aboutsummaryrefslogtreecommitdiff
path: root/deps/boringssl/src/crypto/fipsmodule/bn/gcd_extra.c
blob: 53ab1705cba6b65cf9d3175232c1734ffa3069d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/* Copyright (c) 2018, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <openssl/bn.h>

#include <assert.h>

#include <openssl/err.h>

#include "internal.h"


static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); }

static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp,
                                size_t num) {
  bn_rshift1_words(tmp, a, num);
  bn_select_words(a, mask, tmp, a, num);
}

static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry,
                                      BN_ULONG mask, BN_ULONG *tmp,
                                      size_t num) {
  maybe_rshift1_words(a, mask, tmp, num);
  if (num != 0) {
    carry &= mask;
    a[num - 1] |= carry << (BN_BITS2-1);
  }
}

static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b,
                                BN_ULONG *tmp, size_t num) {
  BN_ULONG carry = bn_add_words(tmp, a, b, num);
  bn_select_words(a, mask, tmp, a, num);
  return carry & mask;
}

static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x,
                            const BIGNUM *y, BN_CTX *ctx) {
  size_t width = x->width > y->width ? x->width : y->width;
  if (width == 0) {
    *out_shift = 0;
    BN_zero(r);
    return 1;
  }

  // This is a constant-time implementation of Stein's algorithm (binary GCD).
  int ret = 0;
  BN_CTX_start(ctx);
  BIGNUM *u = BN_CTX_get(ctx);
  BIGNUM *v = BN_CTX_get(ctx);
  BIGNUM *tmp = BN_CTX_get(ctx);
  if (u == NULL || v == NULL || tmp == NULL ||
      !BN_copy(u, x) ||
      !BN_copy(v, y) ||
      !bn_resize_words(u, width) ||
      !bn_resize_words(v, width) ||
      !bn_resize_words(tmp, width)) {
    goto err;
  }

  // Each loop iteration halves at least one of |u| and |v|. Thus we need at
  // most the combined bit width of inputs for at least one value to be zero.
  unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2;
  unsigned num_iters = x_bits + y_bits;
  if (num_iters < x_bits) {
    OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
    goto err;
  }

  unsigned shift = 0;
  for (unsigned i = 0; i < num_iters; i++) {
    BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);

    // If both |u| and |v| are odd, subtract the smaller from the larger.
    BN_ULONG u_less_than_v =
        (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width);
    bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width);
    bn_sub_words(tmp->d, v->d, u->d, width);
    bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width);

    // At least one of |u| and |v| is now even.
    BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]);
    BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]);
    assert(!(u_is_odd & v_is_odd));

    // If both are even, the final GCD gains a factor of two.
    shift += 1 & (~u_is_odd & ~v_is_odd);

    // Halve any which are even.
    maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width);
    maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width);
  }

  // One of |u| or |v| is zero at this point. The algorithm usually makes |u|
  // zero, unless |y| was already zero on input. Fix this by combining the
  // values.
  assert(BN_is_zero(u) || BN_is_zero(v));
  for (size_t i = 0; i < width; i++) {
    v->d[i] |= u->d[i];
  }

  *out_shift = shift;
  ret = bn_set_words(r, v->d, width);

err:
  BN_CTX_end(ctx);
  return ret;
}

int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) {
  unsigned shift;
  return bn_gcd_consttime(r, &shift, x, y, ctx) &&
         BN_lshift(r, r, shift);
}

int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x,
                           const BIGNUM *y, BN_CTX *ctx) {
  int ret = 0;
  BN_CTX_start(ctx);
  unsigned shift;
  BIGNUM *gcd = BN_CTX_get(ctx);
  if (gcd == NULL ||
      !bn_gcd_consttime(gcd, &shift, x, y, ctx)) {
    goto err;
  }

  // Check that 2^|shift| * |gcd| is one.
  if (gcd->width == 0) {
    *out_relatively_prime = 0;
  } else {
    BN_ULONG mask = shift | (gcd->d[0] ^ 1);
    for (int i = 1; i < gcd->width; i++) {
      mask |= gcd->d[i];
    }
    *out_relatively_prime = mask == 0;
  }
  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}

int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
  BN_CTX_start(ctx);
  unsigned shift;
  BIGNUM *gcd = BN_CTX_get(ctx);
  int ret = gcd != NULL &&  //
            bn_mul_consttime(r, a, b, ctx) &&
            bn_gcd_consttime(gcd, &shift, a, b, ctx) &&
            // |gcd| has a secret bit width.
            bn_div_consttime(r, NULL, r, gcd, /*divisor_min_bits=*/0, ctx) &&
            bn_rshift_secret_shift(r, r, shift, ctx);
  BN_CTX_end(ctx);
  return ret;
}

int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a,
                             const BIGNUM *n, BN_CTX *ctx) {
  *out_no_inverse = 0;
  if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) {
    OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
    return 0;
  }
  if (BN_is_zero(a)) {
    if (BN_is_one(n)) {
      BN_zero(r);
      return 1;
    }
    *out_no_inverse = 1;
    OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
    return 0;
  }

  // This is a constant-time implementation of the extended binary GCD
  // algorithm. It is adapted from the Handbook of Applied Cryptography, section
  // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid
  // negative numbers.
  //
  // For more details and proof of correctness, see
  // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step|
  // and |mod_inverse_consttime| for the algorithm in Gallina and see
  // |mod_inverse_consttime_spec| for the correctness result.

  if (!BN_is_odd(a) && !BN_is_odd(n)) {
    *out_no_inverse = 1;
    OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
    return 0;
  }

  // This function exists to compute the RSA private exponent, where |a| is one
  // word. We'll thus use |a_width| when available.
  size_t n_width = n->width, a_width = a->width;
  if (a_width > n_width) {
    a_width = n_width;
  }

  int ret = 0;
  BN_CTX_start(ctx);
  BIGNUM *u = BN_CTX_get(ctx);
  BIGNUM *v = BN_CTX_get(ctx);
  BIGNUM *A = BN_CTX_get(ctx);
  BIGNUM *B = BN_CTX_get(ctx);
  BIGNUM *C = BN_CTX_get(ctx);
  BIGNUM *D = BN_CTX_get(ctx);
  BIGNUM *tmp = BN_CTX_get(ctx);
  BIGNUM *tmp2 = BN_CTX_get(ctx);
  if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL ||
      D == NULL || tmp == NULL || tmp2 == NULL ||
      !BN_copy(u, a) ||
      !BN_copy(v, n) ||
      !BN_one(A) ||
      !BN_one(D) ||
      // For convenience, size |u| and |v| equivalently.
      !bn_resize_words(u, n_width) ||
      !bn_resize_words(v, n_width) ||
      // |A| and |C| are bounded by |m|.
      !bn_resize_words(A, n_width) ||
      !bn_resize_words(C, n_width) ||
      // |B| and |D| are bounded by |a|.
      !bn_resize_words(B, a_width) ||
      !bn_resize_words(D, a_width) ||
      // |tmp| and |tmp2| may be used at either size.
      !bn_resize_words(tmp, n_width) ||
      !bn_resize_words(tmp2, n_width)) {
    goto err;
  }

  // Each loop iteration halves at least one of |u| and |v|. Thus we need at
  // most the combined bit width of inputs for at least one value to be zero.
  unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2;
  unsigned num_iters = a_bits + n_bits;
  if (num_iters < a_bits) {
    OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
    goto err;
  }

  // Before and after each loop iteration, the following hold:
  //
  //   u = A*a - B*n
  //   v = D*n - C*a
  //   0 < u <= a
  //   0 <= v <= n
  //   0 <= A < n
  //   0 <= B <= a
  //   0 <= C < n
  //   0 <= D <= a
  //
  // After each loop iteration, u and v only get smaller, and at least one of
  // them shrinks by at least a factor of two.
  for (unsigned i = 0; i < num_iters; i++) {
    BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);

    // If both |u| and |v| are odd, subtract the smaller from the larger.
    BN_ULONG v_less_than_u =
        (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width);
    bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width);
    bn_sub_words(tmp->d, u->d, v->d, n_width);
    bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width);

    // If we updated one of the values, update the corresponding coefficient.
    BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width);
    carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width);
    bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width);
    bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width);
    bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width);

    bn_add_words(tmp->d, B->d, D->d, a_width);
    bn_sub_words(tmp2->d, tmp->d, a->d, a_width);
    bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width);
    bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width);
    bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width);

    // Our loop invariants hold at this point. Additionally, exactly one of |u|
    // and |v| is now even.
    BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]);
    BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]);
    assert(u_is_even != v_is_even);

    // Halve the even one and adjust the corresponding coefficient.
    maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width);
    BN_ULONG A_or_B_is_odd =
        word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]);
    BN_ULONG A_carry =
        maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width);
    BN_ULONG B_carry =
        maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width);
    maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width);
    maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width);

    maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width);
    BN_ULONG C_or_D_is_odd =
        word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]);
    BN_ULONG C_carry =
        maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width);
    BN_ULONG D_carry =
        maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width);
    maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width);
    maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width);
  }

  assert(BN_is_zero(v));
  if (!BN_is_one(u)) {
    *out_no_inverse = 1;
    OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
    goto err;
  }

  ret = BN_copy(r, A) != NULL;

err:
  BN_CTX_end(ctx);
  return ret;
}