aboutsummaryrefslogtreecommitdiff
path: root/src/chart/context.rs
blob: 7e0045e0f7b3bca0d913ace51d43c70476f98465 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
use std::borrow::Borrow;
use std::ops::Range;

use super::axes3d::Axes3dStyle;
use super::{DualCoordChartContext, MeshStyle, SeriesAnno, SeriesLabelStyle};

use crate::coord::cartesian::{Cartesian2d, Cartesian3d, MeshLine};
use crate::coord::ranged1d::{AsRangedCoord, KeyPointHint, Ranged, ValueFormatter};
use crate::coord::ranged3d::{ProjectionMatrix, ProjectionMatrixBuilder};
use crate::coord::{CoordTranslate, ReverseCoordTranslate, Shift};

use crate::drawing::{DrawingArea, DrawingAreaErrorKind};
use crate::element::{
    CoordMapper, Drawable, EmptyElement, PathElement, PointCollection, Polygon, Text,
};
use crate::style::text_anchor::{HPos, Pos, VPos};
use crate::style::{ShapeStyle, TextStyle};

use plotters_backend::{BackendCoord, DrawingBackend, FontTransform};

/// The context of the chart. This is the core object of Plotters.
/// Any plot/chart is abstracted as this type, and any data series can be placed to the chart
/// context.
///
/// - To draw a series on a chart context, use [ChartContext::draw_series](struct.ChartContext.html#method.draw_series)
/// - To draw a single element to the chart, you may want to use [ChartContext::plotting_area](struct.ChartContext.html#method.plotting_area)
///
pub struct ChartContext<'a, DB: DrawingBackend, CT: CoordTranslate> {
    pub(super) x_label_area: [Option<DrawingArea<DB, Shift>>; 2],
    pub(super) y_label_area: [Option<DrawingArea<DB, Shift>>; 2],
    pub(super) drawing_area: DrawingArea<DB, CT>,
    pub(super) series_anno: Vec<SeriesAnno<'a, DB>>,
    pub(super) drawing_area_pos: (i32, i32),
}

impl<'a, DB, XT, YT, X, Y> ChartContext<'a, DB, Cartesian2d<X, Y>>
where
    DB: DrawingBackend,
    X: Ranged<ValueType = XT> + ValueFormatter<XT>,
    Y: Ranged<ValueType = YT> + ValueFormatter<YT>,
{
    pub(crate) fn is_overlapping_drawing_area(
        &self,
        area: Option<&DrawingArea<DB, Shift>>,
    ) -> bool {
        if let Some(area) = area {
            let (x0, y0) = area.get_base_pixel();
            let (w, h) = area.dim_in_pixel();
            let (x1, y1) = (x0 + w as i32, y0 + h as i32);
            let (dx0, dy0) = self.drawing_area.get_base_pixel();
            let (w, h) = self.drawing_area.dim_in_pixel();
            let (dx1, dy1) = (dx0 + w as i32, dy0 + h as i32);

            let (ox0, ox1) = (x0.max(dx0), x1.min(dx1));
            let (oy0, oy1) = (y0.max(dy0), y1.min(dy1));

            ox1 > ox0 && oy1 > oy0
        } else {
            false
        }
    }

    /// Initialize a mesh configuration object and mesh drawing can be finalized by calling
    /// the function `MeshStyle::draw`.
    pub fn configure_mesh(&mut self) -> MeshStyle<'a, '_, X, Y, DB> {
        MeshStyle::new(self)
    }
}

impl<'a, DB: DrawingBackend, CT: ReverseCoordTranslate> ChartContext<'a, DB, CT> {
    /// Convert the chart context into an closure that can be used for coordinate translation
    pub fn into_coord_trans(self) -> impl Fn(BackendCoord) -> Option<CT::From> {
        let coord_spec = self.drawing_area.into_coord_spec();
        move |coord| coord_spec.reverse_translate(coord)
    }
}

impl<'a, DB: DrawingBackend, CT: CoordTranslate> ChartContext<'a, DB, CT> {
    /// Configure the styles for drawing series labels in the chart
    pub fn configure_series_labels<'b>(&'b mut self) -> SeriesLabelStyle<'a, 'b, DB, CT>
    where
        DB: 'a,
    {
        SeriesLabelStyle::new(self)
    }

    /// Get a reference of underlying plotting area
    pub fn plotting_area(&self) -> &DrawingArea<DB, CT> {
        &self.drawing_area
    }

    /// Cast the reference to a chart context to a reference to underlying coordinate specification.
    pub fn as_coord_spec(&self) -> &CT {
        self.drawing_area.as_coord_spec()
    }

    // TODO: All draw_series_impl is overly strict about lifetime, because we don't have stable HKT,
    //       what we can ensure is for all lifetime 'b the element reference &'b E is a iterator
    //       of points reference with the same lifetime.
    //       However, this doesn't work if the coordinate doesn't live longer than the backend,
    //       this is unnecessarily strict
    pub(super) fn draw_series_impl<B, E, R, S>(
        &mut self,
        series: S,
    ) -> Result<(), DrawingAreaErrorKind<DB::ErrorType>>
    where
        B: CoordMapper,
        for<'b> &'b E: PointCollection<'b, CT::From, B>,
        E: Drawable<DB, B>,
        R: Borrow<E>,
        S: IntoIterator<Item = R>,
    {
        for element in series {
            self.drawing_area.draw(element.borrow())?;
        }
        Ok(())
    }

    pub(super) fn alloc_series_anno(&mut self) -> &mut SeriesAnno<'a, DB> {
        let idx = self.series_anno.len();
        self.series_anno.push(SeriesAnno::new());
        &mut self.series_anno[idx]
    }

    /// Draw a data series. A data series in Plotters is abstracted as an iterator of elements
    pub fn draw_series<B, E, R, S>(
        &mut self,
        series: S,
    ) -> Result<&mut SeriesAnno<'a, DB>, DrawingAreaErrorKind<DB::ErrorType>>
    where
        B: CoordMapper,
        for<'b> &'b E: PointCollection<'b, CT::From, B>,
        E: Drawable<DB, B>,
        R: Borrow<E>,
        S: IntoIterator<Item = R>,
    {
        self.draw_series_impl(series)?;
        Ok(self.alloc_series_anno())
    }
}

impl<'a, DB: DrawingBackend, X: Ranged, Y: Ranged> ChartContext<'a, DB, Cartesian2d<X, Y>> {
    /// Get the range of X axis
    pub fn x_range(&self) -> Range<X::ValueType> {
        self.drawing_area.get_x_range()
    }

    /// Get range of the Y axis
    pub fn y_range(&self) -> Range<Y::ValueType> {
        self.drawing_area.get_y_range()
    }

    /// Maps the coordinate to the backend coordinate. This is typically used
    /// with an interactive chart.
    pub fn backend_coord(&self, coord: &(X::ValueType, Y::ValueType)) -> BackendCoord {
        self.drawing_area.map_coordinate(coord)
    }

    /// The actual function that draws the mesh lines.
    /// It also returns the label that suppose to be there.
    #[allow(clippy::type_complexity)]
    fn draw_mesh_lines<FmtLabel, YH: KeyPointHint, XH: KeyPointHint>(
        &mut self,
        (r, c): (YH, XH),
        (x_mesh, y_mesh): (bool, bool),
        mesh_line_style: &ShapeStyle,
        mut fmt_label: FmtLabel,
    ) -> Result<(Vec<(i32, String)>, Vec<(i32, String)>), DrawingAreaErrorKind<DB::ErrorType>>
    where
        FmtLabel: FnMut(&MeshLine<X, Y>) -> Option<String>,
    {
        let mut x_labels = vec![];
        let mut y_labels = vec![];
        self.drawing_area.draw_mesh(
            |b, l| {
                let draw;
                match l {
                    MeshLine::XMesh((x, _), _, _) => {
                        if let Some(label_text) = fmt_label(&l) {
                            x_labels.push((x, label_text));
                        }
                        draw = x_mesh;
                    }
                    MeshLine::YMesh((_, y), _, _) => {
                        if let Some(label_text) = fmt_label(&l) {
                            y_labels.push((y, label_text));
                        }
                        draw = y_mesh;
                    }
                };
                if draw {
                    l.draw(b, mesh_line_style)
                } else {
                    Ok(())
                }
            },
            r,
            c,
        )?;
        Ok((x_labels, y_labels))
    }

    fn draw_axis(
        &self,
        area: &DrawingArea<DB, Shift>,
        axis_style: Option<&ShapeStyle>,
        orientation: (i16, i16),
        inward_labels: bool,
    ) -> Result<Range<i32>, DrawingAreaErrorKind<DB::ErrorType>> {
        let (x0, y0) = self.drawing_area.get_base_pixel();
        let (tw, th) = area.dim_in_pixel();

        let mut axis_range = if orientation.0 == 0 {
            self.drawing_area.get_x_axis_pixel_range()
        } else {
            self.drawing_area.get_y_axis_pixel_range()
        };

        /* At this point, the coordinate system tells us the pixel range
         * after the translation.
         * However, we need to use the logic coordinate system for drawing. */
        if orientation.0 == 0 {
            axis_range.start -= x0;
            axis_range.end -= x0;
        } else {
            axis_range.start -= y0;
            axis_range.end -= y0;
        }

        if let Some(axis_style) = axis_style {
            let mut x0 = if orientation.0 > 0 { 0 } else { tw as i32 - 1 };
            let mut y0 = if orientation.1 > 0 { 0 } else { th as i32 - 1 };
            let mut x1 = if orientation.0 >= 0 { 0 } else { tw as i32 - 1 };
            let mut y1 = if orientation.1 >= 0 { 0 } else { th as i32 - 1 };

            if inward_labels {
                if orientation.0 == 0 {
                    if y0 == 0 {
                        y0 = th as i32 - 1;
                        y1 = th as i32 - 1;
                    } else {
                        y0 = 0;
                        y1 = 0;
                    }
                } else if x0 == 0 {
                    x0 = tw as i32 - 1;
                    x1 = tw as i32 - 1;
                } else {
                    x0 = 0;
                    x1 = 0;
                }
            }

            if orientation.0 == 0 {
                x0 = axis_range.start;
                x1 = axis_range.end;
            } else {
                y0 = axis_range.start;
                y1 = axis_range.end;
            }

            area.draw(&PathElement::new(
                vec![(x0, y0), (x1, y1)],
                axis_style.clone(),
            ))?;
        }

        Ok(axis_range)
    }

    // TODO: consider make this function less complicated
    #[allow(clippy::too_many_arguments)]
    #[allow(clippy::cognitive_complexity)]
    fn draw_axis_and_labels(
        &self,
        area: Option<&DrawingArea<DB, Shift>>,
        axis_style: Option<&ShapeStyle>,
        labels: &[(i32, String)],
        label_style: &TextStyle,
        label_offset: i32,
        orientation: (i16, i16),
        axis_desc: Option<(&str, &TextStyle)>,
        tick_size: i32,
    ) -> Result<(), DrawingAreaErrorKind<DB::ErrorType>> {
        let area = if let Some(target) = area {
            target
        } else {
            return Ok(());
        };

        let (x0, y0) = self.drawing_area.get_base_pixel();
        let (tw, th) = area.dim_in_pixel();

        /* This is the minimal distance from the axis to the box of the labels */
        let label_dist = tick_size.abs() * 2;

        /* Draw the axis and get the axis range so that we can do further label
         * and tick mark drawing */
        let axis_range = self.draw_axis(area, axis_style, orientation, tick_size < 0)?;

        /* To make the right label area looks nice, it's a little bit tricky, since for a that is
         * very long, we actually prefer left alignment instead of right alignment.
         * Otherwise, the right alignment looks better. So we estimate the max and min label width
         * So that we are able decide if we should apply right alignment for the text. */
        let label_width: Vec<_> = labels
            .iter()
            .map(|(_, text)| {
                if orientation.0 > 0 && orientation.1 == 0 && tick_size >= 0 {
                    self.drawing_area
                        .estimate_text_size(text, &label_style)
                        .map(|(w, _)| w)
                        .unwrap_or(0) as i32
                } else {
                    // Don't ever do the layout estimationfor the drawing area that is either not
                    // the right one or the tick mark is inward.
                    0
                }
            })
            .collect();

        let min_width = *label_width.iter().min().unwrap_or(&1).max(&1);
        let max_width = *label_width
            .iter()
            .filter(|&&x| x < min_width * 2)
            .max()
            .unwrap_or(&min_width);
        let right_align_width = (min_width * 2).min(max_width);

        /* Then we need to draw the tick mark and the label */
        for ((p, t), w) in labels.iter().zip(label_width.into_iter()) {
            /* Make sure we are actually in the visible range */
            let rp = if orientation.0 == 0 { *p - x0 } else { *p - y0 };

            if rp < axis_range.start.min(axis_range.end)
                || axis_range.end.max(axis_range.start) < rp
            {
                continue;
            }

            let (cx, cy, h_pos, v_pos) = if tick_size >= 0 {
                match orientation {
                    // Right
                    (dx, dy) if dx > 0 && dy == 0 => {
                        if w >= right_align_width {
                            (label_dist, *p - y0, HPos::Left, VPos::Center)
                        } else {
                            (
                                label_dist + right_align_width,
                                *p - y0,
                                HPos::Right,
                                VPos::Center,
                            )
                        }
                    }
                    // Left
                    (dx, dy) if dx < 0 && dy == 0 => {
                        (tw as i32 - label_dist, *p - y0, HPos::Right, VPos::Center)
                    }
                    // Bottom
                    (dx, dy) if dx == 0 && dy > 0 => (*p - x0, label_dist, HPos::Center, VPos::Top),
                    // Top
                    (dx, dy) if dx == 0 && dy < 0 => {
                        (*p - x0, th as i32 - label_dist, HPos::Center, VPos::Bottom)
                    }
                    _ => panic!("Bug: Invalid orientation specification"),
                }
            } else {
                match orientation {
                    // Right
                    (dx, dy) if dx > 0 && dy == 0 => {
                        (tw as i32 - label_dist, *p - y0, HPos::Right, VPos::Center)
                    }
                    // Left
                    (dx, dy) if dx < 0 && dy == 0 => {
                        (label_dist, *p - y0, HPos::Left, VPos::Center)
                    }
                    // Bottom
                    (dx, dy) if dx == 0 && dy > 0 => {
                        (*p - x0, th as i32 - label_dist, HPos::Center, VPos::Bottom)
                    }
                    // Top
                    (dx, dy) if dx == 0 && dy < 0 => (*p - x0, label_dist, HPos::Center, VPos::Top),
                    _ => panic!("Bug: Invalid orientation specification"),
                }
            };

            let (text_x, text_y) = if orientation.0 == 0 {
                (cx + label_offset, cy)
            } else {
                (cx, cy + label_offset)
            };

            let label_style = &label_style.pos(Pos::new(h_pos, v_pos));
            area.draw_text(&t, label_style, (text_x, text_y))?;

            if tick_size != 0 {
                if let Some(style) = axis_style {
                    let xmax = tw as i32 - 1;
                    let ymax = th as i32 - 1;
                    let (kx0, ky0, kx1, ky1) = if tick_size > 0 {
                        match orientation {
                            (dx, dy) if dx > 0 && dy == 0 => (0, *p - y0, tick_size, *p - y0),
                            (dx, dy) if dx < 0 && dy == 0 => {
                                (xmax - tick_size, *p - y0, xmax, *p - y0)
                            }
                            (dx, dy) if dx == 0 && dy > 0 => (*p - x0, 0, *p - x0, tick_size),
                            (dx, dy) if dx == 0 && dy < 0 => {
                                (*p - x0, ymax - tick_size, *p - x0, ymax)
                            }
                            _ => panic!("Bug: Invalid orientation specification"),
                        }
                    } else {
                        match orientation {
                            (dx, dy) if dx > 0 && dy == 0 => {
                                (xmax, *p - y0, xmax + tick_size, *p - y0)
                            }
                            (dx, dy) if dx < 0 && dy == 0 => (0, *p - y0, -tick_size, *p - y0),
                            (dx, dy) if dx == 0 && dy > 0 => {
                                (*p - x0, ymax, *p - x0, ymax + tick_size)
                            }
                            (dx, dy) if dx == 0 && dy < 0 => (*p - x0, 0, *p - x0, -tick_size),
                            _ => panic!("Bug: Invalid orientation specification"),
                        }
                    };
                    let line = PathElement::new(vec![(kx0, ky0), (kx1, ky1)], style.clone());
                    area.draw(&line)?;
                }
            }
        }

        if let Some((text, style)) = axis_desc {
            let actual_style = if orientation.0 == 0 {
                style.clone()
            } else if orientation.0 == -1 {
                style.transform(FontTransform::Rotate270)
            } else {
                style.transform(FontTransform::Rotate90)
            };

            let (x0, y0, h_pos, v_pos) = match orientation {
                // Right
                (dx, dy) if dx > 0 && dy == 0 => (tw, th / 2, HPos::Center, VPos::Top),
                // Left
                (dx, dy) if dx < 0 && dy == 0 => (0, th / 2, HPos::Center, VPos::Top),
                // Bottom
                (dx, dy) if dx == 0 && dy > 0 => (tw / 2, th, HPos::Center, VPos::Bottom),
                // Top
                (dx, dy) if dx == 0 && dy < 0 => (tw / 2, 0, HPos::Center, VPos::Top),
                _ => panic!("Bug: Invalid orientation specification"),
            };

            let actual_style = &actual_style.pos(Pos::new(h_pos, v_pos));
            area.draw_text(&text, &actual_style, (x0 as i32, y0 as i32))?;
        }

        Ok(())
    }

    #[allow(clippy::too_many_arguments)]
    pub(super) fn draw_mesh<FmtLabel, YH: KeyPointHint, XH: KeyPointHint>(
        &mut self,
        (r, c): (YH, XH),
        mesh_line_style: &ShapeStyle,
        x_label_style: &TextStyle,
        y_label_style: &TextStyle,
        fmt_label: FmtLabel,
        x_mesh: bool,
        y_mesh: bool,
        x_label_offset: i32,
        y_label_offset: i32,
        x_axis: bool,
        y_axis: bool,
        axis_style: &ShapeStyle,
        axis_desc_style: &TextStyle,
        x_desc: Option<String>,
        y_desc: Option<String>,
        x_tick_size: [i32; 2],
        y_tick_size: [i32; 2],
    ) -> Result<(), DrawingAreaErrorKind<DB::ErrorType>>
    where
        FmtLabel: FnMut(&MeshLine<X, Y>) -> Option<String>,
    {
        let (x_labels, y_labels) =
            self.draw_mesh_lines((r, c), (x_mesh, y_mesh), mesh_line_style, fmt_label)?;

        for idx in 0..2 {
            self.draw_axis_and_labels(
                self.x_label_area[idx].as_ref(),
                if x_axis { Some(axis_style) } else { None },
                &x_labels[..],
                x_label_style,
                x_label_offset,
                (0, -1 + idx as i16 * 2),
                x_desc.as_ref().map(|desc| (&desc[..], axis_desc_style)),
                x_tick_size[idx],
            )?;

            self.draw_axis_and_labels(
                self.y_label_area[idx].as_ref(),
                if y_axis { Some(axis_style) } else { None },
                &y_labels[..],
                y_label_style,
                y_label_offset,
                (-1 + idx as i16 * 2, 0),
                y_desc.as_ref().map(|desc| (&desc[..], axis_desc_style)),
                y_tick_size[idx],
            )?;
        }

        Ok(())
    }

    /// Convert this chart context into a dual axis chart context and attach a second coordinate spec
    /// on the chart context. For more detailed information, see documentation for [struct DualCoordChartContext](struct.DualCoordChartContext.html)
    ///
    /// - `x_coord`: The coordinate spec for the X axis
    /// - `y_coord`: The coordinate spec for the Y axis
    /// - **returns** The newly created dual spec chart context
    #[allow(clippy::type_complexity)]
    pub fn set_secondary_coord<SX: AsRangedCoord, SY: AsRangedCoord>(
        self,
        x_coord: SX,
        y_coord: SY,
    ) -> DualCoordChartContext<
        'a,
        DB,
        Cartesian2d<X, Y>,
        Cartesian2d<SX::CoordDescType, SY::CoordDescType>,
    > {
        let mut pixel_range = self.drawing_area.get_pixel_range();
        pixel_range.1 = pixel_range.1.end..pixel_range.1.start;

        DualCoordChartContext::new(self, Cartesian2d::new(x_coord, y_coord, pixel_range))
    }
}

pub(super) struct KeyPoints3d<X: Ranged, Y: Ranged, Z: Ranged> {
    pub(super) x_points: Vec<X::ValueType>,
    pub(super) y_points: Vec<Y::ValueType>,
    pub(super) z_points: Vec<Z::ValueType>,
}

#[derive(Clone, Debug)]
pub(super) enum Coord3D<X, Y, Z> {
    X(X),
    Y(Y),
    Z(Z),
}

impl<X, Y, Z> Coord3D<X, Y, Z> {
    fn get_x(&self) -> &X {
        match self {
            Coord3D::X(ret) => ret,
            _ => panic!("Invalid call!"),
        }
    }
    fn get_y(&self) -> &Y {
        match self {
            Coord3D::Y(ret) => ret,
            _ => panic!("Invalid call!"),
        }
    }
    fn get_z(&self) -> &Z {
        match self {
            Coord3D::Z(ret) => ret,
            _ => panic!("Invalid call!"),
        }
    }

    fn build_coord([x, y, z]: [&Self; 3]) -> (X, Y, Z)
    where
        X: Clone,
        Y: Clone,
        Z: Clone,
    {
        (x.get_x().clone(), y.get_y().clone(), z.get_z().clone())
    }
}
impl<'a, DB, X, Y, Z, XT, YT, ZT> ChartContext<'a, DB, Cartesian3d<X, Y, Z>>
where
    DB: DrawingBackend,
    X: Ranged<ValueType = XT> + ValueFormatter<XT>,
    Y: Ranged<ValueType = YT> + ValueFormatter<YT>,
    Z: Ranged<ValueType = ZT> + ValueFormatter<ZT>,
{
    pub fn configure_axes(&mut self) -> Axes3dStyle<'a, '_, X, Y, Z, DB> {
        Axes3dStyle::new(self)
    }
}
impl<'a, DB, X: Ranged, Y: Ranged, Z: Ranged> ChartContext<'a, DB, Cartesian3d<X, Y, Z>>
where
    DB: DrawingBackend,
{
    /// Override the 3D projection matrix. This function allows to override the default projection
    /// matrix.
    /// - `pf`: A function that takes the default projection matrix configuration and returns the
    /// projection matrix. This function will allow you to adjust the pitch, yaw angle and the
    /// centeral point of the projection, etc. You can also build a projection matrix which is not
    /// relies on the default configuration as well.
    pub fn with_projection<P: FnOnce(ProjectionMatrixBuilder) -> ProjectionMatrix>(
        &mut self,
        pf: P,
    ) -> &mut Self {
        let (actual_x, actual_y) = self.drawing_area.get_pixel_range();
        self.drawing_area
            .as_coord_spec_mut()
            .set_projection(actual_x, actual_y, pf);
        self
    }

    pub fn set_3d_pixel_range(&mut self, size: (i32, i32, i32)) -> &mut Self {
        let (actual_x, actual_y) = self.drawing_area.get_pixel_range();
        self.drawing_area
            .as_coord_spec_mut()
            .set_coord_pixel_range(actual_x, actual_y, size);
        self
    }
}

impl<'a, DB, X: Ranged, Y: Ranged, Z: Ranged> ChartContext<'a, DB, Cartesian3d<X, Y, Z>>
where
    DB: DrawingBackend,
    X::ValueType: Clone,
    Y::ValueType: Clone,
    Z::ValueType: Clone,
{
    pub(super) fn get_key_points<XH: KeyPointHint, YH: KeyPointHint, ZH: KeyPointHint>(
        &self,
        x_hint: XH,
        y_hint: YH,
        z_hint: ZH,
    ) -> KeyPoints3d<X, Y, Z> {
        let coord = self.plotting_area().as_coord_spec();
        let x_points = coord.logic_x.key_points(x_hint);
        let y_points = coord.logic_y.key_points(y_hint);
        let z_points = coord.logic_z.key_points(z_hint);
        KeyPoints3d {
            x_points,
            y_points,
            z_points,
        }
    }
    pub(super) fn draw_axis_ticks(
        &mut self,
        axis: [[Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 3]; 2],
        labels: &[(
            [Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 3],
            String,
        )],
        tick_size: i32,
        style: ShapeStyle,
        font: TextStyle,
    ) -> Result<(), DrawingAreaErrorKind<DB::ErrorType>> {
        let coord = self.plotting_area().as_coord_spec();
        let begin = coord.translate(&Coord3D::build_coord([
            &axis[0][0],
            &axis[0][1],
            &axis[0][2],
        ]));
        let end = coord.translate(&Coord3D::build_coord([
            &axis[1][0],
            &axis[1][1],
            &axis[1][2],
        ]));
        let axis_dir = (end.0 - begin.0, end.1 - begin.1);
        let (x_range, y_range) = self.plotting_area().get_pixel_range();
        let x_mid = (x_range.start + x_range.end) / 2;
        let y_mid = (y_range.start + y_range.end) / 2;

        let x_dir = if begin.0 < x_mid {
            (-tick_size, 0)
        } else {
            (tick_size, 0)
        };

        let y_dir = if begin.1 < y_mid {
            (0, -tick_size)
        } else {
            (0, tick_size)
        };

        let x_score = (x_dir.0 * axis_dir.0 + x_dir.1 * axis_dir.1).abs();
        let y_score = (y_dir.0 * axis_dir.0 + y_dir.1 * axis_dir.1).abs();

        let dir = if x_score < y_score { x_dir } else { y_dir };

        for (pos, text) in labels {
            let logic_pos = Coord3D::build_coord([&pos[0], &pos[1], &pos[2]]);
            let mut font = font.clone();
            if dir.0 < 0 {
                font.pos = Pos::new(HPos::Right, VPos::Center);
            } else if dir.0 > 0 {
                font.pos = Pos::new(HPos::Left, VPos::Center);
            };
            if dir.1 < 0 {
                font.pos = Pos::new(HPos::Center, VPos::Bottom);
            } else if dir.1 > 0 {
                font.pos = Pos::new(HPos::Center, VPos::Top);
            };
            let element = EmptyElement::at(logic_pos)
                + PathElement::new(vec![(0, 0), dir], style.clone())
                + Text::new(text.to_string(), (dir.0 * 2, dir.1 * 2), font.clone());
            self.plotting_area().draw(&element)?;
        }
        Ok(())
    }
    pub(super) fn draw_axis(
        &mut self,
        idx: usize,
        panels: &[[[Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 3]; 2]; 3],
        style: ShapeStyle,
    ) -> Result<
        [[Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 3]; 2],
        DrawingAreaErrorKind<DB::ErrorType>,
    > {
        let coord = self.plotting_area().as_coord_spec();
        let x_range = coord.logic_x.range();
        let y_range = coord.logic_y.range();
        let z_range = coord.logic_z.range();

        let ranges: [[Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 2]; 3] = [
            [Coord3D::X(x_range.start), Coord3D::X(x_range.end)],
            [Coord3D::Y(y_range.start), Coord3D::Y(y_range.end)],
            [Coord3D::Z(z_range.start), Coord3D::Z(z_range.end)],
        ];

        let (start, end) = {
            let mut start = [&ranges[0][0], &ranges[1][0], &ranges[2][0]];
            let mut end = [&ranges[0][1], &ranges[1][1], &ranges[2][1]];

            let mut plan = vec![];

            for i in 0..3 {
                if i == idx {
                    continue;
                }
                start[i] = &panels[i][0][i];
                end[i] = &panels[i][0][i];
                for j in 0..3 {
                    if i != idx && i != j && j != idx {
                        for k in 0..2 {
                            start[j] = &panels[i][k][j];
                            end[j] = &panels[i][k][j];
                            plan.push((start, end));
                        }
                    }
                }
            }
            plan.into_iter()
                .min_by_key(|&(s, e)| {
                    let d = coord.projected_depth(s[0].get_x(), s[1].get_y(), s[2].get_z());
                    let d = d + coord.projected_depth(e[0].get_x(), e[1].get_y(), e[2].get_z());
                    let (_, y1) = coord.translate(&Coord3D::build_coord(s));
                    let (_, y2) = coord.translate(&Coord3D::build_coord(e));
                    let y = y1 + y2;
                    (d, y)
                })
                .unwrap()
        };

        self.plotting_area().draw(&PathElement::new(
            vec![Coord3D::build_coord(start), Coord3D::build_coord(end)],
            style.clone(),
        ))?;

        Ok([
            [start[0].clone(), start[1].clone(), start[2].clone()],
            [end[0].clone(), end[1].clone(), end[2].clone()],
        ])
    }
    pub(super) fn draw_axis_panels(
        &mut self,
        bold_points: &KeyPoints3d<X, Y, Z>,
        light_points: &KeyPoints3d<X, Y, Z>,
        panel_style: ShapeStyle,
        bold_grid_style: ShapeStyle,
        light_grid_style: ShapeStyle,
    ) -> Result<
        [[[Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 3]; 2]; 3],
        DrawingAreaErrorKind<DB::ErrorType>,
    > {
        let mut r_iter = (0..3).map(|idx| {
            self.draw_axis_panel(
                idx,
                bold_points,
                light_points,
                panel_style.clone(),
                bold_grid_style.clone(),
                light_grid_style.clone(),
            )
        });
        Ok([
            r_iter.next().unwrap()?,
            r_iter.next().unwrap()?,
            r_iter.next().unwrap()?,
        ])
    }
    fn draw_axis_panel(
        &mut self,
        idx: usize,
        bold_points: &KeyPoints3d<X, Y, Z>,
        light_points: &KeyPoints3d<X, Y, Z>,
        panel_style: ShapeStyle,
        bold_grid_style: ShapeStyle,
        light_grid_style: ShapeStyle,
    ) -> Result<
        [[Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 3]; 2],
        DrawingAreaErrorKind<DB::ErrorType>,
    > {
        let coord = self.plotting_area().as_coord_spec();
        let x_range = coord.logic_x.range();
        let y_range = coord.logic_y.range();
        let z_range = coord.logic_z.range();

        let ranges: [[Coord3D<X::ValueType, Y::ValueType, Z::ValueType>; 2]; 3] = [
            [Coord3D::X(x_range.start), Coord3D::X(x_range.end)],
            [Coord3D::Y(y_range.start), Coord3D::Y(y_range.end)],
            [Coord3D::Z(z_range.start), Coord3D::Z(z_range.end)],
        ];

        let (mut panel, start, end) = {
            let a = [&ranges[0][0], &ranges[1][0], &ranges[2][0]];
            let mut b = [&ranges[0][1], &ranges[1][1], &ranges[2][1]];
            let mut c = a;
            let d = b;

            b[idx] = &ranges[idx][0];
            c[idx] = &ranges[idx][1];

            let (a, b) = if coord.projected_depth(a[0].get_x(), a[1].get_y(), a[2].get_z())
                >= coord.projected_depth(c[0].get_x(), c[1].get_y(), c[2].get_z())
            {
                (a, b)
            } else {
                (c, d)
            };

            let mut m = a.clone();
            m[(idx + 1) % 3] = b[(idx + 1) % 3];
            let mut n = a.clone();
            n[(idx + 2) % 3] = b[(idx + 2) % 3];

            (
                vec![
                    Coord3D::build_coord(a),
                    Coord3D::build_coord(m),
                    Coord3D::build_coord(b),
                    Coord3D::build_coord(n),
                ],
                a,
                b,
            )
        };
        self.plotting_area()
            .draw(&Polygon::new(panel.clone(), panel_style.clone()))?;
        panel.push(panel[0].clone());
        self.plotting_area()
            .draw(&PathElement::new(panel, bold_grid_style.clone()))?;

        for (kps, style) in vec![
            (light_points, light_grid_style),
            (bold_points, bold_grid_style),
        ]
        .into_iter()
        {
            for idx in (0..3).filter(|&i| i != idx) {
                let kps: Vec<_> = match idx {
                    0 => kps.x_points.iter().map(|x| Coord3D::X(x.clone())).collect(),
                    1 => kps.y_points.iter().map(|y| Coord3D::Y(y.clone())).collect(),
                    _ => kps.z_points.iter().map(|z| Coord3D::Z(z.clone())).collect(),
                };
                for kp in kps.iter() {
                    let mut kp_start = start;
                    let mut kp_end = end;
                    kp_start[idx] = kp;
                    kp_end[idx] = kp;
                    self.plotting_area().draw(&PathElement::new(
                        vec![Coord3D::build_coord(kp_start), Coord3D::build_coord(kp_end)],
                        style.clone(),
                    ))?;
                }
            }
        }

        Ok([
            [start[0].clone(), start[1].clone(), start[2].clone()],
            [end[0].clone(), end[1].clone(), end[2].clone()],
        ])
    }
}

#[cfg(test)]
mod test {
    use crate::prelude::*;

    #[test]
    fn test_chart_context() {
        let drawing_area = create_mocked_drawing_area(200, 200, |_| {});

        drawing_area.fill(&WHITE).expect("Fill");

        let mut chart = ChartBuilder::on(&drawing_area)
            .caption("Test Title", ("serif", 10))
            .x_label_area_size(20)
            .y_label_area_size(20)
            .set_label_area_size(LabelAreaPosition::Top, 20)
            .set_label_area_size(LabelAreaPosition::Right, 20)
            .build_cartesian_2d(0..10, 0..10)
            .expect("Create chart")
            .set_secondary_coord(0.0..1.0, 0.0..1.0);

        chart
            .configure_mesh()
            .x_desc("X")
            .y_desc("Y")
            .draw()
            .expect("Draw mesh");
        chart
            .configure_secondary_axes()
            .x_desc("X")
            .y_desc("Y")
            .draw()
            .expect("Draw Secondary axes");

        chart
            .draw_series(std::iter::once(Circle::new((5, 5), 5, &RED)))
            .expect("Drawing error");
        chart
            .draw_secondary_series(std::iter::once(Circle::new((0.3, 0.8), 5, &GREEN)))
            .expect("Drawing error")
            .label("Test label")
            .legend(|(x, y)| Rectangle::new([(x - 10, y - 5), (x, y + 5)], &GREEN));

        chart
            .configure_series_labels()
            .position(SeriesLabelPosition::UpperMiddle)
            .draw()
            .expect("Drawing error");
    }

    #[test]
    fn test_chart_context_3d() {
        let drawing_area = create_mocked_drawing_area(200, 200, |_| {});

        drawing_area.fill(&WHITE).expect("Fill");

        let mut chart = ChartBuilder::on(&drawing_area)
            .caption("Test Title", ("serif", 10))
            .x_label_area_size(20)
            .y_label_area_size(20)
            .set_label_area_size(LabelAreaPosition::Top, 20)
            .set_label_area_size(LabelAreaPosition::Right, 20)
            .build_cartesian_3d(0..10, 0..10, 0..10)
            .expect("Create chart");

        chart.with_projection(|mut pb| {
            pb.yaw = 0.5;
            pb.pitch = 0.5;
            pb.scale = 0.5;
            pb.into_matrix()
        });

        chart.configure_axes().draw().expect("Drawing axes");

        chart
            .draw_series(std::iter::once(Circle::new((5, 5, 5), 5, &RED)))
            .expect("Drawing error");
    }
}