//! This example shows an example of how to parse an escaped string. The //! rules for the string are similar to JSON and rust. A string is: //! //! - Enclosed by double quotes //! - Can contain any raw unescaped code point besides \ and " //! - Matches the following escape sequences: \b, \f, \n, \r, \t, \", \\, \/ //! - Matches code points like Rust: \u{XXXX}, where XXXX can be up to 6 //! hex characters //! - an escape followed by whitespace consumes all whitespace between the //! escape and the next non-whitespace character use winnow::ascii::multispace1; use winnow::combinator::alt; use winnow::combinator::repeat; use winnow::combinator::{delimited, preceded}; use winnow::error::{FromExternalError, ParserError}; use winnow::prelude::*; use winnow::token::{take_till, take_while}; /// Parse a string. Use a loop of `parse_fragment` and push all of the fragments /// into an output string. pub fn parse_string<'a, E>(input: &mut &'a str) -> PResult where E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, { // Repeat::fold is the equivalent of iterator::fold. It runs a parser in a loop, // and for each output value, calls a folding function on each output value. let build_string = repeat( 0.., // Our parser function – parses a single string fragment parse_fragment, ) .fold( // Our init value, an empty string String::new, // Our folding function. For each fragment, append the fragment to the // string. |mut string, fragment| { match fragment { StringFragment::Literal(s) => string.push_str(s), StringFragment::EscapedChar(c) => string.push(c), StringFragment::EscapedWS => {} } string }, ); // Finally, parse the string. Note that, if `build_string` could accept a raw // " character, the closing delimiter " would never match. When using // `delimited` with a looping parser (like Repeat::fold), be sure that the // loop won't accidentally match your closing delimiter! delimited('"', build_string, '"').parse_next(input) } /// A string fragment contains a fragment of a string being parsed: either /// a non-empty Literal (a series of non-escaped characters), a single /// parsed escaped character, or a block of escaped whitespace. #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum StringFragment<'a> { Literal(&'a str), EscapedChar(char), EscapedWS, } /// Combine `parse_literal`, `parse_escaped_whitespace`, and `parse_escaped_char` /// into a `StringFragment`. fn parse_fragment<'a, E>(input: &mut &'a str) -> PResult, E> where E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, { alt(( // The `map` combinator runs a parser, then applies a function to the output // of that parser. parse_literal.map(StringFragment::Literal), parse_escaped_char.map(StringFragment::EscapedChar), parse_escaped_whitespace.value(StringFragment::EscapedWS), )) .parse_next(input) } /// Parse a non-empty block of text that doesn't include \ or " fn parse_literal<'a, E: ParserError<&'a str>>(input: &mut &'a str) -> PResult<&'a str, E> { // `take_till` parses a string of 0 or more characters that aren't one of the // given characters. let not_quote_slash = take_till(1.., ['"', '\\']); // `verify` runs a parser, then runs a verification function on the output of // the parser. The verification function accepts the output only if it // returns true. In this case, we want to ensure that the output of take_till // is non-empty. not_quote_slash .verify(|s: &str| !s.is_empty()) .parse_next(input) } // parser combinators are constructed from the bottom up: // first we write parsers for the smallest elements (escaped characters), // then combine them into larger parsers. /// Parse an escaped character: \n, \t, \r, \u{00AC}, etc. fn parse_escaped_char<'a, E>(input: &mut &'a str) -> PResult where E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, { preceded( '\\', // `alt` tries each parser in sequence, returning the result of // the first successful match alt(( parse_unicode, // The `value` parser returns a fixed value (the first argument) if its // parser (the second argument) succeeds. In these cases, it looks for // the marker characters (n, r, t, etc) and returns the matching // character (\n, \r, \t, etc). 'n'.value('\n'), 'r'.value('\r'), 't'.value('\t'), 'b'.value('\u{08}'), 'f'.value('\u{0C}'), '\\'.value('\\'), '/'.value('/'), '"'.value('"'), )), ) .parse_next(input) } /// Parse a unicode sequence, of the form u{XXXX}, where XXXX is 1 to 6 /// hexadecimal numerals. We will combine this later with `parse_escaped_char` /// to parse sequences like \u{00AC}. fn parse_unicode<'a, E>(input: &mut &'a str) -> PResult where E: ParserError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, { // `take_while` parses between `m` and `n` bytes (inclusive) that match // a predicate. `parse_hex` here parses between 1 and 6 hexadecimal numerals. let parse_hex = take_while(1..=6, |c: char| c.is_ascii_hexdigit()); // `preceded` takes a prefix parser, and if it succeeds, returns the result // of the body parser. In this case, it parses u{XXXX}. let parse_delimited_hex = preceded( 'u', // `delimited` is like `preceded`, but it parses both a prefix and a suffix. // It returns the result of the middle parser. In this case, it parses // {XXXX}, where XXXX is 1 to 6 hex numerals, and returns XXXX delimited('{', parse_hex, '}'), ); // `try_map` takes the result of a parser and applies a function that returns // a Result. In this case we take the hex bytes from parse_hex and attempt to // convert them to a u32. let parse_u32 = parse_delimited_hex.try_map(move |hex| u32::from_str_radix(hex, 16)); // verify_map is like try_map, but it takes an Option instead of a Result. If // the function returns None, verify_map returns an error. In this case, because // not all u32 values are valid unicode code points, we have to fallibly // convert to char with from_u32. parse_u32.verify_map(std::char::from_u32).parse_next(input) } /// Parse a backslash, followed by any amount of whitespace. This is used later /// to discard any escaped whitespace. fn parse_escaped_whitespace<'a, E: ParserError<&'a str>>( input: &mut &'a str, ) -> PResult<&'a str, E> { preceded('\\', multispace1).parse_next(input) }