aboutsummaryrefslogtreecommitdiff
path: root/src/coord/ranged1d/combinators/nested.rs
blob: e4a493ec82a44c1233180b057e5c5c994f913872 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
use crate::coord::ranged1d::{
    AsRangedCoord, DiscreteRanged, KeyPointHint, NoDefaultFormatting, Ranged, ValueFormatter,
};
use std::ops::Range;

/// Describe a value for a nested coordinate
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum NestedValue<C, V> {
    /// Category value
    Category(C),
    /// One exact nested value
    Value(C, V),
}

impl<C, V> NestedValue<C, V> {
    /// Get the category of current nest value
    pub fn category(&self) -> &C {
        match self {
            NestedValue::Category(cat) => cat,
            NestedValue::Value(cat, _) => cat,
        }
    }
    /// Get the nested value from this value
    pub fn nested_value(&self) -> Option<&V> {
        match self {
            NestedValue::Category(_) => None,
            NestedValue::Value(_, val) => Some(val),
        }
    }
}

impl<C, V> From<(C, V)> for NestedValue<C, V> {
    fn from((cat, val): (C, V)) -> NestedValue<C, V> {
        NestedValue::Value(cat, val)
    }
}

impl<C, V> From<C> for NestedValue<C, V> {
    fn from(cat: C) -> NestedValue<C, V> {
        NestedValue::Category(cat)
    }
}

/// A nested coordinate spec which is a discrete coordinate on the top level and
/// for each value in discrete value, there is a secondary coordinate system.
/// And the value is defined as a tuple of primary coordinate value and secondary
/// coordinate value
pub struct NestedRange<Primary: DiscreteRanged, Secondary: Ranged> {
    primary: Primary,
    secondary: Vec<Secondary>,
}

impl<PT, ST, P, S> ValueFormatter<NestedValue<PT, ST>> for NestedRange<P, S>
where
    P: Ranged<ValueType = PT> + DiscreteRanged,
    S: Ranged<ValueType = ST>,
    P: ValueFormatter<PT>,
    S: ValueFormatter<ST>,
{
    fn format(value: &NestedValue<PT, ST>) -> String {
        match value {
            NestedValue::Category(cat) => P::format(cat),
            NestedValue::Value(_, val) => S::format(val),
        }
    }
}

impl<P: DiscreteRanged, S: Ranged> Ranged for NestedRange<P, S> {
    type FormatOption = NoDefaultFormatting;
    type ValueType = NestedValue<P::ValueType, S::ValueType>;

    fn range(&self) -> Range<Self::ValueType> {
        let primary_range = self.primary.range();

        let secondary_left = self.secondary[0].range().start;
        let secondary_right = self.secondary[self.primary.size() - 1].range().end;

        NestedValue::Value(primary_range.start, secondary_left)
            ..NestedValue::Value(primary_range.end, secondary_right)
    }

    fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32 {
        let idx = self.primary.index_of(value.category()).unwrap_or(0);
        let total = self.primary.size();

        let bucket_size = (limit.1 - limit.0) / total as i32;
        let mut residual = (limit.1 - limit.0) % total as i32;

        if residual < 0 {
            residual += total as i32;
        }

        let s_left = limit.0 + bucket_size * idx as i32 + residual.min(idx as i32);
        let s_right = s_left + bucket_size + if (residual as usize) < idx { 1 } else { 0 };

        if let Some(secondary_value) = value.nested_value() {
            self.secondary[idx].map(secondary_value, (s_left, s_right))
        } else {
            (s_left + s_right) / 2
        }
    }

    fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType> {
        if !hint.weight().allow_light_points() || hint.max_num_points() < self.primary.size() * 2 {
            self.primary
                .key_points(hint)
                .into_iter()
                .map(NestedValue::Category)
                .collect()
        } else {
            let secondary_size =
                (hint.max_num_points() - self.primary.size()) / self.primary.size();
            self.primary
                .values()
                .enumerate()
                .flat_map(|(idx, val)| {
                    std::iter::once(NestedValue::Category(val)).chain(
                        self.secondary[idx]
                            .key_points(secondary_size)
                            .into_iter()
                            .map(move |v| {
                                NestedValue::Value(self.primary.from_index(idx).unwrap(), v)
                            }),
                    )
                })
                .collect()
        }
    }
}

impl<P: DiscreteRanged, S: DiscreteRanged> DiscreteRanged for NestedRange<P, S> {
    fn size(&self) -> usize {
        self.secondary.iter().map(|x| x.size()).sum::<usize>()
    }

    fn index_of(&self, value: &Self::ValueType) -> Option<usize> {
        let p_idx = self.primary.index_of(value.category())?;
        let s_idx = self.secondary[p_idx].index_of(value.nested_value()?)?;
        Some(
            s_idx
                + self.secondary[..p_idx]
                    .iter()
                    .map(|x| x.size())
                    .sum::<usize>(),
        )
    }

    fn from_index(&self, mut index: usize) -> Option<Self::ValueType> {
        for (p_idx, snd) in self.secondary.iter().enumerate() {
            if snd.size() > index {
                return Some(NestedValue::Value(
                    self.primary.from_index(p_idx).unwrap(),
                    snd.from_index(index).unwrap(),
                ));
            }
            index -= snd.size();
        }
        None
    }
}

/// Used to build a nested coordinate system.
pub trait BuildNestedCoord: AsRangedCoord
where
    Self::CoordDescType: DiscreteRanged,
{
    /// Builds a nested coordinate system.
    fn nested_coord<S: AsRangedCoord>(
        self,
        builder: impl Fn(<Self::CoordDescType as Ranged>::ValueType) -> S,
    ) -> NestedRange<Self::CoordDescType, S::CoordDescType> {
        let primary: Self::CoordDescType = self.into();
        assert!(primary.size() > 0);

        let secondary = primary
            .values()
            .map(|value| builder(value).into())
            .collect();

        NestedRange { primary, secondary }
    }
}

impl<T: AsRangedCoord> BuildNestedCoord for T where T::CoordDescType: DiscreteRanged {}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_nested_coord() {
        let coord = (0..10).nested_coord(|x| 0..(x + 1));

        let range = coord.range();

        assert_eq!(NestedValue::Value(0, 0)..NestedValue::Value(10, 11), range);
        assert_eq!(coord.map(&NestedValue::Category(0), (0, 1100)), 50);
        assert_eq!(coord.map(&NestedValue::Value(0, 0), (0, 1100)), 0);
        assert_eq!(coord.map(&NestedValue::Value(5, 4), (0, 1100)), 567);

        assert_eq!(coord.size(), (2 + 12) * 11 / 2);
        assert_eq!(coord.index_of(&NestedValue::Value(5, 4)), Some(24));
        assert_eq!(coord.from_index(24), Some(NestedValue::Value(5, 4)));
    }
}