//! Building blocks for advanced wrapping functionality. //! //! The functions and structs in this module can be used to implement //! advanced wrapping functionality when the [`wrap`](super::wrap) and //! [`fill`](super::fill) function don't do what you want. //! //! In general, you want to follow these steps when wrapping //! something: //! //! 1. Split your input into [`Fragment`]s. These are abstract blocks //! of text or content which can be wrapped into lines. You can use //! [`find_words`] to do this for text. //! //! 2. Potentially split your fragments into smaller pieces. This //! allows you to implement things like hyphenation. If wrapping //! text, [`split_words`] can help you do this. //! //! 3. Potentially break apart fragments that are still too large to //! fit on a single line. This is implemented in [`break_words`]. //! //! 4. Finally take your fragments and put them into lines. There are //! two algorithms for this: [`wrap_optimal_fit`] and //! [`wrap_first_fit`]. The former produces better line breaks, the //! latter is faster. //! //! 5. Iterate through the slices returned by the wrapping functions //! and construct your lines of output. //! //! Please [open an issue](https://github.com/mgeisler/textwrap/) if //! the functionality here is not sufficient or if you have ideas for //! improving it. We would love to hear from you! use crate::{Options, WordSplitter}; #[cfg(feature = "smawk")] mod optimal_fit; #[cfg(feature = "smawk")] pub use optimal_fit::wrap_optimal_fit; /// The CSI or “Control Sequence Introducer” introduces an ANSI escape /// sequence. This is typically used for colored text and will be /// ignored when computing the text width. const CSI: (char, char) = ('\x1b', '['); /// The final bytes of an ANSI escape sequence must be in this range. const ANSI_FINAL_BYTE: std::ops::RangeInclusive = '\x40'..='\x7e'; /// Skip ANSI escape sequences. The `ch` is the current `char`, the /// `chars` provide the following characters. The `chars` will be /// modified if `ch` is the start of an ANSI escape sequence. #[inline] fn skip_ansi_escape_sequence>(ch: char, chars: &mut I) -> bool { if ch == CSI.0 && chars.next() == Some(CSI.1) { // We have found the start of an ANSI escape code, typically // used for colored terminal text. We skip until we find a // "final byte" in the range 0x40–0x7E. for ch in chars { if ANSI_FINAL_BYTE.contains(&ch) { return true; } } } false } #[cfg(feature = "unicode-width")] #[inline] fn ch_width(ch: char) -> usize { unicode_width::UnicodeWidthChar::width(ch).unwrap_or(0) } /// First character which [`ch_width`] will classify as double-width. /// Please see [`display_width`]. #[cfg(not(feature = "unicode-width"))] const DOUBLE_WIDTH_CUTOFF: char = '\u{1100}'; #[cfg(not(feature = "unicode-width"))] #[inline] fn ch_width(ch: char) -> usize { if ch < DOUBLE_WIDTH_CUTOFF { 1 } else { 2 } } /// Compute the display width of `text` while skipping over ANSI /// escape sequences. /// /// # Examples /// /// ``` /// use textwrap::core::display_width; /// /// assert_eq!(display_width("Café Plain"), 10); /// assert_eq!(display_width("\u{1b}[31mCafé Rouge\u{1b}[0m"), 10); /// ``` /// /// **Note:** When the `unicode-width` Cargo feature is disabled, the /// width of a `char` is determined by a crude approximation which /// simply counts chars below U+1100 as 1 column wide, and all other /// characters as 2 columns wide. With the feature enabled, function /// will correctly deal with [combining characters] in their /// decomposed form (see [Unicode equivalence]). /// /// An example of a decomposed character is “é”, which can be /// decomposed into: “e” followed by a combining acute accent: “◌́”. /// Without the `unicode-width` Cargo feature, every `char` below /// U+1100 has a width of 1. This includes the combining accent: /// /// ``` /// use textwrap::core::display_width; /// /// assert_eq!(display_width("Cafe Plain"), 10); /// #[cfg(feature = "unicode-width")] /// assert_eq!(display_width("Cafe\u{301} Plain"), 10); /// #[cfg(not(feature = "unicode-width"))] /// assert_eq!(display_width("Cafe\u{301} Plain"), 11); /// ``` /// /// ## Emojis and CJK Characters /// /// Characters such as emojis and [CJK characters] used in the /// Chinese, Japanese, and Korean langauges are seen as double-width, /// even if the `unicode-width` feature is disabled: /// /// ``` /// use textwrap::core::display_width; /// /// assert_eq!(display_width("😂😭🥺🤣✨😍🙏🥰😊🔥"), 20); /// assert_eq!(display_width("你好"), 4); // “Nǐ hǎo” or “Hello” in Chinese /// ``` /// /// # Limitations /// /// The displayed width of a string cannot always be computed from the /// string alone. This is because the width depends on the rendering /// engine used. This is particularly visible with [emoji modifier /// sequences] where a base emoji is modified with, e.g., skin tone or /// hair color modifiers. It is up to the rendering engine to detect /// this and to produce a suitable emoji. /// /// A simple example is “❤️”, which consists of “❤” (U+2764: Black /// Heart Symbol) followed by U+FE0F (Variation Selector-16). By /// itself, “❤” is a black heart, but if you follow it with the /// variant selector, you may get a wider red heart. /// /// A more complex example would be “👨‍🦰” which should depict a man /// with red hair. Here the computed width is too large — and the /// width differs depending on the use of the `unicode-width` feature: /// /// ``` /// use textwrap::core::display_width; /// /// assert_eq!("👨‍🦰".chars().collect::>(), ['\u{1f468}', '\u{200d}', '\u{1f9b0}']); /// #[cfg(feature = "unicode-width")] /// assert_eq!(display_width("👨‍🦰"), 4); /// #[cfg(not(feature = "unicode-width"))] /// assert_eq!(display_width("👨‍🦰"), 6); /// ``` /// /// This happens because the grapheme consists of three code points: /// “👨” (U+1F468: Man), Zero Width Joiner (U+200D), and “🦰” /// (U+1F9B0: Red Hair). You can see them above in the test. With /// `unicode-width` enabled, the ZWJ is correctly seen as having zero /// width, without it is counted as a double-width character. /// /// ## Terminal Support /// /// Modern browsers typically do a great job at combining characters /// as shown above, but terminals often struggle more. As an example, /// Gnome Terminal version 3.38.1, shows “❤️” as a big red heart, but /// shows "👨‍🦰" as “👨🦰”. /// /// [combining characters]: https://en.wikipedia.org/wiki/Combining_character /// [Unicode equivalence]: https://en.wikipedia.org/wiki/Unicode_equivalence /// [CJK characters]: https://en.wikipedia.org/wiki/CJK_characters /// [emoji modifier sequences]: https://unicode.org/emoji/charts/full-emoji-modifiers.html #[inline] pub fn display_width(text: &str) -> usize { let mut chars = text.chars(); let mut width = 0; while let Some(ch) = chars.next() { if skip_ansi_escape_sequence(ch, &mut chars) { continue; } width += ch_width(ch); } width } /// A (text) fragment denotes the unit which we wrap into lines. /// /// Fragments represent an abstract _word_ plus the _whitespace_ /// following the word. In case the word falls at the end of the line, /// the whitespace is dropped and a so-called _penalty_ is inserted /// instead (typically `"-"` if the word was hyphenated). /// /// For wrapping purposes, the precise content of the word, the /// whitespace, and the penalty is irrelevant. All we need to know is /// the displayed width of each part, which this trait provides. pub trait Fragment: std::fmt::Debug { /// Displayed width of word represented by this fragment. fn width(&self) -> usize; /// Displayed width of the whitespace that must follow the word /// when the word is not at the end of a line. fn whitespace_width(&self) -> usize; /// Displayed width of the penalty that must be inserted if the /// word falls at the end of a line. fn penalty_width(&self) -> usize; } /// A piece of wrappable text, including any trailing whitespace. /// /// A `Word` is an example of a [`Fragment`], so it has a width, /// trailing whitespace, and potentially a penalty item. #[derive(Debug, Copy, Clone, PartialEq, Eq)] pub struct Word<'a> { word: &'a str, width: usize, pub(crate) whitespace: &'a str, pub(crate) penalty: &'a str, } impl std::ops::Deref for Word<'_> { type Target = str; fn deref(&self) -> &Self::Target { self.word } } impl<'a> Word<'a> { /// Construct a new `Word`. /// /// A trailing stretch of `' '` is automatically taken to be the /// whitespace part of the word. pub fn from(word: &str) -> Word<'_> { let trimmed = word.trim_end_matches(' '); Word { word: trimmed, width: display_width(&trimmed), whitespace: &word[trimmed.len()..], penalty: "", } } /// Break this word into smaller words with a width of at most /// `line_width`. The whitespace and penalty from this `Word` is /// added to the last piece. /// /// # Examples /// /// ``` /// use textwrap::core::Word; /// assert_eq!( /// Word::from("Hello! ").break_apart(3).collect::>(), /// vec![Word::from("Hel"), Word::from("lo! ")] /// ); /// ``` pub fn break_apart<'b>(&'b self, line_width: usize) -> impl Iterator> + 'b { let mut char_indices = self.word.char_indices(); let mut offset = 0; let mut width = 0; std::iter::from_fn(move || { while let Some((idx, ch)) = char_indices.next() { if skip_ansi_escape_sequence(ch, &mut char_indices.by_ref().map(|(_, ch)| ch)) { continue; } if width > 0 && width + ch_width(ch) > line_width { let word = Word { word: &self.word[offset..idx], width: width, whitespace: "", penalty: "", }; offset = idx; width = ch_width(ch); return Some(word); } width += ch_width(ch); } if offset < self.word.len() { let word = Word { word: &self.word[offset..], width: width, whitespace: self.whitespace, penalty: self.penalty, }; offset = self.word.len(); return Some(word); } None }) } } impl Fragment for Word<'_> { #[inline] fn width(&self) -> usize { self.width } // We assume the whitespace consist of ' ' only. This allows us to // compute the display width in constant time. #[inline] fn whitespace_width(&self) -> usize { self.whitespace.len() } // We assume the penalty is `""` or `"-"`. This allows us to // compute the display width in constant time. #[inline] fn penalty_width(&self) -> usize { self.penalty.len() } } /// Split line into words separated by regions of `' '` characters. /// /// # Examples /// /// ``` /// use textwrap::core::{find_words, Fragment, Word}; /// let words = find_words("Hello World!").collect::>(); /// assert_eq!(words, vec![Word::from("Hello "), Word::from("World!")]); /// assert_eq!(words[0].width(), 5); /// assert_eq!(words[0].whitespace_width(), 1); /// assert_eq!(words[0].penalty_width(), 0); /// ``` pub fn find_words(line: &str) -> impl Iterator { let mut start = 0; let mut in_whitespace = false; let mut char_indices = line.char_indices(); std::iter::from_fn(move || { // for (idx, ch) in char_indices does not work, gives this // error: // // > cannot move out of `char_indices`, a captured variable in // > an `FnMut` closure #[allow(clippy::while_let_on_iterator)] while let Some((idx, ch)) = char_indices.next() { if in_whitespace && ch != ' ' { let word = Word::from(&line[start..idx]); start = idx; in_whitespace = ch == ' '; return Some(word); } in_whitespace = ch == ' '; } if start < line.len() { let word = Word::from(&line[start..]); start = line.len(); return Some(word); } None }) } /// Split words into smaller words according to the split points given /// by `options`. /// /// Note that we split all words, regardless of their length. This is /// to more cleanly separate the business of splitting (including /// automatic hyphenation) from the business of word wrapping. /// /// # Examples /// /// ``` /// use textwrap::core::{split_words, Word}; /// use textwrap::{NoHyphenation, Options}; /// /// // The default splitter is HyphenSplitter: /// let options = Options::new(80); /// assert_eq!( /// split_words(vec![Word::from("foo-bar")], &options).collect::>(), /// vec![Word::from("foo-"), Word::from("bar")] /// ); /// /// // The NoHyphenation splitter ignores the '-': /// let options = Options::new(80).splitter(NoHyphenation); /// assert_eq!( /// split_words(vec![Word::from("foo-bar")], &options).collect::>(), /// vec![Word::from("foo-bar")] /// ); /// ``` pub fn split_words<'a, I, S, Opt>(words: I, options: Opt) -> impl Iterator> where I: IntoIterator>, S: WordSplitter, Opt: Into>, { let options = options.into(); words.into_iter().flat_map(move |word| { let mut prev = 0; let mut split_points = options.splitter.split_points(&word).into_iter(); std::iter::from_fn(move || { if let Some(idx) = split_points.next() { let need_hyphen = !word[..idx].ends_with('-'); let w = Word { word: &word.word[prev..idx], width: display_width(&word[prev..idx]), whitespace: "", penalty: if need_hyphen { "-" } else { "" }, }; prev = idx; return Some(w); } if prev < word.word.len() || prev == 0 { let w = Word { word: &word.word[prev..], width: display_width(&word[prev..]), whitespace: word.whitespace, penalty: word.penalty, }; prev = word.word.len() + 1; return Some(w); } None }) }) } /// Forcibly break words wider than `line_width` into smaller words. /// /// This simply calls [`Word::break_apart`] on words that are too /// wide. This means that no extra `'-'` is inserted, the word is /// simply broken into smaller pieces. pub fn break_words<'a, I>(words: I, line_width: usize) -> Vec> where I: IntoIterator>, { let mut shortened_words = Vec::new(); for word in words { if word.width() > line_width { shortened_words.extend(word.break_apart(line_width)); } else { shortened_words.push(word); } } shortened_words } /// Wrapping algorithms. /// /// After a text has been broken into [`Fragment`]s, the one now has /// to decide how to break the fragments into lines. The simplest /// algorithm for this is implemented by [`wrap_first_fit`]: it uses /// no look-ahead and simply adds fragments to the line as long as /// they fit. However, this can lead to poor line breaks if a large /// fragment almost-but-not-quite fits on a line. When that happens, /// the fragment is moved to the next line and it will leave behind a /// large gap. A more advanced algorithm, implemented by /// [`wrap_optimal_fit`], will take this into account. The optimal-fit /// algorithm considers all possible line breaks and will attempt to /// minimize the gaps left behind by overly short lines. /// /// While both algorithms run in linear time, the first-fit algorithm /// is about 4 times faster than the optimal-fit algorithm. #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub enum WrapAlgorithm { /// Use an advanced algorithm which considers the entire paragraph /// to find optimal line breaks. Implemented by /// [`wrap_optimal_fit`]. /// /// **Note:** Only available when the `smawk` Cargo feature is /// enabled. #[cfg(feature = "smawk")] OptimalFit, /// Use a fast and simple algorithm with no look-ahead to find /// line breaks. Implemented by [`wrap_first_fit`]. FirstFit, } /// Wrap abstract fragments into lines with a first-fit algorithm. /// /// The `line_widths` map line numbers (starting from 0) to a target /// line width. This can be used to implement hanging indentation. /// /// The fragments must already have been split into the desired /// widths, this function will not (and cannot) attempt to split them /// further when arranging them into lines. /// /// # First-Fit Algorithm /// /// This implements a simple “greedy” algorithm: accumulate fragments /// one by one and when a fragment no longer fits, start a new line. /// There is no look-ahead, we simply take first fit of the fragments /// we find. /// /// While fast and predictable, this algorithm can produce poor line /// breaks when a long fragment is moved to a new line, leaving behind /// a large gap: /// /// ``` /// use textwrap::core::{find_words, wrap_first_fit, Word}; /// /// // Helper to convert wrapped lines to a Vec. /// fn lines_to_strings(lines: Vec<&[Word<'_>]>) -> Vec { /// lines.iter().map(|line| { /// line.iter().map(|word| &**word).collect::>().join(" ") /// }).collect::>() /// } /// /// let text = "These few words will unfortunately not wrap nicely."; /// let words = find_words(text).collect::>(); /// assert_eq!(lines_to_strings(wrap_first_fit(&words, |_| 15)), /// vec!["These few words", /// "will", // <-- short line /// "unfortunately", /// "not wrap", /// "nicely."]); /// /// // We can avoid the short line if we look ahead: /// #[cfg(feature = "smawk")] /// assert_eq!(lines_to_strings(textwrap::core::wrap_optimal_fit(&words, |_| 15)), /// vec!["These few", /// "words will", /// "unfortunately", /// "not wrap", /// "nicely."]); /// ``` /// /// The [`wrap_optimal_fit`] function was used above to get better /// line breaks. It uses an advanced algorithm which tries to avoid /// short lines. This function is about 4 times faster than /// [`wrap_optimal_fit`]. /// /// # Examples /// /// Imagine you're building a house site and you have a number of /// tasks you need to execute. Things like pour foundation, complete /// framing, install plumbing, electric cabling, install insulation. /// /// The construction workers can only work during daytime, so they /// need to pack up everything at night. Because they need to secure /// their tools and move machines back to the garage, this process /// takes much more time than the time it would take them to simply /// switch to another task. /// /// You would like to make a list of tasks to execute every day based /// on your estimates. You can model this with a program like this: /// /// ``` /// use textwrap::core::{wrap_first_fit, Fragment}; /// /// #[derive(Debug)] /// struct Task<'a> { /// name: &'a str, /// hours: usize, // Time needed to complete task. /// sweep: usize, // Time needed for a quick sweep after task during the day. /// cleanup: usize, // Time needed for full cleanup if day ends with this task. /// } /// /// impl Fragment for Task<'_> { /// fn width(&self) -> usize { self.hours } /// fn whitespace_width(&self) -> usize { self.sweep } /// fn penalty_width(&self) -> usize { self.cleanup } /// } /// /// // The morning tasks /// let tasks = vec![ /// Task { name: "Foundation", hours: 4, sweep: 2, cleanup: 3 }, /// Task { name: "Framing", hours: 3, sweep: 1, cleanup: 2 }, /// Task { name: "Plumbing", hours: 2, sweep: 2, cleanup: 2 }, /// Task { name: "Electrical", hours: 2, sweep: 1, cleanup: 2 }, /// Task { name: "Insulation", hours: 2, sweep: 1, cleanup: 2 }, /// Task { name: "Drywall", hours: 3, sweep: 1, cleanup: 2 }, /// Task { name: "Floors", hours: 3, sweep: 1, cleanup: 2 }, /// Task { name: "Countertops", hours: 1, sweep: 1, cleanup: 2 }, /// Task { name: "Bathrooms", hours: 2, sweep: 1, cleanup: 2 }, /// ]; /// /// // Fill tasks into days, taking `day_length` into account. The /// // output shows the hours worked per day along with the names of /// // the tasks for that day. /// fn assign_days<'a>(tasks: &[Task<'a>], day_length: usize) -> Vec<(usize, Vec<&'a str>)> { /// let mut days = Vec::new(); /// // Assign tasks to days. The assignment is a vector of slices, /// // with a slice per day. /// let assigned_days: Vec<&[Task<'a>]> = wrap_first_fit(&tasks, |i| day_length); /// for day in assigned_days.iter() { /// let last = day.last().unwrap(); /// let work_hours: usize = day.iter().map(|t| t.hours + t.sweep).sum(); /// let names = day.iter().map(|t| t.name).collect::>(); /// days.push((work_hours - last.sweep + last.cleanup, names)); /// } /// days /// } /// /// // With a single crew working 8 hours a day: /// assert_eq!( /// assign_days(&tasks, 8), /// [ /// (7, vec!["Foundation"]), /// (8, vec!["Framing", "Plumbing"]), /// (7, vec!["Electrical", "Insulation"]), /// (5, vec!["Drywall"]), /// (7, vec!["Floors", "Countertops"]), /// (4, vec!["Bathrooms"]), /// ] /// ); /// /// // With two crews working in shifts, 16 hours a day: /// assert_eq!( /// assign_days(&tasks, 16), /// [ /// (14, vec!["Foundation", "Framing", "Plumbing"]), /// (15, vec!["Electrical", "Insulation", "Drywall", "Floors"]), /// (6, vec!["Countertops", "Bathrooms"]), /// ] /// ); /// ``` /// /// Apologies to anyone who actually knows how to build a house and /// knows how long each step takes :-) pub fn wrap_first_fit usize>( fragments: &[T], line_widths: F, ) -> Vec<&[T]> { let mut lines = Vec::new(); let mut start = 0; let mut width = 0; for (idx, fragment) in fragments.iter().enumerate() { let line_width = line_widths(lines.len()); if width + fragment.width() + fragment.penalty_width() > line_width && idx > start { lines.push(&fragments[start..idx]); start = idx; width = 0; } width += fragment.width() + fragment.whitespace_width(); } lines.push(&fragments[start..]); lines } #[cfg(test)] mod tests { use super::*; #[cfg(feature = "unicode-width")] use unicode_width::UnicodeWidthChar; // Like assert_eq!, but the left expression is an iterator. macro_rules! assert_iter_eq { ($left:expr, $right:expr) => { assert_eq!($left.collect::>(), $right); }; } #[test] fn skip_ansi_escape_sequence_works() { let blue_text = "\u{1b}[34mHello\u{1b}[0m"; let mut chars = blue_text.chars(); let ch = chars.next().unwrap(); assert!(skip_ansi_escape_sequence(ch, &mut chars)); assert_eq!(chars.next(), Some('H')); } #[test] fn emojis_have_correct_width() { use unic_emoji_char::is_emoji; // Emojis in the Basic Latin (ASCII) and Latin-1 Supplement // blocks all have a width of 1 column. This includes // characters such as '#' and '©'. for ch in '\u{1}'..'\u{FF}' { if is_emoji(ch) { let desc = format!("{:?} U+{:04X}", ch, ch as u32); #[cfg(feature = "unicode-width")] assert_eq!(ch.width().unwrap(), 1, "char: {}", desc); #[cfg(not(feature = "unicode-width"))] assert_eq!(ch_width(ch), 1, "char: {}", desc); } } // Emojis in the remaining blocks of the Basic Multilingual // Plane (BMP), in the Supplementary Multilingual Plane (SMP), // and in the Supplementary Ideographic Plane (SIP), are all 1 // or 2 columns wide when unicode-width is used, and always 2 // columns wide otherwise. This includes all of our favorite // emojis such as 😊. for ch in '\u{FF}'..'\u{2FFFF}' { if is_emoji(ch) { let desc = format!("{:?} U+{:04X}", ch, ch as u32); #[cfg(feature = "unicode-width")] assert!(ch.width().unwrap() <= 2, "char: {}", desc); #[cfg(not(feature = "unicode-width"))] assert_eq!(ch_width(ch), 2, "char: {}", desc); } } // The remaining planes contain almost no assigned code points // and thus also no emojis. } #[test] fn display_width_works() { assert_eq!("Café Plain".len(), 11); // “é” is two bytes assert_eq!(display_width("Café Plain"), 10); assert_eq!(display_width("\u{1b}[31mCafé Rouge\u{1b}[0m"), 10); } #[test] fn display_width_narrow_emojis() { #[cfg(feature = "unicode-width")] assert_eq!(display_width("⁉"), 1); // The ⁉ character is above DOUBLE_WIDTH_CUTOFF. #[cfg(not(feature = "unicode-width"))] assert_eq!(display_width("⁉"), 2); } #[test] fn display_width_narrow_emojis_variant_selector() { #[cfg(feature = "unicode-width")] assert_eq!(display_width("⁉\u{fe0f}"), 1); // The variant selector-16 is also counted. #[cfg(not(feature = "unicode-width"))] assert_eq!(display_width("⁉\u{fe0f}"), 4); } #[test] fn display_width_emojis() { assert_eq!(display_width("😂😭🥺🤣✨😍🙏🥰😊🔥"), 20); } #[test] fn find_words_empty() { assert_iter_eq!(find_words(""), vec![]); } #[test] fn find_words_single_word() { assert_iter_eq!(find_words("foo"), vec![Word::from("foo")]); } #[test] fn find_words_two_words() { assert_iter_eq!( find_words("foo bar"), vec![Word::from("foo "), Word::from("bar")] ); } #[test] fn find_words_multiple_words() { assert_iter_eq!( find_words("foo bar baz"), vec![Word::from("foo "), Word::from("bar "), Word::from("baz")] ); } #[test] fn find_words_whitespace() { assert_iter_eq!(find_words(" "), vec![Word::from(" ")]); } #[test] fn find_words_inter_word_whitespace() { assert_iter_eq!( find_words("foo bar"), vec![Word::from("foo "), Word::from("bar")] ) } #[test] fn find_words_trailing_whitespace() { assert_iter_eq!(find_words("foo "), vec![Word::from("foo ")]); } #[test] fn find_words_leading_whitespace() { assert_iter_eq!( find_words(" foo"), vec![Word::from(" "), Word::from("foo")] ); } #[test] fn find_words_multi_column_char() { assert_iter_eq!( find_words("\u{1f920}"), // cowboy emoji 🤠 vec![Word::from("\u{1f920}")] ); } #[test] fn find_words_hyphens() { assert_iter_eq!(find_words("foo-bar"), vec![Word::from("foo-bar")]); assert_iter_eq!( find_words("foo- bar"), vec![Word::from("foo- "), Word::from("bar")] ); assert_iter_eq!( find_words("foo - bar"), vec![Word::from("foo "), Word::from("- "), Word::from("bar")] ); assert_iter_eq!( find_words("foo -bar"), vec![Word::from("foo "), Word::from("-bar")] ); } #[test] fn split_words_no_words() { assert_iter_eq!(split_words(vec![], 80), vec![]); } #[test] fn split_words_empty_word() { assert_iter_eq!( split_words(vec![Word::from(" ")], 80), vec![Word::from(" ")] ); } #[test] fn split_words_hyphen_splitter() { assert_iter_eq!( split_words(vec![Word::from("foo-bar")], 80), vec![Word::from("foo-"), Word::from("bar")] ); } #[test] fn split_words_short_line() { // Note that `split_words` does not take the line width into // account, that is the job of `break_words`. assert_iter_eq!( split_words(vec![Word::from("foobar")], 3), vec![Word::from("foobar")] ); } #[test] fn split_words_adds_penalty() { #[derive(Debug)] struct FixedSplitPoint; impl WordSplitter for FixedSplitPoint { fn split_points(&self, _: &str) -> Vec { vec![3] } } let options = Options::new(80).splitter(FixedSplitPoint); assert_iter_eq!( split_words(vec![Word::from("foobar")].into_iter(), &options), vec![ Word { word: "foo", width: 3, whitespace: "", penalty: "-" }, Word { word: "bar", width: 3, whitespace: "", penalty: "" } ] ); assert_iter_eq!( split_words(vec![Word::from("fo-bar")].into_iter(), &options), vec![ Word { word: "fo-", width: 3, whitespace: "", penalty: "" }, Word { word: "bar", width: 3, whitespace: "", penalty: "" } ] ); } }