seconds.
+/// In reality, of course, leap seconds are separated by at least 6 months.
+/// We will also use some intuitive concise notations for the explanation.
+///
+/// `Time + Duration`
+/// (short for [`NaiveTime::overflowing_add_signed`](#method.overflowing_add_signed)):
+///
+/// - `03:00:00 + 1s = 03:00:01`.
+/// - `03:00:59 + 60s = 03:02:00`.
+/// - `03:00:59 + 1s = 03:01:00`.
+/// - `03:00:60 + 1s = 03:01:00`.
+/// Note that the sum is identical to the previous.
+/// - `03:00:60 + 60s = 03:01:59`.
+/// - `03:00:60 + 61s = 03:02:00`.
+/// - `03:00:60.1 + 0.8s = 03:00:60.9`.
+///
+/// `Time - Duration`
+/// (short for [`NaiveTime::overflowing_sub_signed`](#method.overflowing_sub_signed)):
+///
+/// - `03:00:00 - 1s = 02:59:59`.
+/// - `03:01:00 - 1s = 03:00:59`.
+/// - `03:01:00 - 60s = 03:00:00`.
+/// - `03:00:60 - 60s = 03:00:00`.
+/// Note that the result is identical to the previous.
+/// - `03:00:60.7 - 0.4s = 03:00:60.3`.
+/// - `03:00:60.7 - 0.9s = 03:00:59.8`.
+///
+/// `Time - Time`
+/// (short for [`NaiveTime::signed_duration_since`](#method.signed_duration_since)):
+///
+/// - `04:00:00 - 03:00:00 = 3600s`.
+/// - `03:01:00 - 03:00:00 = 60s`.
+/// - `03:00:60 - 03:00:00 = 60s`.
+/// Note that the difference is identical to the previous.
+/// - `03:00:60.6 - 03:00:59.4 = 1.2s`.
+/// - `03:01:00 - 03:00:59.8 = 0.2s`.
+/// - `03:01:00 - 03:00:60.5 = 0.5s`.
+/// Note that the difference is larger than the previous,
+/// even though the leap second clearly follows the previous whole second.
+/// - `04:00:60.9 - 03:00:60.1 =
+/// (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) =
+/// 60.9s + 3540s + 0.9s = 3601.8s`.
+///
+/// In general,
+///
+/// - `Time + Duration` unconditionally equals to `Duration + Time`.
+///
+/// - `Time - Duration` unconditionally equals to `Time + (-Duration)`.
+///
+/// - `Time1 - Time2` unconditionally equals to `-(Time2 - Time1)`.
+///
+/// - Associativity does not generally hold, because
+/// `(Time + Duration1) - Duration2` no longer equals to `Time + (Duration1 - Duration2)`
+/// for two positive durations.
+///
+/// - As a special case, `(Time + Duration) - Duration` also does not equal to `Time`.
+///
+/// - If you can assume that all durations have the same sign, however,
+/// then the associativity holds:
+/// `(Time + Duration1) + Duration2` equals to `Time + (Duration1 + Duration2)`
+/// for two positive durations.
+///
+/// ## Reading And Writing Leap Seconds
+///
+/// The "typical" leap seconds on the minute boundary are
+/// correctly handled both in the formatting and parsing.
+/// The leap second in the human-readable representation
+/// will be represented as the second part being 60, as required by ISO 8601.
+///
+/// ~~~~
+/// use chrono::{Utc, TimeZone};
+///
+/// let dt = Utc.ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_000);
+/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60Z");
+/// ~~~~
+///
+/// There are hypothetical leap seconds not on the minute boundary
+/// nevertheless supported by Chrono.
+/// They are allowed for the sake of completeness and consistency;
+/// there were several "exotic" time zone offsets with fractional minutes prior to UTC after all.
+/// For such cases the human-readable representation is ambiguous
+/// and would be read back to the next non-leap second.
+///
+/// ~~~~
+/// use chrono::{DateTime, Utc, TimeZone};
+///
+/// let dt = Utc.ymd(2015, 6, 30).and_hms_milli(23, 56, 4, 1_000);
+/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:56:05Z");
+///
+/// let dt = Utc.ymd(2015, 6, 30).and_hms(23, 56, 5);
+/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:56:05Z");
+/// assert_eq!(DateTime::parse_from_rfc3339("2015-06-30T23:56:05Z").unwrap(), dt);
+/// ~~~~
+///
+/// Since Chrono alone cannot determine any existence of leap seconds,
+/// **there is absolutely no guarantee that the leap second read has actually happened**.
+#[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
+pub struct NaiveTime {
+ secs: u32,
+ frac: u32,
+}
+
+impl NaiveTime {
+ /// Makes a new `NaiveTime` from hour, minute and second.
+ ///
+ /// No [leap second](#leap-second-handling) is allowed here;
+ /// use `NaiveTime::from_hms_*` methods with a subsecond parameter instead.
+ ///
+ /// Panics on invalid hour, minute and/or second.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let t = NaiveTime::from_hms(23, 56, 4);
+ /// assert_eq!(t.hour(), 23);
+ /// assert_eq!(t.minute(), 56);
+ /// assert_eq!(t.second(), 4);
+ /// assert_eq!(t.nanosecond(), 0);
+ /// ~~~~
+ #[inline]
+ pub fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime {
+ NaiveTime::from_hms_opt(hour, min, sec).expect("invalid time")
+ }
+
+ /// Makes a new `NaiveTime` from hour, minute and second.
+ ///
+ /// No [leap second](#leap-second-handling) is allowed here;
+ /// use `NaiveTime::from_hms_*_opt` methods with a subsecond parameter instead.
+ ///
+ /// Returns `None` on invalid hour, minute and/or second.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ ///
+ /// let from_hms_opt = NaiveTime::from_hms_opt;
+ ///
+ /// assert!(from_hms_opt(0, 0, 0).is_some());
+ /// assert!(from_hms_opt(23, 59, 59).is_some());
+ /// assert!(from_hms_opt(24, 0, 0).is_none());
+ /// assert!(from_hms_opt(23, 60, 0).is_none());
+ /// assert!(from_hms_opt(23, 59, 60).is_none());
+ /// ~~~~
+ #[inline]
+ pub fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime> {
+ NaiveTime::from_hms_nano_opt(hour, min, sec, 0)
+ }
+
+ /// Makes a new `NaiveTime` from hour, minute, second and millisecond.
+ ///
+ /// The millisecond part can exceed 1,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Panics on invalid hour, minute, second and/or millisecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let t = NaiveTime::from_hms_milli(23, 56, 4, 12);
+ /// assert_eq!(t.hour(), 23);
+ /// assert_eq!(t.minute(), 56);
+ /// assert_eq!(t.second(), 4);
+ /// assert_eq!(t.nanosecond(), 12_000_000);
+ /// ~~~~
+ #[inline]
+ pub fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime {
+ NaiveTime::from_hms_milli_opt(hour, min, sec, milli).expect("invalid time")
+ }
+
+ /// Makes a new `NaiveTime` from hour, minute, second and millisecond.
+ ///
+ /// The millisecond part can exceed 1,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Returns `None` on invalid hour, minute, second and/or millisecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ ///
+ /// let from_hmsm_opt = NaiveTime::from_hms_milli_opt;
+ ///
+ /// assert!(from_hmsm_opt(0, 0, 0, 0).is_some());
+ /// assert!(from_hmsm_opt(23, 59, 59, 999).is_some());
+ /// assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59
+ /// assert!(from_hmsm_opt(24, 0, 0, 0).is_none());
+ /// assert!(from_hmsm_opt(23, 60, 0, 0).is_none());
+ /// assert!(from_hmsm_opt(23, 59, 60, 0).is_none());
+ /// assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none());
+ /// ~~~~
+ #[inline]
+ pub fn from_hms_milli_opt(hour: u32, min: u32, sec: u32, milli: u32) -> Option<NaiveTime> {
+ milli
+ .checked_mul(1_000_000)
+ .and_then(|nano| NaiveTime::from_hms_nano_opt(hour, min, sec, nano))
+ }
+
+ /// Makes a new `NaiveTime` from hour, minute, second and microsecond.
+ ///
+ /// The microsecond part can exceed 1,000,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Panics on invalid hour, minute, second and/or microsecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let t = NaiveTime::from_hms_micro(23, 56, 4, 12_345);
+ /// assert_eq!(t.hour(), 23);
+ /// assert_eq!(t.minute(), 56);
+ /// assert_eq!(t.second(), 4);
+ /// assert_eq!(t.nanosecond(), 12_345_000);
+ /// ~~~~
+ #[inline]
+ pub fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime {
+ NaiveTime::from_hms_micro_opt(hour, min, sec, micro).expect("invalid time")
+ }
+
+ /// Makes a new `NaiveTime` from hour, minute, second and microsecond.
+ ///
+ /// The microsecond part can exceed 1,000,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Returns `None` on invalid hour, minute, second and/or microsecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ ///
+ /// let from_hmsu_opt = NaiveTime::from_hms_micro_opt;
+ ///
+ /// assert!(from_hmsu_opt(0, 0, 0, 0).is_some());
+ /// assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some());
+ /// assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59
+ /// assert!(from_hmsu_opt(24, 0, 0, 0).is_none());
+ /// assert!(from_hmsu_opt(23, 60, 0, 0).is_none());
+ /// assert!(from_hmsu_opt(23, 59, 60, 0).is_none());
+ /// assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none());
+ /// ~~~~
+ #[inline]
+ pub fn from_hms_micro_opt(hour: u32, min: u32, sec: u32, micro: u32) -> Option<NaiveTime> {
+ micro.checked_mul(1_000).and_then(|nano| NaiveTime::from_hms_nano_opt(hour, min, sec, nano))
+ }
+
+ /// Makes a new `NaiveTime` from hour, minute, second and nanosecond.
+ ///
+ /// The nanosecond part can exceed 1,000,000,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Panics on invalid hour, minute, second and/or nanosecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(t.hour(), 23);
+ /// assert_eq!(t.minute(), 56);
+ /// assert_eq!(t.second(), 4);
+ /// assert_eq!(t.nanosecond(), 12_345_678);
+ /// ~~~~
+ #[inline]
+ pub fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime {
+ NaiveTime::from_hms_nano_opt(hour, min, sec, nano).expect("invalid time")
+ }
+
+ /// Makes a new `NaiveTime` from hour, minute, second and nanosecond.
+ ///
+ /// The nanosecond part can exceed 1,000,000,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Returns `None` on invalid hour, minute, second and/or nanosecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ ///
+ /// let from_hmsn_opt = NaiveTime::from_hms_nano_opt;
+ ///
+ /// assert!(from_hmsn_opt(0, 0, 0, 0).is_some());
+ /// assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some());
+ /// assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59
+ /// assert!(from_hmsn_opt(24, 0, 0, 0).is_none());
+ /// assert!(from_hmsn_opt(23, 60, 0, 0).is_none());
+ /// assert!(from_hmsn_opt(23, 59, 60, 0).is_none());
+ /// assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none());
+ /// ~~~~
+ #[inline]
+ pub fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime> {
+ if hour >= 24 || min >= 60 || sec >= 60 || nano >= 2_000_000_000 {
+ return None;
+ }
+ let secs = hour * 3600 + min * 60 + sec;
+ Some(NaiveTime { secs: secs, frac: nano })
+ }
+
+ /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond.
+ ///
+ /// The nanosecond part can exceed 1,000,000,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Panics on invalid number of seconds and/or nanosecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let t = NaiveTime::from_num_seconds_from_midnight(86164, 12_345_678);
+ /// assert_eq!(t.hour(), 23);
+ /// assert_eq!(t.minute(), 56);
+ /// assert_eq!(t.second(), 4);
+ /// assert_eq!(t.nanosecond(), 12_345_678);
+ /// ~~~~
+ #[inline]
+ pub fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime {
+ NaiveTime::from_num_seconds_from_midnight_opt(secs, nano).expect("invalid time")
+ }
+
+ /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond.
+ ///
+ /// The nanosecond part can exceed 1,000,000,000
+ /// in order to represent the [leap second](#leap-second-handling).
+ ///
+ /// Returns `None` on invalid number of seconds and/or nanosecond.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ ///
+ /// let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt;
+ ///
+ /// assert!(from_nsecs_opt(0, 0).is_some());
+ /// assert!(from_nsecs_opt(86399, 999_999_999).is_some());
+ /// assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59
+ /// assert!(from_nsecs_opt(86_400, 0).is_none());
+ /// assert!(from_nsecs_opt(86399, 2_000_000_000).is_none());
+ /// ~~~~
+ #[inline]
+ pub fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime> {
+ if secs >= 86_400 || nano >= 2_000_000_000 {
+ return None;
+ }
+ Some(NaiveTime { secs: secs, frac: nano })
+ }
+
+ /// Parses a string with the specified format string and returns a new `NaiveTime`.
+ /// See the [`format::strftime` module](../format/strftime/index.html)
+ /// on the supported escape sequences.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ ///
+ /// let parse_from_str = NaiveTime::parse_from_str;
+ ///
+ /// assert_eq!(parse_from_str("23:56:04", "%H:%M:%S"),
+ /// Ok(NaiveTime::from_hms(23, 56, 4)));
+ /// assert_eq!(parse_from_str("pm012345.6789", "%p%I%M%S%.f"),
+ /// Ok(NaiveTime::from_hms_micro(13, 23, 45, 678_900)));
+ /// ~~~~
+ ///
+ /// Date and offset is ignored for the purpose of parsing.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveTime;
+ /// # let parse_from_str = NaiveTime::parse_from_str;
+ /// assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
+ /// Ok(NaiveTime::from_hms(12, 34, 56)));
+ /// ~~~~
+ ///
+ /// [Leap seconds](#leap-second-handling) are correctly handled by
+ /// treating any time of the form `hh:mm:60` as a leap second.
+ /// (This equally applies to the formatting, so the round trip is possible.)
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveTime;
+ /// # let parse_from_str = NaiveTime::parse_from_str;
+ /// assert_eq!(parse_from_str("08:59:60.123", "%H:%M:%S%.f"),
+ /// Ok(NaiveTime::from_hms_milli(8, 59, 59, 1_123)));
+ /// ~~~~
+ ///
+ /// Missing seconds are assumed to be zero,
+ /// but out-of-bound times or insufficient fields are errors otherwise.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveTime;
+ /// # let parse_from_str = NaiveTime::parse_from_str;
+ /// assert_eq!(parse_from_str("7:15", "%H:%M"),
+ /// Ok(NaiveTime::from_hms(7, 15, 0)));
+ ///
+ /// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
+ /// assert!(parse_from_str("12", "%H").is_err());
+ /// assert!(parse_from_str("17:60", "%H:%M").is_err());
+ /// assert!(parse_from_str("24:00:00", "%H:%M:%S").is_err());
+ /// ~~~~
+ ///
+ /// All parsed fields should be consistent to each other, otherwise it's an error.
+ /// Here `%H` is for 24-hour clocks, unlike `%I`,
+ /// and thus can be independently determined without AM/PM.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveTime;
+ /// # let parse_from_str = NaiveTime::parse_from_str;
+ /// assert!(parse_from_str("13:07 AM", "%H:%M %p").is_err());
+ /// ~~~~
+ pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime> {
+ let mut parsed = Parsed::new();
+ parse(&mut parsed, s, StrftimeItems::new(fmt))?;
+ parsed.to_naive_time()
+ }
+
+ /// Adds given `Duration` to the current time,
+ /// and also returns the number of *seconds*
+ /// in the integral number of days ignored from the addition.
+ /// (We cannot return `Duration` because it is subject to overflow or underflow.)
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// use chrono::{Duration, NaiveTime};
+ ///
+ /// let from_hms = NaiveTime::from_hms;
+ ///
+ /// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(11)),
+ /// (from_hms(14, 4, 5), 0));
+ /// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(23)),
+ /// (from_hms(2, 4, 5), 86_400));
+ /// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(Duration::hours(-7)),
+ /// (from_hms(20, 4, 5), -86_400));
+ /// # }
+ /// ~~~~
+ #[cfg_attr(feature = "cargo-clippy", allow(cyclomatic_complexity))]
+ pub fn overflowing_add_signed(&self, mut rhs: OldDuration) -> (NaiveTime, i64) {
+ let mut secs = self.secs;
+ let mut frac = self.frac;
+
+ // check if `self` is a leap second and adding `rhs` would escape that leap second.
+ // if it's the case, update `self` and `rhs` to involve no leap second;
+ // otherwise the addition immediately finishes.
+ if frac >= 1_000_000_000 {
+ let rfrac = 2_000_000_000 - frac;
+ if rhs >= OldDuration::nanoseconds(i64::from(rfrac)) {
+ rhs = rhs - OldDuration::nanoseconds(i64::from(rfrac));
+ secs += 1;
+ frac = 0;
+ } else if rhs < OldDuration::nanoseconds(-i64::from(frac)) {
+ rhs = rhs + OldDuration::nanoseconds(i64::from(frac));
+ frac = 0;
+ } else {
+ frac = (i64::from(frac) + rhs.num_nanoseconds().unwrap()) as u32;
+ debug_assert!(frac < 2_000_000_000);
+ return (NaiveTime { secs: secs, frac: frac }, 0);
+ }
+ }
+ debug_assert!(secs <= 86_400);
+ debug_assert!(frac < 1_000_000_000);
+
+ let rhssecs = rhs.num_seconds();
+ let rhsfrac = (rhs - OldDuration::seconds(rhssecs)).num_nanoseconds().unwrap();
+ debug_assert_eq!(OldDuration::seconds(rhssecs) + OldDuration::nanoseconds(rhsfrac), rhs);
+ let rhssecsinday = rhssecs % 86_400;
+ let mut morerhssecs = rhssecs - rhssecsinday;
+ let rhssecs = rhssecsinday as i32;
+ let rhsfrac = rhsfrac as i32;
+ debug_assert!(-86_400 < rhssecs && rhssecs < 86_400);
+ debug_assert_eq!(morerhssecs % 86_400, 0);
+ debug_assert!(-1_000_000_000 < rhsfrac && rhsfrac < 1_000_000_000);
+
+ let mut secs = secs as i32 + rhssecs;
+ let mut frac = frac as i32 + rhsfrac;
+ debug_assert!(-86_400 < secs && secs < 2 * 86_400);
+ debug_assert!(-1_000_000_000 < frac && frac < 2_000_000_000);
+
+ if frac < 0 {
+ frac += 1_000_000_000;
+ secs -= 1;
+ } else if frac >= 1_000_000_000 {
+ frac -= 1_000_000_000;
+ secs += 1;
+ }
+ debug_assert!(-86_400 <= secs && secs < 2 * 86_400);
+ debug_assert!(0 <= frac && frac < 1_000_000_000);
+
+ if secs < 0 {
+ secs += 86_400;
+ morerhssecs -= 86_400;
+ } else if secs >= 86_400 {
+ secs -= 86_400;
+ morerhssecs += 86_400;
+ }
+ debug_assert!(0 <= secs && secs < 86_400);
+
+ (NaiveTime { secs: secs as u32, frac: frac as u32 }, morerhssecs)
+ }
+
+ /// Subtracts given `Duration` from the current time,
+ /// and also returns the number of *seconds*
+ /// in the integral number of days ignored from the subtraction.
+ /// (We cannot return `Duration` because it is subject to overflow or underflow.)
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// use chrono::{Duration, NaiveTime};
+ ///
+ /// let from_hms = NaiveTime::from_hms;
+ ///
+ /// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(2)),
+ /// (from_hms(1, 4, 5), 0));
+ /// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(17)),
+ /// (from_hms(10, 4, 5), 86_400));
+ /// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(Duration::hours(-22)),
+ /// (from_hms(1, 4, 5), -86_400));
+ /// # }
+ /// ~~~~
+ #[inline]
+ pub fn overflowing_sub_signed(&self, rhs: OldDuration) -> (NaiveTime, i64) {
+ let (time, rhs) = self.overflowing_add_signed(-rhs);
+ (time, -rhs) // safe to negate, rhs is within +/- (2^63 / 1000)
+ }
+
+ /// Subtracts another `NaiveTime` from the current time.
+ /// Returns a `Duration` within +/- 1 day.
+ /// This does not overflow or underflow at all.
+ ///
+ /// As a part of Chrono's [leap second handling](#leap-second-handling),
+ /// the subtraction assumes that **there is no leap second ever**,
+ /// except when any of the `NaiveTime`s themselves represents a leap second
+ /// in which case the assumption becomes that
+ /// **there are exactly one (or two) leap second(s) ever**.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// use chrono::{Duration, NaiveTime};
+ ///
+ /// let from_hmsm = NaiveTime::from_hms_milli;
+ /// let since = NaiveTime::signed_duration_since;
+ ///
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)),
+ /// Duration::zero());
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)),
+ /// Duration::milliseconds(25));
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)),
+ /// Duration::milliseconds(975));
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)),
+ /// Duration::seconds(7));
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)),
+ /// Duration::seconds(5 * 60));
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)),
+ /// Duration::seconds(3 * 3600));
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)),
+ /// Duration::seconds(-3600));
+ /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)),
+ /// Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));
+ /// # }
+ /// ~~~~
+ ///
+ /// Leap seconds are handled, but the subtraction assumes that
+ /// there were no other leap seconds happened.
+ ///
+ /// ~~~~
+ /// # extern crate chrono; fn main() {
+ /// # use chrono::{Duration, NaiveTime};
+ /// # let from_hmsm = NaiveTime::from_hms_milli;
+ /// # let since = NaiveTime::signed_duration_since;
+ /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)),
+ /// Duration::seconds(1));
+ /// assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)),
+ /// Duration::milliseconds(1500));
+ /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)),
+ /// Duration::seconds(60));
+ /// assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)),
+ /// Duration::seconds(1));
+ /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)),
+ /// Duration::seconds(61));
+ /// # }
+ /// ~~~~
+ pub fn signed_duration_since(self, rhs: NaiveTime) -> OldDuration {
+ // | | :leap| | | | | | | :leap| |
+ // | | : | | | | | | | : | |
+ // ----+----+-----*---+----+----+----+----+----+----+-------*-+----+----
+ // | `rhs` | | `self`
+ // |======================================>| |
+ // | | `self.secs - rhs.secs` |`self.frac`
+ // |====>| | |======>|
+ // `rhs.frac`|========================================>|
+ // | | | `self - rhs` | |
+
+ use core::cmp::Ordering;
+
+ let secs = i64::from(self.secs) - i64::from(rhs.secs);
+ let frac = i64::from(self.frac) - i64::from(rhs.frac);
+
+ // `secs` may contain a leap second yet to be counted
+ let adjust = match self.secs.cmp(&rhs.secs) {
+ Ordering::Greater => {
+ if rhs.frac >= 1_000_000_000 {
+ 1
+ } else {
+ 0
+ }
+ }
+ Ordering::Equal => 0,
+ Ordering::Less => {
+ if self.frac >= 1_000_000_000 {
+ -1
+ } else {
+ 0
+ }
+ }
+ };
+
+ OldDuration::seconds(secs + adjust) + OldDuration::nanoseconds(frac)
+ }
+
+ /// Formats the time with the specified formatting items.
+ /// Otherwise it is the same as the ordinary [`format`](#method.format) method.
+ ///
+ /// The `Iterator` of items should be `Clone`able,
+ /// since the resulting `DelayedFormat` value may be formatted multiple times.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ /// use chrono::format::strftime::StrftimeItems;
+ ///
+ /// let fmt = StrftimeItems::new("%H:%M:%S");
+ /// let t = NaiveTime::from_hms(23, 56, 4);
+ /// assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04");
+ /// assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
+ /// ~~~~
+ ///
+ /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveTime;
+ /// # use chrono::format::strftime::StrftimeItems;
+ /// # let fmt = StrftimeItems::new("%H:%M:%S").clone();
+ /// # let t = NaiveTime::from_hms(23, 56, 4);
+ /// assert_eq!(format!("{}", t.format_with_items(fmt)), "23:56:04");
+ /// ~~~~
+ #[cfg(any(feature = "alloc", feature = "std", test))]
+ #[inline]
+ pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
+ where
+ I: Iterator<Item = B> + Clone,
+ B: Borrow<Item<'a>>,
+ {
+ DelayedFormat::new(None, Some(*self), items)
+ }
+
+ /// Formats the time with the specified format string.
+ /// See the [`format::strftime` module](../format/strftime/index.html)
+ /// on the supported escape sequences.
+ ///
+ /// This returns a `DelayedFormat`,
+ /// which gets converted to a string only when actual formatting happens.
+ /// You may use the `to_string` method to get a `String`,
+ /// or just feed it into `print!` and other formatting macros.
+ /// (In this way it avoids the redundant memory allocation.)
+ ///
+ /// A wrong format string does *not* issue an error immediately.
+ /// Rather, converting or formatting the `DelayedFormat` fails.
+ /// You are recommended to immediately use `DelayedFormat` for this reason.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::NaiveTime;
+ ///
+ /// let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
+ /// assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345");
+ /// assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");
+ /// ~~~~
+ ///
+ /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
+ ///
+ /// ~~~~
+ /// # use chrono::NaiveTime;
+ /// # let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(format!("{}", t.format("%H:%M:%S")), "23:56:04");
+ /// assert_eq!(format!("{}", t.format("%H:%M:%S%.6f")), "23:56:04.012345");
+ /// assert_eq!(format!("{}", t.format("%-I:%M %p")), "11:56 PM");
+ /// ~~~~
+ #[cfg(any(feature = "alloc", feature = "std", test))]
+ #[inline]
+ pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
+ self.format_with_items(StrftimeItems::new(fmt))
+ }
+
+ /// Returns a triple of the hour, minute and second numbers.
+ fn hms(&self) -> (u32, u32, u32) {
+ let (mins, sec) = div_mod_floor(self.secs, 60);
+ let (hour, min) = div_mod_floor(mins, 60);
+ (hour, min, sec)
+ }
+}
+
+impl Timelike for NaiveTime {
+ /// Returns the hour number from 0 to 23.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// assert_eq!(NaiveTime::from_hms(0, 0, 0).hour(), 0);
+ /// assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).hour(), 23);
+ /// ~~~~
+ #[inline]
+ fn hour(&self) -> u32 {
+ self.hms().0
+ }
+
+ /// Returns the minute number from 0 to 59.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// assert_eq!(NaiveTime::from_hms(0, 0, 0).minute(), 0);
+ /// assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).minute(), 56);
+ /// ~~~~
+ #[inline]
+ fn minute(&self) -> u32 {
+ self.hms().1
+ }
+
+ /// Returns the second number from 0 to 59.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// assert_eq!(NaiveTime::from_hms(0, 0, 0).second(), 0);
+ /// assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).second(), 4);
+ /// ~~~~
+ ///
+ /// This method never returns 60 even when it is a leap second.
+ /// ([Why?](#leap-second-handling))
+ /// Use the proper [formatting method](#method.format) to get a human-readable representation.
+ ///
+ /// ~~~~
+ /// # use chrono::{NaiveTime, Timelike};
+ /// let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000);
+ /// assert_eq!(leap.second(), 59);
+ /// assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60");
+ /// ~~~~
+ #[inline]
+ fn second(&self) -> u32 {
+ self.hms().2
+ }
+
+ /// Returns the number of nanoseconds since the whole non-leap second.
+ /// The range from 1,000,000,000 to 1,999,999,999 represents
+ /// the [leap second](#leap-second-handling).
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// assert_eq!(NaiveTime::from_hms(0, 0, 0).nanosecond(), 0);
+ /// assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).nanosecond(), 12_345_678);
+ /// ~~~~
+ ///
+ /// Leap seconds may have seemingly out-of-range return values.
+ /// You can reduce the range with `time.nanosecond() % 1_000_000_000`, or
+ /// use the proper [formatting method](#method.format) to get a human-readable representation.
+ ///
+ /// ~~~~
+ /// # use chrono::{NaiveTime, Timelike};
+ /// let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000);
+ /// assert_eq!(leap.nanosecond(), 1_000_000_000);
+ /// assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000");
+ /// ~~~~
+ #[inline]
+ fn nanosecond(&self) -> u32 {
+ self.frac
+ }
+
+ /// Makes a new `NaiveTime` with the hour number changed.
+ ///
+ /// Returns `None` when the resulting `NaiveTime` would be invalid.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano(7, 56, 4, 12_345_678)));
+ /// assert_eq!(dt.with_hour(24), None);
+ /// ~~~~
+ #[inline]
+ fn with_hour(&self, hour: u32) -> Option<NaiveTime> {
+ if hour >= 24 {
+ return None;
+ }
+ let secs = hour * 3600 + self.secs % 3600;
+ Some(NaiveTime { secs: secs, ..*self })
+ }
+
+ /// Makes a new `NaiveTime` with the minute number changed.
+ ///
+ /// Returns `None` when the resulting `NaiveTime` would be invalid.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(dt.with_minute(45), Some(NaiveTime::from_hms_nano(23, 45, 4, 12_345_678)));
+ /// assert_eq!(dt.with_minute(60), None);
+ /// ~~~~
+ #[inline]
+ fn with_minute(&self, min: u32) -> Option<NaiveTime> {
+ if min >= 60 {
+ return None;
+ }
+ let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60;
+ Some(NaiveTime { secs: secs, ..*self })
+ }
+
+ /// Makes a new `NaiveTime` with the second number changed.
+ ///
+ /// Returns `None` when the resulting `NaiveTime` would be invalid.
+ /// As with the [`second`](#method.second) method,
+ /// the input range is restricted to 0 through 59.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(dt.with_second(17), Some(NaiveTime::from_hms_nano(23, 56, 17, 12_345_678)));
+ /// assert_eq!(dt.with_second(60), None);
+ /// ~~~~
+ #[inline]
+ fn with_second(&self, sec: u32) -> Option<NaiveTime> {
+ if sec >= 60 {
+ return None;
+ }
+ let secs = self.secs / 60 * 60 + sec;
+ Some(NaiveTime { secs: secs, ..*self })
+ }
+
+ /// Makes a new `NaiveTime` with nanoseconds since the whole non-leap second changed.
+ ///
+ /// Returns `None` when the resulting `NaiveTime` would be invalid.
+ /// As with the [`nanosecond`](#method.nanosecond) method,
+ /// the input range can exceed 1,000,000,000 for leap seconds.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(dt.with_nanosecond(333_333_333),
+ /// Some(NaiveTime::from_hms_nano(23, 56, 4, 333_333_333)));
+ /// assert_eq!(dt.with_nanosecond(2_000_000_000), None);
+ /// ~~~~
+ ///
+ /// Leap seconds can theoretically follow *any* whole second.
+ /// The following would be a proper leap second at the time zone offset of UTC-00:03:57
+ /// (there are several historical examples comparable to this "non-sense" offset),
+ /// and therefore is allowed.
+ ///
+ /// ~~~~
+ /// # use chrono::{NaiveTime, Timelike};
+ /// # let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+ /// assert_eq!(dt.with_nanosecond(1_333_333_333),
+ /// Some(NaiveTime::from_hms_nano(23, 56, 4, 1_333_333_333)));
+ /// ~~~~
+ #[inline]
+ fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime> {
+ if nano >= 2_000_000_000 {
+ return None;
+ }
+ Some(NaiveTime { frac: nano, ..*self })
+ }
+
+ /// Returns the number of non-leap seconds past the last midnight.
+ ///
+ /// # Example
+ ///
+ /// ~~~~
+ /// use chrono::{NaiveTime, Timelike};
+ ///
+ /// assert_eq!(NaiveTime::from_hms(1, 2, 3).num_seconds_from_midnight(),
+ /// 3723);
+ /// assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).num_seconds_from_midnight(),
+ /// 86164);
+ /// assert_eq!(NaiveTime::from_hms_milli(23, 59, 59, 1_000).num_seconds_from_midnight(),
+ /// 86399);
+ /// ~~~~
+ #[inline]
+ fn num_seconds_from_midnight(&self) -> u32 {
+ self.secs // do not repeat the calculation!
+ }
+}
+
+/// `NaiveTime` can be used as a key to the hash maps (in principle).
+///
+/// Practically this also takes account of fractional seconds, so it is not recommended.
+/// (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
+impl hash::Hash for NaiveTime {
+ fn hash<H: hash::Hasher>(&self, state: &mut H) {
+ self.secs.hash(state);
+ self.frac.hash(state);
+ }
+}
+
+/// An addition of `Duration` to `NaiveTime` wraps around and never overflows or underflows.
+/// In particular the addition ignores integral number of days.
+///
+/// As a part of Chrono's [leap second handling](#leap-second-handling),
+/// the addition assumes that **there is no leap second ever**,
+/// except when the `NaiveTime` itself represents a leap second
+/// in which case the assumption becomes that **there is exactly a single leap second ever**.
+///
+/// # Example
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// use chrono::{Duration, NaiveTime};
+///
+/// let from_hmsm = NaiveTime::from_hms_milli;
+///
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::zero(), from_hmsm(3, 5, 7, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(1), from_hmsm(3, 5, 8, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-1), from_hmsm(3, 5, 6, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(60 + 4), from_hmsm(3, 6, 11, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::milliseconds(80), from_hmsm(3, 5, 7, 80));
+/// assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(280), from_hmsm(3, 5, 8, 230));
+/// assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(-980), from_hmsm(3, 5, 6, 970));
+/// # }
+/// ~~~~
+///
+/// The addition wraps around.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveTime};
+/// # let from_hmsm = NaiveTime::from_hms_milli;
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(22*60*60), from_hmsm(1, 5, 7, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-8*60*60), from_hmsm(19, 5, 7, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::days(800), from_hmsm(3, 5, 7, 0));
+/// # }
+/// ~~~~
+///
+/// Leap seconds are handled, but the addition assumes that it is the only leap second happened.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveTime};
+/// # let from_hmsm = NaiveTime::from_hms_milli;
+/// let leap = from_hmsm(3, 5, 59, 1_300);
+/// assert_eq!(leap + Duration::zero(), from_hmsm(3, 5, 59, 1_300));
+/// assert_eq!(leap + Duration::milliseconds(-500), from_hmsm(3, 5, 59, 800));
+/// assert_eq!(leap + Duration::milliseconds(500), from_hmsm(3, 5, 59, 1_800));
+/// assert_eq!(leap + Duration::milliseconds(800), from_hmsm(3, 6, 0, 100));
+/// assert_eq!(leap + Duration::seconds(10), from_hmsm(3, 6, 9, 300));
+/// assert_eq!(leap + Duration::seconds(-10), from_hmsm(3, 5, 50, 300));
+/// assert_eq!(leap + Duration::days(1), from_hmsm(3, 5, 59, 300));
+/// # }
+/// ~~~~
+impl Add<OldDuration> for NaiveTime {
+ type Output = NaiveTime;
+
+ #[inline]
+ fn add(self, rhs: OldDuration) -> NaiveTime {
+ self.overflowing_add_signed(rhs).0
+ }
+}
+
+impl AddAssign<OldDuration> for NaiveTime {
+ #[inline]
+ fn add_assign(&mut self, rhs: OldDuration) {
+ *self = self.add(rhs);
+ }
+}
+
+/// A subtraction of `Duration` from `NaiveTime` wraps around and never overflows or underflows.
+/// In particular the addition ignores integral number of days.
+/// It is the same as the addition with a negated `Duration`.
+///
+/// As a part of Chrono's [leap second handling](#leap-second-handling),
+/// the addition assumes that **there is no leap second ever**,
+/// except when the `NaiveTime` itself represents a leap second
+/// in which case the assumption becomes that **there is exactly a single leap second ever**.
+///
+/// # Example
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// use chrono::{Duration, NaiveTime};
+///
+/// let from_hmsm = NaiveTime::from_hms_milli;
+///
+/// assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(), from_hmsm(3, 5, 7, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1), from_hmsm(3, 5, 6, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5), from_hmsm(3, 4, 2, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80), from_hmsm(3, 5, 6, 920));
+/// assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280), from_hmsm(3, 5, 7, 670));
+/// # }
+/// ~~~~
+///
+/// The subtraction wraps around.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveTime};
+/// # let from_hmsm = NaiveTime::from_hms_milli;
+/// assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
+/// assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800), from_hmsm(3, 5, 7, 0));
+/// # }
+/// ~~~~
+///
+/// Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveTime};
+/// # let from_hmsm = NaiveTime::from_hms_milli;
+/// let leap = from_hmsm(3, 5, 59, 1_300);
+/// assert_eq!(leap - Duration::zero(), from_hmsm(3, 5, 59, 1_300));
+/// assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
+/// assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800));
+/// assert_eq!(leap - Duration::seconds(60), from_hmsm(3, 5, 0, 300));
+/// assert_eq!(leap - Duration::days(1), from_hmsm(3, 6, 0, 300));
+/// # }
+/// ~~~~
+impl Sub<OldDuration> for NaiveTime {
+ type Output = NaiveTime;
+
+ #[inline]
+ fn sub(self, rhs: OldDuration) -> NaiveTime {
+ self.overflowing_sub_signed(rhs).0
+ }
+}
+
+impl SubAssign<OldDuration> for NaiveTime {
+ #[inline]
+ fn sub_assign(&mut self, rhs: OldDuration) {
+ *self = self.sub(rhs);
+ }
+}
+
+/// Subtracts another `NaiveTime` from the current time.
+/// Returns a `Duration` within +/- 1 day.
+/// This does not overflow or underflow at all.
+///
+/// As a part of Chrono's [leap second handling](#leap-second-handling),
+/// the subtraction assumes that **there is no leap second ever**,
+/// except when any of the `NaiveTime`s themselves represents a leap second
+/// in which case the assumption becomes that
+/// **there are exactly one (or two) leap second(s) ever**.
+///
+/// The implementation is a wrapper around
+/// [`NaiveTime::signed_duration_since`](#method.signed_duration_since).
+///
+/// # Example
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// use chrono::{Duration, NaiveTime};
+///
+/// let from_hmsm = NaiveTime::from_hms_milli;
+///
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), Duration::zero());
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), Duration::milliseconds(25));
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), Duration::milliseconds(975));
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), Duration::seconds(7));
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), Duration::seconds(5 * 60));
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), Duration::seconds(3 * 3600));
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), Duration::seconds(-3600));
+/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
+/// Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));
+/// # }
+/// ~~~~
+///
+/// Leap seconds are handled, but the subtraction assumes that
+/// there were no other leap seconds happened.
+///
+/// ~~~~
+/// # extern crate chrono; fn main() {
+/// # use chrono::{Duration, NaiveTime};
+/// # let from_hmsm = NaiveTime::from_hms_milli;
+/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), Duration::seconds(1));
+/// assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
+/// Duration::milliseconds(1500));
+/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), Duration::seconds(60));
+/// assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), Duration::seconds(1));
+/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
+/// Duration::seconds(61));
+/// # }
+/// ~~~~
+impl Sub<NaiveTime> for NaiveTime {
+ type Output = OldDuration;
+
+ #[inline]
+ fn sub(self, rhs: NaiveTime) -> OldDuration {
+ self.signed_duration_since(rhs)
+ }
+}
+
+/// The `Debug` output of the naive time `t` is the same as
+/// [`t.format("%H:%M:%S%.f")`](../format/strftime/index.html).
+///
+/// The string printed can be readily parsed via the `parse` method on `str`.
+///
+/// It should be noted that, for leap seconds not on the minute boundary,
+/// it may print a representation not distinguishable from non-leap seconds.
+/// This doesn't matter in practice, since such leap seconds never happened.
+/// (By the time of the first leap second on 1972-06-30,
+/// every time zone offset around the world has standardized to the 5-minute alignment.)
+///
+/// # Example
+///
+/// ~~~~
+/// use chrono::NaiveTime;
+///
+/// assert_eq!(format!("{:?}", NaiveTime::from_hms(23, 56, 4)), "23:56:04");
+/// assert_eq!(format!("{:?}", NaiveTime::from_hms_milli(23, 56, 4, 12)), "23:56:04.012");
+/// assert_eq!(format!("{:?}", NaiveTime::from_hms_micro(23, 56, 4, 1234)), "23:56:04.001234");
+/// assert_eq!(format!("{:?}", NaiveTime::from_hms_nano(23, 56, 4, 123456)), "23:56:04.000123456");
+/// ~~~~
+///
+/// Leap seconds may also be used.
+///
+/// ~~~~
+/// # use chrono::NaiveTime;
+/// assert_eq!(format!("{:?}", NaiveTime::from_hms_milli(6, 59, 59, 1_500)), "06:59:60.500");
+/// ~~~~
+impl fmt::Debug for NaiveTime {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let (hour, min, sec) = self.hms();
+ let (sec, nano) = if self.frac >= 1_000_000_000 {
+ (sec + 1, self.frac - 1_000_000_000)
+ } else {
+ (sec, self.frac)
+ };
+
+ write!(f, "{:02}:{:02}:{:02}", hour, min, sec)?;
+ if nano == 0 {
+ Ok(())
+ } else if nano % 1_000_000 == 0 {
+ write!(f, ".{:03}", nano / 1_000_000)
+ } else if nano % 1_000 == 0 {
+ write!(f, ".{:06}", nano / 1_000)
+ } else {
+ write!(f, ".{:09}", nano)
+ }
+ }
+}
+
+/// The `Display` output of the naive time `t` is the same as
+/// [`t.format("%H:%M:%S%.f")`](../format/strftime/index.html).
+///
+/// The string printed can be readily parsed via the `parse` method on `str`.
+///
+/// It should be noted that, for leap seconds not on the minute boundary,
+/// it may print a representation not distinguishable from non-leap seconds.
+/// This doesn't matter in practice, since such leap seconds never happened.
+/// (By the time of the first leap second on 1972-06-30,
+/// every time zone offset around the world has standardized to the 5-minute alignment.)
+///
+/// # Example
+///
+/// ~~~~
+/// use chrono::NaiveTime;
+///
+/// assert_eq!(format!("{}", NaiveTime::from_hms(23, 56, 4)), "23:56:04");
+/// assert_eq!(format!("{}", NaiveTime::from_hms_milli(23, 56, 4, 12)), "23:56:04.012");
+/// assert_eq!(format!("{}", NaiveTime::from_hms_micro(23, 56, 4, 1234)), "23:56:04.001234");
+/// assert_eq!(format!("{}", NaiveTime::from_hms_nano(23, 56, 4, 123456)), "23:56:04.000123456");
+/// ~~~~
+///
+/// Leap seconds may also be used.
+///
+/// ~~~~
+/// # use chrono::NaiveTime;
+/// assert_eq!(format!("{}", NaiveTime::from_hms_milli(6, 59, 59, 1_500)), "06:59:60.500");
+/// ~~~~
+impl fmt::Display for NaiveTime {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(self, f)
+ }
+}
+
+/// Parsing a `str` into a `NaiveTime` uses the same format,
+/// [`%H:%M:%S%.f`](../format/strftime/index.html), as in `Debug` and `Display`.
+///
+/// # Example
+///
+/// ~~~~
+/// use chrono::NaiveTime;
+///
+/// let t = NaiveTime::from_hms(23, 56, 4);
+/// assert_eq!("23:56:04".parse::<NaiveTime>(), Ok(t));
+///
+/// let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678);
+/// assert_eq!("23:56:4.012345678".parse::<NaiveTime>(), Ok(t));
+///
+/// let t = NaiveTime::from_hms_nano(23, 59, 59, 1_234_567_890); // leap second
+/// assert_eq!("23:59:60.23456789".parse::<NaiveTime>(), Ok(t));
+///
+/// assert!("foo".parse::<NaiveTime>().is_err());
+/// ~~~~
+impl str::FromStr for NaiveTime {
+ type Err = ParseError;
+
+ fn from_str(s: &str) -> ParseResult<NaiveTime> {
+ const ITEMS: &'static [Item<'static>] = &[
+ Item::Numeric(Numeric::Hour, Pad::Zero),
+ Item::Space(""),
+ Item::Literal(":"),
+ Item::Numeric(Numeric::Minute, Pad::Zero),
+ Item::Space(""),
+ Item::Literal(":"),
+ Item::Numeric(Numeric::Second, Pad::Zero),
+ Item::Fixed(Fixed::Nanosecond),
+ Item::Space(""),
+ ];
+
+ let mut parsed = Parsed::new();
+ parse(&mut parsed, s, ITEMS.iter())?;
+ parsed.to_naive_time()
+ }
+}
+
+#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
+fn test_encodable_json<F, E>(to_string: F)
+where
+ F: Fn(&NaiveTime) -> Result<String, E>,
+ E: ::std::fmt::Debug,
+{
+ assert_eq!(to_string(&NaiveTime::from_hms(0, 0, 0)).ok(), Some(r#""00:00:00""#.into()));
+ assert_eq!(
+ to_string(&NaiveTime::from_hms_milli(0, 0, 0, 950)).ok(),
+ Some(r#""00:00:00.950""#.into())
+ );
+ assert_eq!(
+ to_string(&NaiveTime::from_hms_milli(0, 0, 59, 1_000)).ok(),
+ Some(r#""00:00:60""#.into())
+ );
+ assert_eq!(to_string(&NaiveTime::from_hms(0, 1, 2)).ok(), Some(r#""00:01:02""#.into()));
+ assert_eq!(
+ to_string(&NaiveTime::from_hms_nano(3, 5, 7, 98765432)).ok(),
+ Some(r#""03:05:07.098765432""#.into())
+ );
+ assert_eq!(to_string(&NaiveTime::from_hms(7, 8, 9)).ok(), Some(r#""07:08:09""#.into()));
+ assert_eq!(
+ to_string(&NaiveTime::from_hms_micro(12, 34, 56, 789)).ok(),
+ Some(r#""12:34:56.000789""#.into())
+ );
+ assert_eq!(
+ to_string(&NaiveTime::from_hms_nano(23, 59, 59, 1_999_999_999)).ok(),
+ Some(r#""23:59:60.999999999""#.into())
+ );
+}
+
+#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
+fn test_decodable_json<F, E>(from_str: F)
+where
+ F: Fn(&str) -> Result<NaiveTime, E>,
+ E: ::std::fmt::Debug,
+{
+ assert_eq!(from_str(r#""00:00:00""#).ok(), Some(NaiveTime::from_hms(0, 0, 0)));
+ assert_eq!(from_str(r#""0:0:0""#).ok(), Some(NaiveTime::from_hms(0, 0, 0)));
+ assert_eq!(from_str(r#""00:00:00.950""#).ok(), Some(NaiveTime::from_hms_milli(0, 0, 0, 950)));
+ assert_eq!(from_str(r#""0:0:0.95""#).ok(), Some(NaiveTime::from_hms_milli(0, 0, 0, 950)));
+ assert_eq!(from_str(r#""00:00:60""#).ok(), Some(NaiveTime::from_hms_milli(0, 0, 59, 1_000)));
+ assert_eq!(from_str(r#""00:01:02""#).ok(), Some(NaiveTime::from_hms(0, 1, 2)));
+ assert_eq!(
+ from_str(r#""03:05:07.098765432""#).ok(),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 98765432))
+ );
+ assert_eq!(from_str(r#""07:08:09""#).ok(), Some(NaiveTime::from_hms(7, 8, 9)));
+ assert_eq!(
+ from_str(r#""12:34:56.000789""#).ok(),
+ Some(NaiveTime::from_hms_micro(12, 34, 56, 789))
+ );
+ assert_eq!(
+ from_str(r#""23:59:60.999999999""#).ok(),
+ Some(NaiveTime::from_hms_nano(23, 59, 59, 1_999_999_999))
+ );
+ assert_eq!(
+ from_str(r#""23:59:60.9999999999997""#).ok(), // excess digits are ignored
+ Some(NaiveTime::from_hms_nano(23, 59, 59, 1_999_999_999))
+ );
+
+ // bad formats
+ assert!(from_str(r#""""#).is_err());
+ assert!(from_str(r#""000000""#).is_err());
+ assert!(from_str(r#""00:00:61""#).is_err());
+ assert!(from_str(r#""00:60:00""#).is_err());
+ assert!(from_str(r#""24:00:00""#).is_err());
+ assert!(from_str(r#""23:59:59,1""#).is_err());
+ assert!(from_str(r#""012:34:56""#).is_err());
+ assert!(from_str(r#""hh:mm:ss""#).is_err());
+ assert!(from_str(r#"0"#).is_err());
+ assert!(from_str(r#"86399"#).is_err());
+ assert!(from_str(r#"{}"#).is_err());
+ // pre-0.3.0 rustc-serialize format is now invalid
+ assert!(from_str(r#"{"secs":0,"frac":0}"#).is_err());
+ assert!(from_str(r#"null"#).is_err());
+}
+
+#[cfg(feature = "rustc-serialize")]
+mod rustc_serialize {
+ use super::NaiveTime;
+ use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
+
+ impl Encodable for NaiveTime {
+ fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
+ format!("{:?}", self).encode(s)
+ }
+ }
+
+ impl Decodable for NaiveTime {
+ fn decode<D: Decoder>(d: &mut D) -> Result<NaiveTime, D::Error> {
+ d.read_str()?.parse().map_err(|_| d.error("invalid time"))
+ }
+ }
+
+ #[cfg(test)]
+ use rustc_serialize::json;
+
+ #[test]
+ fn test_encodable() {
+ super::test_encodable_json(json::encode);
+ }
+
+ #[test]
+ fn test_decodable() {
+ super::test_decodable_json(json::decode);
+ }
+}
+
+#[cfg(feature = "serde")]
+mod serde {
+ use super::NaiveTime;
+ use core::fmt;
+ use serdelib::{de, ser};
+
+ // TODO not very optimized for space (binary formats would want something better)
+ // TODO round-trip for general leap seconds (not just those with second = 60)
+
+ impl ser::Serialize for NaiveTime {
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: ser::Serializer,
+ {
+ serializer.collect_str(&self)
+ }
+ }
+
+ struct NaiveTimeVisitor;
+
+ impl<'de> de::Visitor<'de> for NaiveTimeVisitor {
+ type Value = NaiveTime;
+
+ fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ write!(formatter, "a formatted time string")
+ }
+
+ fn visit_str<E>(self, value: &str) -> Result<NaiveTime, E>
+ where
+ E: de::Error,
+ {
+ value.parse().map_err(E::custom)
+ }
+ }
+
+ impl<'de> de::Deserialize<'de> for NaiveTime {
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: de::Deserializer<'de>,
+ {
+ deserializer.deserialize_str(NaiveTimeVisitor)
+ }
+ }
+
+ #[cfg(test)]
+ extern crate bincode;
+ #[cfg(test)]
+ extern crate serde_json;
+
+ #[test]
+ fn test_serde_serialize() {
+ super::test_encodable_json(self::serde_json::to_string);
+ }
+
+ #[test]
+ fn test_serde_deserialize() {
+ super::test_decodable_json(|input| self::serde_json::from_str(&input));
+ }
+
+ #[test]
+ fn test_serde_bincode() {
+ // Bincode is relevant to test separately from JSON because
+ // it is not self-describing.
+ use self::bincode::{deserialize, serialize, Infinite};
+
+ let t = NaiveTime::from_hms_nano(3, 5, 7, 98765432);
+ let encoded = serialize(&t, Infinite).unwrap();
+ let decoded: NaiveTime = deserialize(&encoded).unwrap();
+ assert_eq!(t, decoded);
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::NaiveTime;
+ use oldtime::Duration;
+ use std::u32;
+ use Timelike;
+
+ #[test]
+ fn test_time_from_hms_milli() {
+ assert_eq!(
+ NaiveTime::from_hms_milli_opt(3, 5, 7, 0),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 0))
+ );
+ assert_eq!(
+ NaiveTime::from_hms_milli_opt(3, 5, 7, 777),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 777_000_000))
+ );
+ assert_eq!(
+ NaiveTime::from_hms_milli_opt(3, 5, 7, 1_999),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 1_999_000_000))
+ );
+ assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, 2_000), None);
+ assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, 5_000), None); // overflow check
+ assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, u32::MAX), None);
+ }
+
+ #[test]
+ fn test_time_from_hms_micro() {
+ assert_eq!(
+ NaiveTime::from_hms_micro_opt(3, 5, 7, 0),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 0))
+ );
+ assert_eq!(
+ NaiveTime::from_hms_micro_opt(3, 5, 7, 333),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 333_000))
+ );
+ assert_eq!(
+ NaiveTime::from_hms_micro_opt(3, 5, 7, 777_777),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 777_777_000))
+ );
+ assert_eq!(
+ NaiveTime::from_hms_micro_opt(3, 5, 7, 1_999_999),
+ Some(NaiveTime::from_hms_nano(3, 5, 7, 1_999_999_000))
+ );
+ assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 2_000_000), None);
+ assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 5_000_000), None); // overflow check
+ assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, u32::MAX), None);
+ }
+
+ #[test]
+ fn test_time_hms() {
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).hour(), 3);
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(0), Some(NaiveTime::from_hms(0, 5, 7)));
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(23), Some(NaiveTime::from_hms(23, 5, 7)));
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(24), None);
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(u32::MAX), None);
+
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).minute(), 5);
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_minute(0), Some(NaiveTime::from_hms(3, 0, 7)));
+ assert_eq!(
+ NaiveTime::from_hms(3, 5, 7).with_minute(59),
+ Some(NaiveTime::from_hms(3, 59, 7))
+ );
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_minute(60), None);
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_minute(u32::MAX), None);
+
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).second(), 7);
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_second(0), Some(NaiveTime::from_hms(3, 5, 0)));
+ assert_eq!(
+ NaiveTime::from_hms(3, 5, 7).with_second(59),
+ Some(NaiveTime::from_hms(3, 5, 59))
+ );
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_second(60), None);
+ assert_eq!(NaiveTime::from_hms(3, 5, 7).with_second(u32::MAX), None);
+ }
+
+ #[test]
+ fn test_time_add() {
+ macro_rules! check {
+ ($lhs:expr, $rhs:expr, $sum:expr) => {{
+ assert_eq!($lhs + $rhs, $sum);
+ //assert_eq!($rhs + $lhs, $sum);
+ }};
+ }
+
+ let hmsm = |h, m, s, mi| NaiveTime::from_hms_milli(h, m, s, mi);
+
+ check!(hmsm(3, 5, 7, 900), Duration::zero(), hmsm(3, 5, 7, 900));
+ check!(hmsm(3, 5, 7, 900), Duration::milliseconds(100), hmsm(3, 5, 8, 0));
+ check!(hmsm(3, 5, 7, 1_300), Duration::milliseconds(-1800), hmsm(3, 5, 6, 500));
+ check!(hmsm(3, 5, 7, 1_300), Duration::milliseconds(-800), hmsm(3, 5, 7, 500));
+ check!(hmsm(3, 5, 7, 1_300), Duration::milliseconds(-100), hmsm(3, 5, 7, 1_200));
+ check!(hmsm(3, 5, 7, 1_300), Duration::milliseconds(100), hmsm(3, 5, 7, 1_400));
+ check!(hmsm(3, 5, 7, 1_300), Duration::milliseconds(800), hmsm(3, 5, 8, 100));
+ check!(hmsm(3, 5, 7, 1_300), Duration::milliseconds(1800), hmsm(3, 5, 9, 100));
+ check!(hmsm(3, 5, 7, 900), Duration::seconds(86399), hmsm(3, 5, 6, 900)); // overwrap
+ check!(hmsm(3, 5, 7, 900), Duration::seconds(-86399), hmsm(3, 5, 8, 900));
+ check!(hmsm(3, 5, 7, 900), Duration::days(12345), hmsm(3, 5, 7, 900));
+ check!(hmsm(3, 5, 7, 1_300), Duration::days(1), hmsm(3, 5, 7, 300));
+ check!(hmsm(3, 5, 7, 1_300), Duration::days(-1), hmsm(3, 5, 8, 300));
+
+ // regression tests for #37
+ check!(hmsm(0, 0, 0, 0), Duration::milliseconds(-990), hmsm(23, 59, 59, 10));
+ check!(hmsm(0, 0, 0, 0), Duration::milliseconds(-9990), hmsm(23, 59, 50, 10));
+ }
+
+ #[test]
+ fn test_time_overflowing_add() {
+ let hmsm = NaiveTime::from_hms_milli;
+
+ assert_eq!(
+ hmsm(3, 4, 5, 678).overflowing_add_signed(Duration::hours(11)),
+ (hmsm(14, 4, 5, 678), 0)
+ );
+ assert_eq!(
+ hmsm(3, 4, 5, 678).overflowing_add_signed(Duration::hours(23)),
+ (hmsm(2, 4, 5, 678), 86_400)
+ );
+ assert_eq!(
+ hmsm(3, 4, 5, 678).overflowing_add_signed(Duration::hours(-7)),
+ (hmsm(20, 4, 5, 678), -86_400)
+ );
+
+ // overflowing_add_signed with leap seconds may be counter-intuitive
+ assert_eq!(
+ hmsm(3, 4, 5, 1_678).overflowing_add_signed(Duration::days(1)),
+ (hmsm(3, 4, 5, 678), 86_400)
+ );
+ assert_eq!(
+ hmsm(3, 4, 5, 1_678).overflowing_add_signed(Duration::days(-1)),
+ (hmsm(3, 4, 6, 678), -86_400)
+ );
+ }
+
+ #[test]
+ fn test_time_addassignment() {
+ let hms = NaiveTime::from_hms;
+ let mut time = hms(12, 12, 12);
+ time += Duration::hours(10);
+ assert_eq!(time, hms(22, 12, 12));
+ time += Duration::hours(10);
+ assert_eq!(time, hms(8, 12, 12));
+ }
+
+ #[test]
+ fn test_time_subassignment() {
+ let hms = NaiveTime::from_hms;
+ let mut time = hms(12, 12, 12);
+ time -= Duration::hours(10);
+ assert_eq!(time, hms(2, 12, 12));
+ time -= Duration::hours(10);
+ assert_eq!(time, hms(16, 12, 12));
+ }
+
+ #[test]
+ fn test_time_sub() {
+ macro_rules! check {
+ ($lhs:expr, $rhs:expr, $diff:expr) => {{
+ // `time1 - time2 = duration` is equivalent to `time2 - time1 = -duration`
+ assert_eq!($lhs.signed_duration_since($rhs), $diff);
+ assert_eq!($rhs.signed_duration_since($lhs), -$diff);
+ }};
+ }
+
+ let hmsm = |h, m, s, mi| NaiveTime::from_hms_milli(h, m, s, mi);
+
+ check!(hmsm(3, 5, 7, 900), hmsm(3, 5, 7, 900), Duration::zero());
+ check!(hmsm(3, 5, 7, 900), hmsm(3, 5, 7, 600), Duration::milliseconds(300));
+ check!(hmsm(3, 5, 7, 200), hmsm(2, 4, 6, 200), Duration::seconds(3600 + 60 + 1));
+ check!(
+ hmsm(3, 5, 7, 200),
+ hmsm(2, 4, 6, 300),
+ Duration::seconds(3600 + 60) + Duration::milliseconds(900)
+ );
+
+ // treats the leap second as if it coincides with the prior non-leap second,
+ // as required by `time1 - time2 = duration` and `time2 - time1 = -duration` equivalence.
+ check!(hmsm(3, 5, 7, 200), hmsm(3, 5, 6, 1_800), Duration::milliseconds(400));
+ check!(hmsm(3, 5, 7, 1_200), hmsm(3, 5, 6, 1_800), Duration::milliseconds(1400));
+ check!(hmsm(3, 5, 7, 1_200), hmsm(3, 5, 6, 800), Duration::milliseconds(1400));
+
+ // additional equality: `time1 + duration = time2` is equivalent to
+ // `time2 - time1 = duration` IF AND ONLY IF `time2` represents a non-leap second.
+ assert_eq!(hmsm(3, 5, 6, 800) + Duration::milliseconds(400), hmsm(3, 5, 7, 200));
+ assert_eq!(hmsm(3, 5, 6, 1_800) + Duration::milliseconds(400), hmsm(3, 5, 7, 200));
+ }
+
+ #[test]
+ fn test_time_fmt() {
+ assert_eq!(format!("{}", NaiveTime::from_hms_milli(23, 59, 59, 999)), "23:59:59.999");
+ assert_eq!(format!("{}", NaiveTime::from_hms_milli(23, 59, 59, 1_000)), "23:59:60");
+ assert_eq!(format!("{}", NaiveTime::from_hms_milli(23, 59, 59, 1_001)), "23:59:60.001");
+ assert_eq!(format!("{}", NaiveTime::from_hms_micro(0, 0, 0, 43210)), "00:00:00.043210");
+ assert_eq!(format!("{}", NaiveTime::from_hms_nano(0, 0, 0, 6543210)), "00:00:00.006543210");
+
+ // the format specifier should have no effect on `NaiveTime`
+ assert_eq!(format!("{:30}", NaiveTime::from_hms_milli(3, 5, 7, 9)), "03:05:07.009");
+ }
+
+ #[test]
+ fn test_date_from_str() {
+ // valid cases
+ let valid = [
+ "0:0:0",
+ "0:0:0.0000000",
+ "0:0:0.0000003",
+ " 4 : 3 : 2.1 ",
+ " 09:08:07 ",
+ " 9:8:07 ",
+ "23:59:60.373929310237",
+ ];
+ for &s in &valid {
+ let d = match s.parse::<NaiveTime>() {
+ Ok(d) => d,
+ Err(e) => panic!("parsing `{}` has failed: {}", s, e),
+ };
+ let s_ = format!("{:?}", d);
+ // `s` and `s_` may differ, but `s.parse()` and `s_.parse()` must be same
+ let d_ = match s_.parse::<NaiveTime>() {
+ Ok(d) => d,
+ Err(e) => {
+ panic!("`{}` is parsed into `{:?}`, but reparsing that has failed: {}", s, d, e)
+ }
+ };
+ assert!(
+ d == d_,
+ "`{}` is parsed into `{:?}`, but reparsed result \
+ `{:?}` does not match",
+ s,
+ d,
+ d_
+ );
+ }
+
+ // some invalid cases
+ // since `ParseErrorKind` is private, all we can do is to check if there was an error
+ assert!("".parse::<NaiveTime>().is_err());
+ assert!("x".parse::<NaiveTime>().is_err());
+ assert!("15".parse::<NaiveTime>().is_err());
+ assert!("15:8".parse::<NaiveTime>().is_err());
+ assert!("15:8:x".parse::<NaiveTime>().is_err());
+ assert!("15:8:9x".parse::<NaiveTime>().is_err());
+ assert!("23:59:61".parse::<NaiveTime>().is_err());
+ assert!("12:34:56.x".parse::<NaiveTime>().is_err());
+ assert!("12:34:56. 0".parse::<NaiveTime>().is_err());
+ }
+
+ #[test]
+ fn test_time_parse_from_str() {
+ let hms = |h, m, s| NaiveTime::from_hms(h, m, s);
+ assert_eq!(
+ NaiveTime::parse_from_str("2014-5-7T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
+ Ok(hms(12, 34, 56))
+ ); // ignore date and offset
+ assert_eq!(NaiveTime::parse_from_str("PM 12:59", "%P %H:%M"), Ok(hms(12, 59, 0)));
+ assert!(NaiveTime::parse_from_str("12:3456", "%H:%M:%S").is_err());
+ }
+
+ #[test]
+ fn test_time_format() {
+ let t = NaiveTime::from_hms_nano(3, 5, 7, 98765432);
+ assert_eq!(t.format("%H,%k,%I,%l,%P,%p").to_string(), "03, 3,03, 3,am,AM");
+ assert_eq!(t.format("%M").to_string(), "05");
+ assert_eq!(t.format("%S,%f,%.f").to_string(), "07,098765432,.098765432");
+ assert_eq!(t.format("%.3f,%.6f,%.9f").to_string(), ".098,.098765,.098765432");
+ assert_eq!(t.format("%R").to_string(), "03:05");
+ assert_eq!(t.format("%T,%X").to_string(), "03:05:07,03:05:07");
+ assert_eq!(t.format("%r").to_string(), "03:05:07 AM");
+ assert_eq!(t.format("%t%n%%%n%t").to_string(), "\t\n%\n\t");
+
+ let t = NaiveTime::from_hms_micro(3, 5, 7, 432100);
+ assert_eq!(t.format("%S,%f,%.f").to_string(), "07,432100000,.432100");
+ assert_eq!(t.format("%.3f,%.6f,%.9f").to_string(), ".432,.432100,.432100000");
+
+ let t = NaiveTime::from_hms_milli(3, 5, 7, 210);
+ assert_eq!(t.format("%S,%f,%.f").to_string(), "07,210000000,.210");
+ assert_eq!(t.format("%.3f,%.6f,%.9f").to_string(), ".210,.210000,.210000000");
+
+ let t = NaiveTime::from_hms(3, 5, 7);
+ assert_eq!(t.format("%S,%f,%.f").to_string(), "07,000000000,");
+ assert_eq!(t.format("%.3f,%.6f,%.9f").to_string(), ".000,.000000,.000000000");
+
+ // corner cases
+ assert_eq!(NaiveTime::from_hms(13, 57, 9).format("%r").to_string(), "01:57:09 PM");
+ assert_eq!(
+ NaiveTime::from_hms_milli(23, 59, 59, 1_000).format("%X").to_string(),
+ "23:59:60"
+ );
+ }
+}