aboutsummaryrefslogtreecommitdiff
path: root/src/device/input.rs
blob: 0d5799eea4cf8411c23cc6626b5ea4f37f1c2d51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//! Driver for VirtIO input devices.

use super::common::Feature;
use crate::hal::Hal;
use crate::queue::VirtQueue;
use crate::transport::Transport;
use crate::volatile::{volread, volwrite, ReadOnly, WriteOnly};
use crate::Result;
use alloc::boxed::Box;
use core::ptr::NonNull;
use zerocopy::{AsBytes, FromBytes, FromZeroes};

/// Virtual human interface devices such as keyboards, mice and tablets.
///
/// An instance of the virtio device represents one such input device.
/// Device behavior mirrors that of the evdev layer in Linux,
/// making pass-through implementations on top of evdev easy.
pub struct VirtIOInput<H: Hal, T: Transport> {
    transport: T,
    event_queue: VirtQueue<H, QUEUE_SIZE>,
    status_queue: VirtQueue<H, QUEUE_SIZE>,
    event_buf: Box<[InputEvent; 32]>,
    config: NonNull<Config>,
}

impl<H: Hal, T: Transport> VirtIOInput<H, T> {
    /// Create a new VirtIO-Input driver.
    pub fn new(mut transport: T) -> Result<Self> {
        let mut event_buf = Box::new([InputEvent::default(); QUEUE_SIZE]);

        let negotiated_features = transport.begin_init(SUPPORTED_FEATURES);

        let config = transport.config_space::<Config>()?;

        let mut event_queue = VirtQueue::new(
            &mut transport,
            QUEUE_EVENT,
            false,
            negotiated_features.contains(Feature::RING_EVENT_IDX),
        )?;
        let status_queue = VirtQueue::new(
            &mut transport,
            QUEUE_STATUS,
            false,
            negotiated_features.contains(Feature::RING_EVENT_IDX),
        )?;
        for (i, event) in event_buf.as_mut().iter_mut().enumerate() {
            // Safe because the buffer lasts as long as the queue.
            let token = unsafe { event_queue.add(&[], &mut [event.as_bytes_mut()])? };
            assert_eq!(token, i as u16);
        }
        if event_queue.should_notify() {
            transport.notify(QUEUE_EVENT);
        }

        transport.finish_init();

        Ok(VirtIOInput {
            transport,
            event_queue,
            status_queue,
            event_buf,
            config,
        })
    }

    /// Acknowledge interrupt and process events.
    pub fn ack_interrupt(&mut self) -> bool {
        self.transport.ack_interrupt()
    }

    /// Pop the pending event.
    pub fn pop_pending_event(&mut self) -> Option<InputEvent> {
        if let Some(token) = self.event_queue.peek_used() {
            let event = &mut self.event_buf[token as usize];
            // Safe because we are passing the same buffer as we passed to `VirtQueue::add` and it
            // is still valid.
            unsafe {
                self.event_queue
                    .pop_used(token, &[], &mut [event.as_bytes_mut()])
                    .ok()?;
            }
            let event_saved = *event;
            // requeue
            // Safe because buffer lasts as long as the queue.
            if let Ok(new_token) = unsafe { self.event_queue.add(&[], &mut [event.as_bytes_mut()]) }
            {
                // This only works because nothing happen between `pop_used` and `add` that affects
                // the list of free descriptors in the queue, so `add` reuses the descriptor which
                // was just freed by `pop_used`.
                assert_eq!(new_token, token);
                if self.event_queue.should_notify() {
                    self.transport.notify(QUEUE_EVENT);
                }
                return Some(event_saved);
            }
        }
        None
    }

    /// Query a specific piece of information by `select` and `subsel`, and write
    /// result to `out`, return the result size.
    pub fn query_config_select(
        &mut self,
        select: InputConfigSelect,
        subsel: u8,
        out: &mut [u8],
    ) -> u8 {
        let size;
        let data;
        // Safe because config points to a valid MMIO region for the config space.
        unsafe {
            volwrite!(self.config, select, select as u8);
            volwrite!(self.config, subsel, subsel);
            size = volread!(self.config, size);
            data = volread!(self.config, data);
        }
        out[..size as usize].copy_from_slice(&data[..size as usize]);
        size
    }
}

impl<H: Hal, T: Transport> Drop for VirtIOInput<H, T> {
    fn drop(&mut self) {
        // Clear any pointers pointing to DMA regions, so the device doesn't try to access them
        // after they have been freed.
        self.transport.queue_unset(QUEUE_EVENT);
        self.transport.queue_unset(QUEUE_STATUS);
    }
}

/// Select value used for [`VirtIOInput::query_config_select()`].
#[repr(u8)]
#[derive(Debug, Clone, Copy)]
pub enum InputConfigSelect {
    /// Returns the name of the device, in u.string. subsel is zero.
    IdName = 0x01,
    /// Returns the serial number of the device, in u.string. subsel is zero.
    IdSerial = 0x02,
    /// Returns ID information of the device, in u.ids. subsel is zero.
    IdDevids = 0x03,
    /// Returns input properties of the device, in u.bitmap. subsel is zero.
    /// Individual bits in the bitmap correspond to INPUT_PROP_* constants used
    /// by the underlying evdev implementation.
    PropBits = 0x10,
    /// subsel specifies the event type using EV_* constants in the underlying
    /// evdev implementation. If size is non-zero the event type is supported
    /// and a bitmap of supported event codes is returned in u.bitmap. Individual
    /// bits in the bitmap correspond to implementation-defined input event codes,
    /// for example keys or pointing device axes.
    EvBits = 0x11,
    /// subsel specifies the absolute axis using ABS_* constants in the underlying
    /// evdev implementation. Information about the axis will be returned in u.abs.
    AbsInfo = 0x12,
}

#[repr(C)]
struct Config {
    select: WriteOnly<u8>,
    subsel: WriteOnly<u8>,
    size: ReadOnly<u8>,
    _reversed: [ReadOnly<u8>; 5],
    data: ReadOnly<[u8; 128]>,
}

#[repr(C)]
#[derive(Debug)]
struct AbsInfo {
    min: u32,
    max: u32,
    fuzz: u32,
    flat: u32,
    res: u32,
}

#[repr(C)]
#[derive(Debug)]
struct DevIDs {
    bustype: u16,
    vendor: u16,
    product: u16,
    version: u16,
}

/// Both queues use the same `virtio_input_event` struct. `type`, `code` and `value`
/// are filled according to the Linux input layer (evdev) interface.
#[repr(C)]
#[derive(AsBytes, Clone, Copy, Debug, Default, FromBytes, FromZeroes)]
pub struct InputEvent {
    /// Event type.
    pub event_type: u16,
    /// Event code.
    pub code: u16,
    /// Event value.
    pub value: u32,
}

const QUEUE_EVENT: u16 = 0;
const QUEUE_STATUS: u16 = 1;
const SUPPORTED_FEATURES: Feature = Feature::RING_EVENT_IDX;

// a parameter that can change
const QUEUE_SIZE: usize = 32;