aboutsummaryrefslogtreecommitdiff
path: root/src/slice/test.rs
blob: 97de7d8ed35209424a3ba72f84e1d5f5460b2b3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#![cfg(test)]

use crate::prelude::*;
use rand::distributions::Uniform;
use rand::seq::SliceRandom;
use rand::{thread_rng, Rng};
use std::cmp::Ordering::{Equal, Greater, Less};

macro_rules! sort {
    ($f:ident, $name:ident) => {
        #[test]
        fn $name() {
            let mut rng = thread_rng();

            for len in (0..25).chain(500..501) {
                for &modulus in &[5, 10, 100] {
                    let dist = Uniform::new(0, modulus);
                    for _ in 0..100 {
                        let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();

                        // Test sort using `<` operator.
                        let mut tmp = v.clone();
                        tmp.$f(|a, b| a.cmp(b));
                        assert!(tmp.windows(2).all(|w| w[0] <= w[1]));

                        // Test sort using `>` operator.
                        let mut tmp = v.clone();
                        tmp.$f(|a, b| b.cmp(a));
                        assert!(tmp.windows(2).all(|w| w[0] >= w[1]));
                    }
                }
            }

            // Test sort with many duplicates.
            for &len in &[1_000, 10_000, 100_000] {
                for &modulus in &[5, 10, 100, 10_000] {
                    let dist = Uniform::new(0, modulus);
                    let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();

                    v.$f(|a, b| a.cmp(b));
                    assert!(v.windows(2).all(|w| w[0] <= w[1]));
                }
            }

            // Test sort with many pre-sorted runs.
            for &len in &[1_000, 10_000, 100_000] {
                let len_dist = Uniform::new(0, len);
                for &modulus in &[5, 10, 1000, 50_000] {
                    let dist = Uniform::new(0, modulus);
                    let mut v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();

                    v.sort();
                    v.reverse();

                    for _ in 0..5 {
                        let a = rng.sample(&len_dist);
                        let b = rng.sample(&len_dist);
                        if a < b {
                            v[a..b].reverse();
                        } else {
                            v.swap(a, b);
                        }
                    }

                    v.$f(|a, b| a.cmp(b));
                    assert!(v.windows(2).all(|w| w[0] <= w[1]));
                }
            }

            // Sort using a completely random comparison function.
            // This will reorder the elements *somehow*, but won't panic.
            let mut v: Vec<_> = (0..100).collect();
            v.$f(|_, _| *[Less, Equal, Greater].choose(&mut thread_rng()).unwrap());
            v.$f(|a, b| a.cmp(b));
            for i in 0..v.len() {
                assert_eq!(v[i], i);
            }

            // Should not panic.
            [0i32; 0].$f(|a, b| a.cmp(b));
            [(); 10].$f(|a, b| a.cmp(b));
            [(); 100].$f(|a, b| a.cmp(b));

            let mut v = [0xDEAD_BEEFu64];
            v.$f(|a, b| a.cmp(b));
            assert!(v == [0xDEAD_BEEF]);
        }
    };
}

sort!(par_sort_by, test_par_sort);
sort!(par_sort_unstable_by, test_par_sort_unstable);

#[test]
fn test_par_sort_stability() {
    for len in (2..25).chain(500..510).chain(50_000..50_010) {
        for _ in 0..10 {
            let mut counts = [0; 10];

            // Create a vector like [(6, 1), (5, 1), (6, 2), ...],
            // where the first item of each tuple is random, but
            // the second item represents which occurrence of that
            // number this element is, i.e. the second elements
            // will occur in sorted order.
            let mut rng = thread_rng();
            let mut v: Vec<_> = (0..len)
                .map(|_| {
                    let n: usize = rng.gen_range(0, 10);
                    counts[n] += 1;
                    (n, counts[n])
                })
                .collect();

            // Only sort on the first element, so an unstable sort
            // may mix up the counts.
            v.par_sort_by(|&(a, _), &(b, _)| a.cmp(&b));

            // This comparison includes the count (the second item
            // of the tuple), so elements with equal first items
            // will need to be ordered with increasing
            // counts... i.e. exactly asserting that this sort is
            // stable.
            assert!(v.windows(2).all(|w| w[0] <= w[1]));
        }
    }
}

#[test]
fn test_par_chunks_exact_remainder() {
    let v: &[i32] = &[0, 1, 2, 3, 4];
    let c = v.par_chunks_exact(2);
    assert_eq!(c.remainder(), &[4]);
    assert_eq!(c.len(), 2);
}

#[test]
fn test_par_chunks_exact_mut_remainder() {
    let v: &mut [i32] = &mut [0, 1, 2, 3, 4];
    let mut c = v.par_chunks_exact_mut(2);
    assert_eq!(c.remainder(), &[4]);
    assert_eq!(c.len(), 2);
    assert_eq!(c.into_remainder(), &[4]);

    let mut c = v.par_chunks_exact_mut(2);
    assert_eq!(c.take_remainder(), &[4]);
    assert_eq!(c.take_remainder(), &[]);
    assert_eq!(c.len(), 2);
}