aboutsummaryrefslogtreecommitdiff
path: root/src/wrappers.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/wrappers.rs')
-rw-r--r--src/wrappers.rs497
1 files changed, 497 insertions, 0 deletions
diff --git a/src/wrappers.rs b/src/wrappers.rs
new file mode 100644
index 0000000..a0e6ac7
--- /dev/null
+++ b/src/wrappers.rs
@@ -0,0 +1,497 @@
+// Copyright 2023 The Fuchsia Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+use core::{
+ cmp::Ordering,
+ fmt::{self, Debug, Display, Formatter},
+ hash::Hash,
+ mem::{self, ManuallyDrop},
+ ops::{Deref, DerefMut},
+ ptr,
+};
+
+use super::*;
+
+/// A type with no alignment requirement.
+///
+/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
+/// has the same size and bit validity as `T`, but not necessarily the same
+/// alignment [or ABI]. This is useful if a type with an alignment requirement
+/// needs to be read from a chunk of memory which provides no alignment
+/// guarantees.
+///
+/// Since `Unalign` has no alignment requirement, the inner `T` may not be
+/// properly aligned in memory. There are five ways to access the inner `T`:
+/// - by value, using [`get`] or [`into_inner`]
+/// - by reference inside of a callback, using [`update`]
+/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
+/// fail if the `Unalign` does not satisfy `T`'s alignment requirement at
+/// runtime
+/// - unsafely by reference, using [`deref_unchecked`] or
+/// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
+/// the `Unalign` satisfies `T`'s alignment requirement
+/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
+/// [`DerefMut::deref_mut`]
+///
+/// [or ABI]: https://github.com/google/zerocopy/issues/164
+/// [`get`]: Unalign::get
+/// [`into_inner`]: Unalign::into_inner
+/// [`update`]: Unalign::update
+/// [`try_deref`]: Unalign::try_deref
+/// [`try_deref_mut`]: Unalign::try_deref_mut
+/// [`deref_unchecked`]: Unalign::deref_unchecked
+/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
+// NOTE: This type is sound to use with types that need to be dropped. The
+// reason is that the compiler-generated drop code automatically moves all
+// values to aligned memory slots before dropping them in-place. This is not
+// well-documented, but it's hinted at in places like [1] and [2]. However, this
+// also means that `T` must be `Sized`; unless something changes, we can never
+// support unsized `T`. [3]
+//
+// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
+// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
+// [3] https://github.com/google/zerocopy/issues/209
+#[allow(missing_debug_implementations)]
+#[derive(Default, Copy)]
+#[cfg_attr(any(feature = "derive", test), derive(FromZeroes, FromBytes, AsBytes, Unaligned))]
+#[repr(C, packed)]
+pub struct Unalign<T>(T);
+
+safety_comment! {
+ /// SAFETY:
+ /// - `Unalign<T>` is `repr(packed)`, so it is unaligned regardless of the
+ /// alignment of `T`, and so we don't require that `T: Unaligned`
+ /// - `Unalign<T>` has the same bit validity as `T`, and so it is
+ /// `FromZeroes`, `FromBytes`, or `AsBytes` exactly when `T` is as well.
+ impl_or_verify!(T => Unaligned for Unalign<T>);
+ impl_or_verify!(T: FromZeroes => FromZeroes for Unalign<T>);
+ impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
+ impl_or_verify!(T: AsBytes => AsBytes for Unalign<T>);
+}
+
+// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
+// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
+// is not sufficient to implement `Clone` for `Unalign`.
+impl<T: Copy> Clone for Unalign<T> {
+ #[inline(always)]
+ fn clone(&self) -> Unalign<T> {
+ *self
+ }
+}
+
+impl<T> Unalign<T> {
+ /// Constructs a new `Unalign`.
+ #[inline(always)]
+ pub const fn new(val: T) -> Unalign<T> {
+ Unalign(val)
+ }
+
+ /// Consumes `self`, returning the inner `T`.
+ #[inline(always)]
+ pub const fn into_inner(self) -> T {
+ // Use this instead of `mem::transmute` since the latter can't tell
+ // that `Unalign<T>` and `T` have the same size.
+ #[repr(C)]
+ union Transmute<T> {
+ u: ManuallyDrop<Unalign<T>>,
+ t: ManuallyDrop<T>,
+ }
+
+ // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same
+ // layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same
+ // layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout
+ // as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t`
+ // and `u` fields both start at the same offset (namely, 0) within the
+ // union.
+ //
+ // We do this instead of just destructuring in order to prevent
+ // `Unalign`'s `Drop::drop` from being run, since dropping is not
+ // supported in `const fn`s.
+ //
+ // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
+ // instead of using unsafe.
+ unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) }
+ }
+
+ /// Attempts to return a reference to the wrapped `T`, failing if `self` is
+ /// not properly aligned.
+ ///
+ /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
+ /// return a reference to the wrapped `T`, and `try_deref` returns `None`.
+ ///
+ /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
+ /// may prefer [`Deref::deref`], which is infallible.
+ #[inline(always)]
+ pub fn try_deref(&self) -> Option<&T> {
+ if !crate::util::aligned_to::<_, T>(self) {
+ return None;
+ }
+
+ // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
+ // aligned to `align_of::<T>()`, which we just checked.
+ unsafe { Some(self.deref_unchecked()) }
+ }
+
+ /// Attempts to return a mutable reference to the wrapped `T`, failing if
+ /// `self` is not properly aligned.
+ ///
+ /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
+ /// return a reference to the wrapped `T`, and `try_deref_mut` returns
+ /// `None`.
+ ///
+ /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
+ /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
+ #[inline(always)]
+ pub fn try_deref_mut(&mut self) -> Option<&mut T> {
+ if !crate::util::aligned_to::<_, T>(&*self) {
+ return None;
+ }
+
+ // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
+ // aligned to `align_of::<T>()`, which we just checked.
+ unsafe { Some(self.deref_mut_unchecked()) }
+ }
+
+ /// Returns a reference to the wrapped `T` without checking alignment.
+ ///
+ /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
+ /// may prefer [`Deref::deref`], which is safe.
+ ///
+ /// # Safety
+ ///
+ /// If `self` does not satisfy `mem::align_of::<T>()`, then
+ /// `self.deref_unchecked()` may cause undefined behavior.
+ #[inline(always)]
+ pub const unsafe fn deref_unchecked(&self) -> &T {
+ // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
+ // at the same memory location as `self`. It has no alignment guarantee,
+ // but the caller has promised that `self` is properly aligned, so we
+ // know that it is sound to create a reference to `T` at this memory
+ // location.
+ //
+ // We use `mem::transmute` instead of `&*self.get_ptr()` because
+ // dereferencing pointers is not stable in `const` on our current MSRV
+ // (1.56 as of this writing).
+ unsafe { mem::transmute(self) }
+ }
+
+ /// Returns a mutable reference to the wrapped `T` without checking
+ /// alignment.
+ ///
+ /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
+ /// callers may prefer [`DerefMut::deref_mut`], which is safe.
+ ///
+ /// # Safety
+ ///
+ /// If `self` does not satisfy `mem::align_of::<T>()`, then
+ /// `self.deref_mut_unchecked()` may cause undefined behavior.
+ #[inline(always)]
+ pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
+ // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
+ // the same memory location as `self`. It has no alignment guarantee,
+ // but the caller has promised that `self` is properly aligned, so we
+ // know that the pointer itself is aligned, and thus that it is sound to
+ // create a reference to a `T` at this memory location.
+ unsafe { &mut *self.get_mut_ptr() }
+ }
+
+ /// Gets an unaligned raw pointer to the inner `T`.
+ ///
+ /// # Safety
+ ///
+ /// The returned raw pointer is not necessarily aligned to
+ /// `align_of::<T>()`. Most functions which operate on raw pointers require
+ /// those pointers to be aligned, so calling those functions with the result
+ /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
+ /// using some out-of-band mechanism. In general, the only functions which
+ /// are safe to call with this pointer are those which are explicitly
+ /// documented as being sound to use with an unaligned pointer, such as
+ /// [`read_unaligned`].
+ ///
+ /// [`read_unaligned`]: core::ptr::read_unaligned
+ #[inline(always)]
+ pub const fn get_ptr(&self) -> *const T {
+ ptr::addr_of!(self.0)
+ }
+
+ /// Gets an unaligned mutable raw pointer to the inner `T`.
+ ///
+ /// # Safety
+ ///
+ /// The returned raw pointer is not necessarily aligned to
+ /// `align_of::<T>()`. Most functions which operate on raw pointers require
+ /// those pointers to be aligned, so calling those functions with the result
+ /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
+ /// using some out-of-band mechanism. In general, the only functions which
+ /// are safe to call with this pointer are those which are explicitly
+ /// documented as being sound to use with an unaligned pointer, such as
+ /// [`read_unaligned`].
+ ///
+ /// [`read_unaligned`]: core::ptr::read_unaligned
+ // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
+ #[inline(always)]
+ pub fn get_mut_ptr(&mut self) -> *mut T {
+ ptr::addr_of_mut!(self.0)
+ }
+
+ /// Sets the inner `T`, dropping the previous value.
+ // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
+ #[inline(always)]
+ pub fn set(&mut self, t: T) {
+ *self = Unalign::new(t);
+ }
+
+ /// Updates the inner `T` by calling a function on it.
+ ///
+ /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
+ /// impl should be preferred over this method when performing updates, as it
+ /// will usually be faster and more ergonomic.
+ ///
+ /// For large types, this method may be expensive, as it requires copying
+ /// `2 * size_of::<T>()` bytes. \[1\]
+ ///
+ /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
+ /// invoke `f` on it directly. Instead, `update` moves it into a
+ /// properly-aligned location in the local stack frame, calls `f` on it, and
+ /// then moves it back to its original location in `self`.
+ ///
+ /// [`T: Unaligned`]: Unaligned
+ #[inline]
+ pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
+ // On drop, this moves `copy` out of itself and uses `ptr::write` to
+ // overwrite `slf`.
+ struct WriteBackOnDrop<T> {
+ copy: ManuallyDrop<T>,
+ slf: *mut Unalign<T>,
+ }
+
+ impl<T> Drop for WriteBackOnDrop<T> {
+ fn drop(&mut self) {
+ // SAFETY: See inline comments.
+ unsafe {
+ // SAFETY: We never use `copy` again as required by
+ // `ManuallyDrop::take`.
+ let copy = ManuallyDrop::take(&mut self.copy);
+ // SAFETY: `slf` is the raw pointer value of `self`. We know
+ // it is valid for writes and properly aligned because
+ // `self` is a mutable reference, which guarantees both of
+ // these properties.
+ ptr::write(self.slf, Unalign::new(copy));
+ }
+ }
+ }
+
+ // SAFETY: We know that `self` is valid for reads, properly aligned, and
+ // points to an initialized `Unalign<T>` because it is a mutable
+ // reference, which guarantees all of these properties.
+ //
+ // Since `T: !Copy`, it would be unsound in the general case to allow
+ // both the original `Unalign<T>` and the copy to be used by safe code.
+ // We guarantee that the copy is used to overwrite the original in the
+ // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
+ // called before any other safe code executes, soundness is upheld.
+ // While this method can terminate in two ways (by returning normally or
+ // by unwinding due to a panic in `f`), in both cases, `write_back` is
+ // dropped - and its `drop` called - before any other safe code can
+ // execute.
+ let copy = unsafe { ptr::read(self) }.into_inner();
+ let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
+
+ let ret = f(&mut write_back.copy);
+
+ drop(write_back);
+ ret
+ }
+}
+
+impl<T: Copy> Unalign<T> {
+ /// Gets a copy of the inner `T`.
+ // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
+ #[inline(always)]
+ pub fn get(&self) -> T {
+ let Unalign(val) = *self;
+ val
+ }
+}
+
+impl<T: Unaligned> Deref for Unalign<T> {
+ type Target = T;
+
+ #[inline(always)]
+ fn deref(&self) -> &T {
+ // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
+ // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
+ // `align_of::<T>() == 1`, and all pointers are one-aligned because all
+ // addresses are divisible by 1.
+ unsafe { self.deref_unchecked() }
+ }
+}
+
+impl<T: Unaligned> DerefMut for Unalign<T> {
+ #[inline(always)]
+ fn deref_mut(&mut self) -> &mut T {
+ // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
+ // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
+ // `align_of::<T>() == 1`, and all pointers are one-aligned because all
+ // addresses are divisible by 1.
+ unsafe { self.deref_mut_unchecked() }
+ }
+}
+
+impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
+ #[inline(always)]
+ fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
+ PartialOrd::partial_cmp(self.deref(), other.deref())
+ }
+}
+
+impl<T: Unaligned + Ord> Ord for Unalign<T> {
+ #[inline(always)]
+ fn cmp(&self, other: &Unalign<T>) -> Ordering {
+ Ord::cmp(self.deref(), other.deref())
+ }
+}
+
+impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
+ #[inline(always)]
+ fn eq(&self, other: &Unalign<T>) -> bool {
+ PartialEq::eq(self.deref(), other.deref())
+ }
+}
+
+impl<T: Unaligned + Eq> Eq for Unalign<T> {}
+
+impl<T: Unaligned + Hash> Hash for Unalign<T> {
+ #[inline(always)]
+ fn hash<H>(&self, state: &mut H)
+ where
+ H: Hasher,
+ {
+ self.deref().hash(state);
+ }
+}
+
+impl<T: Unaligned + Debug> Debug for Unalign<T> {
+ #[inline(always)]
+ fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
+ Debug::fmt(self.deref(), f)
+ }
+}
+
+impl<T: Unaligned + Display> Display for Unalign<T> {
+ #[inline(always)]
+ fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
+ Display::fmt(self.deref(), f)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use core::panic::AssertUnwindSafe;
+
+ use super::*;
+ use crate::util::testutil::*;
+
+ /// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
+ ///
+ /// It must be the case that `align_of::<T>() < align_of::<A>()` in order
+ /// fot this type to work properly.
+ #[repr(C)]
+ struct ForceUnalign<T, A> {
+ // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
+ // placed at the minimum offset that guarantees its alignment. If
+ // `align_of::<T>() < align_of::<A>()`, then that offset will be
+ // guaranteed *not* to satisfy `align_of::<A>()`.
+ _u: u8,
+ t: T,
+ _a: [A; 0],
+ }
+
+ impl<T, A> ForceUnalign<T, A> {
+ const fn new(t: T) -> ForceUnalign<T, A> {
+ ForceUnalign { _u: 0, t, _a: [] }
+ }
+ }
+
+ #[test]
+ fn test_unalign() {
+ // Test methods that don't depend on alignment.
+ let mut u = Unalign::new(AU64(123));
+ assert_eq!(u.get(), AU64(123));
+ assert_eq!(u.into_inner(), AU64(123));
+ assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
+ assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
+ u.set(AU64(321));
+ assert_eq!(u.get(), AU64(321));
+
+ // Test methods that depend on alignment (when alignment is satisfied).
+ let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
+ assert_eq!(u.t.try_deref(), Some(&AU64(123)));
+ assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123)));
+ // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
+ assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
+ // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
+ assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
+ *u.t.try_deref_mut().unwrap() = AU64(321);
+ assert_eq!(u.t.get(), AU64(321));
+
+ // Test methods that depend on alignment (when alignment is not
+ // satisfied).
+ let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
+ assert_eq!(u.t.try_deref(), None);
+ assert_eq!(u.t.try_deref_mut(), None);
+
+ // Test methods that depend on `T: Unaligned`.
+ let mut u = Unalign::new(123u8);
+ assert_eq!(u.try_deref(), Some(&123));
+ assert_eq!(u.try_deref_mut(), Some(&mut 123));
+ assert_eq!(u.deref(), &123);
+ assert_eq!(u.deref_mut(), &mut 123);
+ *u = 21;
+ assert_eq!(u.get(), 21);
+
+ // Test that some `Unalign` functions and methods are `const`.
+ const _UNALIGN: Unalign<u64> = Unalign::new(0);
+ const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
+ const _U64: u64 = _UNALIGN.into_inner();
+ // Make sure all code is considered "used".
+ //
+ // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
+ // attribute.
+ #[allow(dead_code)]
+ const _: () = {
+ let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
+ // Make sure that `deref_unchecked` is `const`.
+ //
+ // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
+ let au64 = unsafe { x.t.deref_unchecked() };
+ match au64 {
+ AU64(123) => {}
+ _ => unreachable!(),
+ }
+ };
+ }
+
+ #[test]
+ fn test_unalign_update() {
+ let mut u = Unalign::new(AU64(123));
+ u.update(|a| a.0 += 1);
+ assert_eq!(u.get(), AU64(124));
+
+ // Test that, even if the callback panics, the original is still
+ // correctly overwritten. Use a `Box` so that Miri is more likely to
+ // catch any unsoundness (which would likely result in two `Box`es for
+ // the same heap object, which is the sort of thing that Miri would
+ // probably catch).
+ let mut u = Unalign::new(Box::new(AU64(123)));
+ let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
+ u.update(|a| {
+ a.0 += 1;
+ panic!();
+ })
+ }));
+ assert!(res.is_err());
+ assert_eq!(u.into_inner(), Box::new(AU64(124)));
+ }
+}