aboutsummaryrefslogtreecommitdiff
path: root/src/sys/windows/named_pipe.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/sys/windows/named_pipe.rs')
-rw-r--r--src/sys/windows/named_pipe.rs709
1 files changed, 709 insertions, 0 deletions
diff --git a/src/sys/windows/named_pipe.rs b/src/sys/windows/named_pipe.rs
new file mode 100644
index 0000000..a5688ce
--- /dev/null
+++ b/src/sys/windows/named_pipe.rs
@@ -0,0 +1,709 @@
+use crate::{poll, Registry};
+use crate::event::Source;
+use crate::sys::windows::{Event, Overlapped};
+use winapi::um::minwinbase::OVERLAPPED_ENTRY;
+
+use std::ffi::OsStr;
+use std::fmt;
+use std::io::{self, Read, Write};
+use std::mem;
+use std::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle};
+use std::slice;
+use std::sync::atomic::{AtomicUsize, AtomicBool};
+use std::sync::atomic::Ordering::{Relaxed, SeqCst};
+use std::sync::{Arc, Mutex};
+
+use crate::{Interest, Token};
+use miow::iocp::{CompletionPort, CompletionStatus};
+use miow::pipe;
+use winapi::shared::winerror::{ERROR_BROKEN_PIPE, ERROR_PIPE_LISTENING};
+use winapi::um::ioapiset::CancelIoEx;
+
+/// # Safety
+///
+/// Only valid if the strict is annotated with `#[repr(C)]`. This is only used
+/// with `Overlapped` and `Inner`, which are correctly annotated.
+macro_rules! offset_of {
+ ($t:ty, $($field:ident).+) => (
+ &(*(0 as *const $t)).$($field).+ as *const _ as usize
+ )
+}
+
+macro_rules! overlapped2arc {
+ ($e:expr, $t:ty, $($field:ident).+) => ({
+ let offset = offset_of!($t, $($field).+);
+ debug_assert!(offset < mem::size_of::<$t>());
+ Arc::from_raw(($e as usize - offset) as *mut $t)
+ })
+}
+
+/// Non-blocking windows named pipe.
+///
+/// This structure internally contains a `HANDLE` which represents the named
+/// pipe, and also maintains state associated with the mio event loop and active
+/// I/O operations that have been scheduled to translate IOCP to a readiness
+/// model.
+///
+/// Note, IOCP is a *completion* based model whereas mio is a *readiness* based
+/// model. To bridge this, `NamedPipe` performs internal buffering. Writes are
+/// written to an internal buffer and the buffer is submitted to IOCP. IOCP
+/// reads are submitted using internal buffers and `NamedPipe::read` reads from
+/// this internal buffer.
+///
+/// # Trait implementations
+///
+/// The `Read` and `Write` traits are implemented for `NamedPipe` and for
+/// `&NamedPipe`. This represents that a named pipe can be concurrently read and
+/// written to and also can be read and written to at all. Typically a named
+/// pipe needs to be connected to a client before it can be read or written,
+/// however.
+///
+/// Note that for I/O operations on a named pipe to succeed then the named pipe
+/// needs to be associated with an event loop. Until this happens all I/O
+/// operations will return a "would block" error.
+///
+/// # Managing connections
+///
+/// The `NamedPipe` type supports a `connect` method to connect to a client and
+/// a `disconnect` method to disconnect from that client. These two methods only
+/// work once a named pipe is associated with an event loop.
+///
+/// The `connect` method will succeed asynchronously and a completion can be
+/// detected once the object receives a writable notification.
+///
+/// # Named pipe clients
+///
+/// Currently to create a client of a named pipe server then you can use the
+/// `OpenOptions` type in the standard library to create a `File` that connects
+/// to a named pipe. Afterwards you can use the `into_raw_handle` method coupled
+/// with the `NamedPipe::from_raw_handle` method to convert that to a named pipe
+/// that can operate asynchronously. Don't forget to pass the
+/// `FILE_FLAG_OVERLAPPED` flag when opening the `File`.
+pub struct NamedPipe {
+ inner: Arc<Inner>,
+}
+
+#[repr(C)]
+struct Inner {
+ handle: pipe::NamedPipe,
+
+ connect: Overlapped,
+ connecting: AtomicBool,
+
+ read: Overlapped,
+ write: Overlapped,
+
+ io: Mutex<Io>,
+
+ pool: Mutex<BufferPool>,
+}
+
+struct Io {
+ // Uniquely identifies the selector associated with this named pipe
+ cp: Option<Arc<CompletionPort>>,
+ // Token used to identify events
+ token: Option<Token>,
+ read: State,
+ read_interest: bool,
+ write: State,
+ write_interest: bool,
+ connect_error: Option<io::Error>,
+}
+
+#[derive(Debug)]
+enum State {
+ None,
+ Pending(Vec<u8>, usize),
+ Ok(Vec<u8>, usize),
+ Err(io::Error),
+}
+
+// Odd tokens are for named pipes
+static NEXT_TOKEN: AtomicUsize = AtomicUsize::new(1);
+
+fn would_block() -> io::Error {
+ io::ErrorKind::WouldBlock.into()
+}
+
+impl NamedPipe {
+ /// Creates a new named pipe at the specified `addr` given a "reasonable
+ /// set" of initial configuration options.
+ pub fn new<A: AsRef<OsStr>>(
+ addr: A,
+ ) -> io::Result<NamedPipe> {
+ let pipe = pipe::NamedPipe::new(addr)?;
+ // Safety: nothing actually unsafe about this. The trait fn includes
+ // `unsafe`.
+ Ok(unsafe { NamedPipe::from_raw_handle(pipe.into_raw_handle()) })
+ }
+
+ /// Attempts to call `ConnectNamedPipe`, if possible.
+ ///
+ /// This function will attempt to connect this pipe to a client in an
+ /// asynchronous fashion. If the function immediately establishes a
+ /// connection to a client then `Ok(())` is returned. Otherwise if a
+ /// connection attempt was issued and is now in progress then a "would
+ /// block" error is returned.
+ ///
+ /// When the connection is finished then this object will be flagged as
+ /// being ready for a write, or otherwise in the writable state.
+ ///
+ /// # Errors
+ ///
+ /// This function will return a "would block" error if the pipe has not yet
+ /// been registered with an event loop, if the connection operation has
+ /// previously been issued but has not yet completed, or if the connect
+ /// itself was issued and didn't finish immediately.
+ ///
+ /// Normal I/O errors from the call to `ConnectNamedPipe` are returned
+ /// immediately.
+ pub fn connect(&self) -> io::Result<()> {
+ // "Acquire the connecting lock" or otherwise just make sure we're the
+ // only operation that's using the `connect` overlapped instance.
+ if self.inner.connecting.swap(true, SeqCst) {
+ return Err(would_block());
+ }
+
+ // Now that we've flagged ourselves in the connecting state, issue the
+ // connection attempt. Afterwards interpret the return value and set
+ // internal state accordingly.
+ let res = unsafe {
+ let overlapped = self.inner.connect.as_ptr() as *mut _;
+ self.inner.handle.connect_overlapped(overlapped)
+ };
+
+ match res {
+ // The connection operation finished immediately, so let's schedule
+ // reads/writes and such.
+ Ok(true) => {
+ self.inner.connecting.store(false, SeqCst);
+ Inner::post_register(&self.inner, None);
+ Ok(())
+ }
+
+ // If the overlapped operation was successful and didn't finish
+ // immediately then we forget a copy of the arc we hold
+ // internally. This ensures that when the completion status comes
+ // in for the I/O operation finishing it'll have a reference
+ // associated with it and our data will still be valid. The
+ // `connect_done` function will "reify" this forgotten pointer to
+ // drop the refcount on the other side.
+ Ok(false) => {
+ mem::forget(self.inner.clone());
+ Err(would_block())
+ }
+
+ Err(e) => {
+ self.inner.connecting.store(false, SeqCst);
+ Err(e)
+ }
+ }
+ }
+
+ /// Takes any internal error that has happened after the last I/O operation
+ /// which hasn't been retrieved yet.
+ ///
+ /// This is particularly useful when detecting failed attempts to `connect`.
+ /// After a completed `connect` flags this pipe as writable then callers
+ /// must invoke this method to determine whether the connection actually
+ /// succeeded. If this function returns `None` then a client is connected,
+ /// otherwise it returns an error of what happened and a client shouldn't be
+ /// connected.
+ pub fn take_error(&self) -> io::Result<Option<io::Error>> {
+ Ok(self.inner.io.lock().unwrap().connect_error.take())
+ }
+
+ /// Disconnects this named pipe from a connected client.
+ ///
+ /// This function will disconnect the pipe from a connected client, if any,
+ /// transitively calling the `DisconnectNamedPipe` function.
+ ///
+ /// After a `disconnect` is issued, then a `connect` may be called again to
+ /// connect to another client.
+ pub fn disconnect(&self) -> io::Result<()> {
+ self.inner.handle.disconnect()
+ }
+}
+
+impl FromRawHandle for NamedPipe {
+ unsafe fn from_raw_handle(
+ handle: RawHandle,
+ ) -> NamedPipe {
+ NamedPipe {
+ inner: Arc::new(Inner {
+ // Safety: not really unsafe
+ handle: pipe::NamedPipe::from_raw_handle(handle),
+ // transmutes to straddle winapi versions (mio 0.6 is on an
+ // older winapi)
+ connect: Overlapped::new(connect_done),
+ connecting: AtomicBool::new(false),
+ read: Overlapped::new(read_done),
+ write: Overlapped::new(write_done),
+ io: Mutex::new(Io {
+ cp: None,
+ token: None,
+ read: State::None,
+ read_interest: false,
+ write: State::None,
+ write_interest: false,
+ connect_error: None,
+ }),
+ pool: Mutex::new(BufferPool::with_capacity(2)),
+ }),
+ }
+ }
+}
+
+impl Read for NamedPipe {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ <&NamedPipe as Read>::read(&mut &*self, buf)
+ }
+}
+
+impl Write for NamedPipe {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ <&NamedPipe as Write>::write(&mut &*self, buf)
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ <&NamedPipe as Write>::flush(&mut &*self)
+ }
+}
+
+impl<'a> Read for &'a NamedPipe {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ let mut state = self.inner.io.lock().unwrap();
+
+ if state.token.is_none() {
+ return Err(would_block());
+ }
+
+ match mem::replace(&mut state.read, State::None) {
+ // In theory not possible with `token` checked above,
+ // but return would block for now.
+ State::None => {
+ Err(would_block())
+ }
+
+ // A read is in flight, still waiting for it to finish
+ State::Pending(buf, amt) => {
+ state.read = State::Pending(buf, amt);
+ Err(would_block())
+ }
+
+ // We previously read something into `data`, try to copy out some
+ // data. If we copy out all the data schedule a new read and
+ // otherwise store the buffer to get read later.
+ State::Ok(data, cur) => {
+ let n = {
+ let mut remaining = &data[cur..];
+ remaining.read(buf)?
+ };
+ let next = cur + n;
+ if next != data.len() {
+ state.read = State::Ok(data, next);
+ } else {
+ self.inner.put_buffer(data);
+ Inner::schedule_read(&self.inner, &mut state, None);
+ }
+ Ok(n)
+ }
+
+ // Looks like an in-flight read hit an error, return that here while
+ // we schedule a new one.
+ State::Err(e) => {
+ Inner::schedule_read(&self.inner, &mut state, None);
+ if e.raw_os_error() == Some(ERROR_BROKEN_PIPE as i32) {
+ Ok(0)
+ } else {
+ Err(e)
+ }
+ }
+ }
+ }
+}
+
+impl<'a> Write for &'a NamedPipe {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ // Make sure there's no writes pending
+ let mut io = self.inner.io.lock().unwrap();
+
+ if io.token.is_none() {
+ return Err(would_block());
+ }
+
+ match io.write {
+ State::None => {}
+ _ => {
+ return Err(would_block());
+ }
+ }
+
+ // Move `buf` onto the heap and fire off the write
+ let mut owned_buf = self.inner.get_buffer();
+ owned_buf.extend(buf);
+ Inner::schedule_write(&self.inner, owned_buf, 0, &mut io, None);
+ Ok(buf.len())
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ Ok(())
+ }
+}
+
+impl Source for NamedPipe {
+ fn register(&mut self, registry: &Registry, token: Token, interest: Interest) -> io::Result<()> {
+ let mut io = self.inner.io.lock().unwrap();
+
+ io.check_association(registry, false)?;
+
+ if io.token.is_some() {
+ return Err(io::Error::new(
+ io::ErrorKind::AlreadyExists,
+ "I/O source already registered with a `Registry`",
+ ));
+ }
+
+ if io.cp.is_none() {
+ io.cp = Some(poll::selector(registry).clone_port());
+
+ let inner_token = NEXT_TOKEN.fetch_add(2, Relaxed) + 2;
+ poll::selector(registry).inner.cp.add_handle(inner_token, &self.inner.handle)?;
+ }
+
+ io.token = Some(token);
+ io.read_interest = interest.is_readable();
+ io.write_interest = interest.is_writable();
+ drop(io);
+
+ Inner::post_register(&self.inner, None);
+
+ Ok(())
+ }
+
+ fn reregister(&mut self, registry: &Registry, token: Token, interest: Interest) -> io::Result<()> {
+ let mut io = self.inner.io.lock().unwrap();
+
+ io.check_association(registry, true)?;
+
+ io.token = Some(token);
+ io.read_interest = interest.is_readable();
+ io.write_interest = interest.is_writable();
+ drop(io);
+
+ Inner::post_register(&self.inner, None);
+
+ Ok(())
+ }
+
+ fn deregister(&mut self, registry: &Registry) -> io::Result<()> {
+ let mut io = self.inner.io.lock().unwrap();
+
+ io.check_association(registry, true)?;
+
+ if io.token.is_none() {
+ return Err(io::Error::new(
+ io::ErrorKind::NotFound,
+ "I/O source not registered with `Registry`",
+ ));
+ }
+
+ io.token = None;
+ Ok(())
+ }
+}
+
+impl AsRawHandle for NamedPipe {
+ fn as_raw_handle(&self) -> RawHandle {
+ self.inner.handle.as_raw_handle()
+ }
+}
+
+impl fmt::Debug for NamedPipe {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.inner.handle.fmt(f)
+ }
+}
+
+impl Drop for NamedPipe {
+ fn drop(&mut self) {
+ // Cancel pending reads/connects, but don't cancel writes to ensure that
+ // everything is flushed out.
+ unsafe {
+ if self.inner.connecting.load(SeqCst) {
+ drop(cancel(&self.inner.handle, &self.inner.connect));
+ }
+
+ let io = self.inner.io.lock().unwrap();
+
+ match io.read {
+ State::Pending(..) => {
+ drop(cancel(&self.inner.handle, &self.inner.read));
+ }
+ _ => {}
+ }
+ }
+ }
+}
+
+impl Inner {
+ /// Schedules a read to happen in the background, executing an overlapped
+ /// operation.
+ ///
+ /// This function returns `true` if a normal error happens or if the read
+ /// is scheduled in the background. If the pipe is no longer connected
+ /// (ERROR_PIPE_LISTENING) then `false` is returned and no read is
+ /// scheduled.
+ fn schedule_read(me: &Arc<Inner>, io: &mut Io, events: Option<&mut Vec<Event>>) -> bool {
+ // Check to see if a read is already scheduled/completed
+ match io.read {
+ State::None => {}
+ _ => return true,
+ }
+
+ // Allocate a buffer and schedule the read.
+ let mut buf = me.get_buffer();
+ let e = unsafe {
+ let overlapped = me.read.as_ptr() as *mut _;
+ let slice = slice::from_raw_parts_mut(buf.as_mut_ptr(), buf.capacity());
+ me.handle.read_overlapped(slice, overlapped)
+ };
+
+ match e {
+ // See `NamedPipe::connect` above for the rationale behind `forget`
+ Ok(_) => {
+ io.read = State::Pending(buf, 0); // 0 is ignored on read side
+ mem::forget(me.clone());
+ true
+ }
+
+ // If ERROR_PIPE_LISTENING happens then it's not a real read error,
+ // we just need to wait for a connect.
+ Err(ref e) if e.raw_os_error() == Some(ERROR_PIPE_LISTENING as i32) => false,
+
+ // If some other error happened, though, we're now readable to give
+ // out the error.
+ Err(e) => {
+ io.read = State::Err(e);
+ io.notify_readable(events);
+ true
+ }
+ }
+ }
+
+ fn schedule_write(me: &Arc<Inner>, buf: Vec<u8>, pos: usize, io: &mut Io, events: Option<&mut Vec<Event>>) {
+ // Very similar to `schedule_read` above, just done for the write half.
+ let e = unsafe {
+ let overlapped = me.write.as_ptr() as *mut _;
+ me.handle.write_overlapped(&buf[pos..], overlapped)
+ };
+
+ match e {
+ // See `connect` above for the rationale behind `forget`
+ Ok(_) => {
+ io.write = State::Pending(buf, pos);
+ mem::forget(me.clone())
+ }
+ Err(e) => {
+ io.write = State::Err(e);
+ io.notify_writable(events);
+ }
+ }
+ }
+
+ fn post_register(me: &Arc<Inner>, mut events: Option<&mut Vec<Event>>) {
+ let mut io = me.io.lock().unwrap();
+ if Inner::schedule_read(&me, &mut io, events.as_mut().map(|ptr| &mut **ptr)) {
+ if let State::None = io.write {
+ io.notify_writable(events);
+ }
+ }
+ }
+
+ fn get_buffer(&self) -> Vec<u8> {
+ self.pool.lock().unwrap().get(4 * 1024)
+ }
+
+ fn put_buffer(&self, buf: Vec<u8>) {
+ self.pool.lock().unwrap().put(buf)
+ }
+}
+
+unsafe fn cancel<T: AsRawHandle>(handle: &T, overlapped: &Overlapped) -> io::Result<()> {
+ let ret = CancelIoEx(handle.as_raw_handle(), overlapped.as_ptr() as *mut _);
+ // `CancelIoEx` returns 0 on error:
+ // https://docs.microsoft.com/en-us/windows/win32/fileio/cancelioex-func
+ if ret == 0 {
+ Err(io::Error::last_os_error())
+ } else {
+ Ok(())
+ }
+}
+
+fn connect_done(status: &OVERLAPPED_ENTRY, events: Option<&mut Vec<Event>>) {
+ let status = CompletionStatus::from_entry(status);
+
+ // Acquire the `Arc<Inner>`. Note that we should be guaranteed that
+ // the refcount is available to us due to the `mem::forget` in
+ // `connect` above.
+ let me = unsafe { overlapped2arc!(status.overlapped(), Inner, connect) };
+
+ // Flag ourselves as no longer using the `connect` overlapped instances.
+ let prev = me.connecting.swap(false, SeqCst);
+ assert!(prev, "NamedPipe was not previously connecting");
+
+ // Stash away our connect error if one happened
+ debug_assert_eq!(status.bytes_transferred(), 0);
+ unsafe {
+ match me.handle.result(status.overlapped()) {
+ Ok(n) => debug_assert_eq!(n, 0),
+ Err(e) => me.io.lock().unwrap().connect_error = Some(e),
+ }
+ }
+
+ // We essentially just finished a registration, so kick off a
+ // read and register write readiness.
+ Inner::post_register(&me, events);
+}
+
+fn read_done(status: &OVERLAPPED_ENTRY, events: Option<&mut Vec<Event>>) {
+ let status = CompletionStatus::from_entry(status);
+
+ // Acquire the `FromRawArc<Inner>`. Note that we should be guaranteed that
+ // the refcount is available to us due to the `mem::forget` in
+ // `schedule_read` above.
+ let me = unsafe { overlapped2arc!(status.overlapped(), Inner, read) };
+
+ // Move from the `Pending` to `Ok` state.
+ let mut io = me.io.lock().unwrap();
+ let mut buf = match mem::replace(&mut io.read, State::None) {
+ State::Pending(buf, _) => buf,
+ _ => unreachable!(),
+ };
+ unsafe {
+ match me.handle.result(status.overlapped()) {
+ Ok(n) => {
+ debug_assert_eq!(status.bytes_transferred() as usize, n);
+ buf.set_len(status.bytes_transferred() as usize);
+ io.read = State::Ok(buf, 0);
+ }
+ Err(e) => {
+ debug_assert_eq!(status.bytes_transferred(), 0);
+ io.read = State::Err(e);
+ }
+ }
+ }
+
+ // Flag our readiness that we've got data.
+ io.notify_readable(events);
+}
+
+fn write_done(status: &OVERLAPPED_ENTRY, events: Option<&mut Vec<Event>>) {
+ let status = CompletionStatus::from_entry(status);
+
+ // Acquire the `Arc<Inner>`. Note that we should be guaranteed that
+ // the refcount is available to us due to the `mem::forget` in
+ // `schedule_write` above.
+ let me = unsafe { overlapped2arc!(status.overlapped(), Inner, write) };
+
+ // Make the state change out of `Pending`. If we wrote the entire buffer
+ // then we're writable again and otherwise we schedule another write.
+ let mut io = me.io.lock().unwrap();
+ let (buf, pos) = match mem::replace(&mut io.write, State::None) {
+ State::Pending(buf, pos) => (buf, pos),
+ _ => unreachable!(),
+ };
+
+ unsafe {
+ match me.handle.result(status.overlapped()) {
+ Ok(n) => {
+ debug_assert_eq!(status.bytes_transferred() as usize, n);
+ let new_pos = pos + (status.bytes_transferred() as usize);
+ if new_pos == buf.len() {
+ me.put_buffer(buf);
+ io.notify_writable(events);
+ } else {
+ Inner::schedule_write(&me, buf, new_pos, &mut io, events);
+ }
+ }
+ Err(e) => {
+ debug_assert_eq!(status.bytes_transferred(), 0);
+ io.write = State::Err(e);
+ io.notify_writable(events);
+ }
+ }
+ }
+}
+
+impl Io {
+ fn check_association(&self, registry: &Registry, required: bool) -> io::Result<()> {
+ match self.cp {
+ Some(ref cp) if !poll::selector(registry).same_port(cp) => {
+ Err(io::Error::new(
+ io::ErrorKind::AlreadyExists,
+ "I/O source already registered with a different `Registry`"
+ ))
+ }
+ None if required => {
+ Err(io::Error::new(
+ io::ErrorKind::NotFound,
+ "I/O source not registered with `Registry`"
+ ))
+ }
+ _ => Ok(()),
+ }
+ }
+
+ fn notify_readable(&self, events: Option<&mut Vec<Event>>) {
+ if let Some(token) = self.token {
+ let mut ev = Event::new(token);
+ ev.set_readable();
+
+ if let Some(events) = events {
+ events.push(ev);
+ } else {
+ let _ = self.cp.as_ref().unwrap().post(ev.to_completion_status());
+ }
+ }
+ }
+
+ fn notify_writable(&self, events: Option<&mut Vec<Event>>) {
+ if let Some(token) = self.token {
+ let mut ev = Event::new(token);
+ ev.set_writable();
+
+ if let Some(events) = events {
+ events.push(ev);
+ } else {
+ let _ = self.cp.as_ref().unwrap().post(ev.to_completion_status());
+ }
+ }
+ }
+}
+
+struct BufferPool {
+ pool: Vec<Vec<u8>>,
+}
+
+impl BufferPool {
+ fn with_capacity(cap: usize) -> BufferPool {
+ BufferPool {
+ pool: Vec::with_capacity(cap),
+ }
+ }
+
+ fn get(&mut self, default_cap: usize) -> Vec<u8> {
+ self.pool
+ .pop()
+ .unwrap_or_else(|| Vec::with_capacity(default_cap))
+ }
+
+ fn put(&mut self, mut buf: Vec<u8>) {
+ if self.pool.len() < self.pool.capacity() {
+ unsafe {
+ buf.set_len(0);
+ }
+ self.pool.push(buf);
+ }
+ }
+}