use crate::gen::block::Block; use crate::gen::nested::NamespaceEntries; use crate::gen::out::OutFile; use crate::gen::{builtin, include, Opt}; use crate::syntax::atom::Atom::{self, *}; use crate::syntax::instantiate::{ImplKey, NamedImplKey}; use crate::syntax::map::UnorderedMap as Map; use crate::syntax::set::UnorderedSet; use crate::syntax::symbol::{self, Symbol}; use crate::syntax::trivial::{self, TrivialReason}; use crate::syntax::{ derive, mangle, Api, Doc, Enum, EnumRepr, ExternFn, ExternType, Pair, Signature, Struct, Trait, Type, TypeAlias, Types, Var, }; use proc_macro2::Ident; pub(super) fn gen(apis: &[Api], types: &Types, opt: &Opt, header: bool) -> Vec { let mut out_file = OutFile::new(header, opt, types); let out = &mut out_file; pick_includes_and_builtins(out, apis); out.include.extend(&opt.include); write_forward_declarations(out, apis); write_data_structures(out, apis); write_functions(out, apis); write_generic_instantiations(out); builtin::write(out); include::write(out); out_file.content() } fn write_forward_declarations(out: &mut OutFile, apis: &[Api]) { let needs_forward_declaration = |api: &&Api| match api { Api::Struct(_) | Api::CxxType(_) | Api::RustType(_) => true, Api::Enum(enm) => !out.types.cxx.contains(&enm.name.rust), _ => false, }; let apis_by_namespace = NamespaceEntries::new(apis.iter().filter(needs_forward_declaration).collect()); write(out, &apis_by_namespace, 0); fn write(out: &mut OutFile, ns_entries: &NamespaceEntries, indent: usize) { let apis = ns_entries.direct_content(); for api in apis { write!(out, "{:1$}", "", indent); match api { Api::Struct(strct) => write_struct_decl(out, &strct.name), Api::Enum(enm) => write_enum_decl(out, enm), Api::CxxType(ety) => write_struct_using(out, &ety.name), Api::RustType(ety) => write_struct_decl(out, &ety.name), _ => unreachable!(), } } for (namespace, nested_ns_entries) in ns_entries.nested_content() { writeln!(out, "{:2$}namespace {} {{", "", namespace, indent); write(out, nested_ns_entries, indent + 2); writeln!(out, "{:1$}}}", "", indent); } } } fn write_data_structures<'a>(out: &mut OutFile<'a>, apis: &'a [Api]) { let mut methods_for_type = Map::new(); for api in apis { if let Api::CxxFunction(efn) | Api::RustFunction(efn) = api { if let Some(receiver) = &efn.sig.receiver { methods_for_type .entry(&receiver.ty.rust) .or_insert_with(Vec::new) .push(efn); } } } let mut structs_written = UnorderedSet::new(); let mut toposorted_structs = out.types.toposorted_structs.iter(); for api in apis { match api { Api::Struct(strct) if !structs_written.contains(&strct.name.rust) => { for next in &mut toposorted_structs { if !out.types.cxx.contains(&next.name.rust) { out.next_section(); let methods = methods_for_type .get(&next.name.rust) .map(Vec::as_slice) .unwrap_or_default(); write_struct(out, next, methods); } structs_written.insert(&next.name.rust); if next.name.rust == strct.name.rust { break; } } } Api::Enum(enm) => { out.next_section(); if !out.types.cxx.contains(&enm.name.rust) { write_enum(out, enm); } else if !enm.variants_from_header { check_enum(out, enm); } } Api::RustType(ety) => { out.next_section(); let methods = methods_for_type .get(&ety.name.rust) .map(Vec::as_slice) .unwrap_or_default(); write_opaque_type(out, ety, methods); } _ => {} } } if out.header { return; } out.set_namespace(Default::default()); out.next_section(); for api in apis { if let Api::TypeAlias(ety) = api { if let Some(reasons) = out.types.required_trivial.get(&ety.name.rust) { check_trivial_extern_type(out, ety, reasons); } } } } fn write_functions<'a>(out: &mut OutFile<'a>, apis: &'a [Api]) { if !out.header { for api in apis { match api { Api::Struct(strct) => write_struct_operator_decls(out, strct), Api::RustType(ety) => write_opaque_type_layout_decls(out, ety), Api::CxxFunction(efn) => write_cxx_function_shim(out, efn), Api::RustFunction(efn) => write_rust_function_decl(out, efn), _ => {} } } write_std_specializations(out, apis); } for api in apis { match api { Api::Struct(strct) => write_struct_operators(out, strct), Api::RustType(ety) => write_opaque_type_layout(out, ety), Api::RustFunction(efn) => { out.next_section(); write_rust_function_shim(out, efn); } _ => {} } } } fn write_std_specializations(out: &mut OutFile, apis: &[Api]) { out.set_namespace(Default::default()); out.begin_block(Block::Namespace("std")); for api in apis { if let Api::Struct(strct) = api { if derive::contains(&strct.derives, Trait::Hash) { out.next_section(); out.include.cstddef = true; out.include.functional = true; let qualified = strct.name.to_fully_qualified(); writeln!(out, "template <> struct hash<{}> {{", qualified); writeln!( out, " ::std::size_t operator()({} const &self) const noexcept {{", qualified, ); let link_name = mangle::operator(&strct.name, "hash"); write!(out, " return ::"); for name in &strct.name.namespace { write!(out, "{}::", name); } writeln!(out, "{}(self);", link_name); writeln!(out, " }}"); writeln!(out, "}};"); } } } out.end_block(Block::Namespace("std")); } fn pick_includes_and_builtins(out: &mut OutFile, apis: &[Api]) { for api in apis { if let Api::Include(include) = api { out.include.insert(include); } } for ty in out.types { match ty { Type::Ident(ident) => match Atom::from(&ident.rust) { Some(U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64) => out.include.cstdint = true, Some(Usize) => out.include.cstddef = true, Some(Isize) => out.builtin.rust_isize = true, Some(CxxString) => out.include.string = true, Some(RustString) => out.builtin.rust_string = true, Some(Bool | Char | F32 | F64) | None => {} }, Type::RustBox(_) => out.builtin.rust_box = true, Type::RustVec(_) => out.builtin.rust_vec = true, Type::UniquePtr(_) => out.include.memory = true, Type::SharedPtr(_) | Type::WeakPtr(_) => out.include.memory = true, Type::Str(_) => out.builtin.rust_str = true, Type::CxxVector(_) => out.include.vector = true, Type::Fn(_) => out.builtin.rust_fn = true, Type::SliceRef(_) => out.builtin.rust_slice = true, Type::Array(_) => out.include.array = true, Type::Ref(_) | Type::Void(_) | Type::Ptr(_) => {} } } } fn write_doc(out: &mut OutFile, indent: &str, doc: &Doc) { let mut lines = 0; for line in doc.to_string().lines() { if out.opt.doxygen { writeln!(out, "{}///{}", indent, line); } else { writeln!(out, "{}//{}", indent, line); } lines += 1; } // According to https://www.doxygen.nl/manual/docblocks.html, Doxygen only // interprets `///` as a Doxygen comment block if there are at least 2 of // them. In Rust, a single `///` is definitely still documentation so we // make sure to propagate that as a Doxygen comment. if out.opt.doxygen && lines == 1 { writeln!(out, "{}///", indent); } } fn write_struct<'a>(out: &mut OutFile<'a>, strct: &'a Struct, methods: &[&ExternFn]) { let operator_eq = derive::contains(&strct.derives, Trait::PartialEq); let operator_ord = derive::contains(&strct.derives, Trait::PartialOrd); out.set_namespace(&strct.name.namespace); let guard = format!("CXXBRIDGE1_STRUCT_{}", strct.name.to_symbol()); writeln!(out, "#ifndef {}", guard); writeln!(out, "#define {}", guard); write_doc(out, "", &strct.doc); writeln!(out, "struct {} final {{", strct.name.cxx); for field in &strct.fields { write_doc(out, " ", &field.doc); write!(out, " "); write_type_space(out, &field.ty); writeln!(out, "{};", field.name.cxx); } out.next_section(); for method in methods { if !method.doc.is_empty() { out.next_section(); } write_doc(out, " ", &method.doc); write!(out, " "); let sig = &method.sig; let local_name = method.name.cxx.to_string(); let indirect_call = false; write_rust_function_shim_decl(out, &local_name, sig, indirect_call); writeln!(out, ";"); if !method.doc.is_empty() { out.next_section(); } } if operator_eq { writeln!( out, " bool operator==({} const &) const noexcept;", strct.name.cxx, ); writeln!( out, " bool operator!=({} const &) const noexcept;", strct.name.cxx, ); } if operator_ord { writeln!( out, " bool operator<({} const &) const noexcept;", strct.name.cxx, ); writeln!( out, " bool operator<=({} const &) const noexcept;", strct.name.cxx, ); writeln!( out, " bool operator>({} const &) const noexcept;", strct.name.cxx, ); writeln!( out, " bool operator>=({} const &) const noexcept;", strct.name.cxx, ); } out.include.type_traits = true; writeln!(out, " using IsRelocatable = ::std::true_type;"); writeln!(out, "}};"); writeln!(out, "#endif // {}", guard); } fn write_struct_decl(out: &mut OutFile, ident: &Pair) { writeln!(out, "struct {};", ident.cxx); } fn write_enum_decl(out: &mut OutFile, enm: &Enum) { let repr = match &enm.repr { #[cfg(feature = "experimental-enum-variants-from-header")] EnumRepr::Foreign { .. } => return, EnumRepr::Native { atom, .. } => *atom, }; write!(out, "enum class {} : ", enm.name.cxx); write_atom(out, repr); writeln!(out, ";"); } fn write_struct_using(out: &mut OutFile, ident: &Pair) { writeln!(out, "using {} = {};", ident.cxx, ident.to_fully_qualified()); } fn write_opaque_type<'a>(out: &mut OutFile<'a>, ety: &'a ExternType, methods: &[&ExternFn]) { out.set_namespace(&ety.name.namespace); let guard = format!("CXXBRIDGE1_STRUCT_{}", ety.name.to_symbol()); writeln!(out, "#ifndef {}", guard); writeln!(out, "#define {}", guard); write_doc(out, "", &ety.doc); out.builtin.opaque = true; writeln!( out, "struct {} final : public ::rust::Opaque {{", ety.name.cxx, ); for (i, method) in methods.iter().enumerate() { if i > 0 && !method.doc.is_empty() { out.next_section(); } write_doc(out, " ", &method.doc); write!(out, " "); let sig = &method.sig; let local_name = method.name.cxx.to_string(); let indirect_call = false; write_rust_function_shim_decl(out, &local_name, sig, indirect_call); writeln!(out, ";"); if !method.doc.is_empty() { out.next_section(); } } writeln!(out, " ~{}() = delete;", ety.name.cxx); writeln!(out); out.builtin.layout = true; out.include.cstddef = true; writeln!(out, "private:"); writeln!(out, " friend ::rust::layout;"); writeln!(out, " struct layout {{"); writeln!(out, " static ::std::size_t size() noexcept;"); writeln!(out, " static ::std::size_t align() noexcept;"); writeln!(out, " }};"); writeln!(out, "}};"); writeln!(out, "#endif // {}", guard); } fn write_enum<'a>(out: &mut OutFile<'a>, enm: &'a Enum) { let repr = match &enm.repr { #[cfg(feature = "experimental-enum-variants-from-header")] EnumRepr::Foreign { .. } => return, EnumRepr::Native { atom, .. } => *atom, }; out.set_namespace(&enm.name.namespace); let guard = format!("CXXBRIDGE1_ENUM_{}", enm.name.to_symbol()); writeln!(out, "#ifndef {}", guard); writeln!(out, "#define {}", guard); write_doc(out, "", &enm.doc); write!(out, "enum class {} : ", enm.name.cxx); write_atom(out, repr); writeln!(out, " {{"); for variant in &enm.variants { write_doc(out, " ", &variant.doc); writeln!(out, " {} = {},", variant.name.cxx, variant.discriminant); } writeln!(out, "}};"); writeln!(out, "#endif // {}", guard); } fn check_enum<'a>(out: &mut OutFile<'a>, enm: &'a Enum) { let repr = match &enm.repr { #[cfg(feature = "experimental-enum-variants-from-header")] EnumRepr::Foreign { .. } => return, EnumRepr::Native { atom, .. } => *atom, }; out.set_namespace(&enm.name.namespace); out.include.type_traits = true; writeln!( out, "static_assert(::std::is_enum<{}>::value, \"expected enum\");", enm.name.cxx, ); write!(out, "static_assert(sizeof({}) == sizeof(", enm.name.cxx); write_atom(out, repr); writeln!(out, "), \"incorrect size\");"); for variant in &enm.variants { write!(out, "static_assert(static_cast<"); write_atom(out, repr); writeln!( out, ">({}::{}) == {}, \"disagrees with the value in #[cxx::bridge]\");", enm.name.cxx, variant.name.cxx, variant.discriminant, ); } } fn check_trivial_extern_type(out: &mut OutFile, alias: &TypeAlias, reasons: &[TrivialReason]) { // NOTE: The following static assertion is just nice-to-have and not // necessary for soundness. That's because triviality is always declared by // the user in the form of an unsafe impl of cxx::ExternType: // // unsafe impl ExternType for MyType { // type Id = cxx::type_id!("..."); // type Kind = cxx::kind::Trivial; // } // // Since the user went on the record with their unsafe impl to unsafely // claim they KNOW that the type is trivial, it's fine for that to be on // them if that were wrong. However, in practice correctly reasoning about // the relocatability of C++ types is challenging, particularly if the type // definition were to change over time, so for now we add this check. // // There may be legitimate reasons to opt out of this assertion for support // of types that the programmer knows are soundly Rust-movable despite not // being recognized as such by the C++ type system due to a move constructor // or destructor. To opt out of the relocatability check, they need to do // one of the following things in any header used by `include!` in their // bridge. // // --- if they define the type: // struct MyType { // ... // + using IsRelocatable = std::true_type; // }; // // --- otherwise: // + template <> // + struct rust::IsRelocatable : std::true_type {}; // let id = alias.name.to_fully_qualified(); out.builtin.relocatable = true; writeln!(out, "static_assert("); if reasons .iter() .all(|r| matches!(r, TrivialReason::StructField(_) | TrivialReason::VecElement)) { // If the type is only used as a struct field or Vec element, not as // by-value function argument or return value, then C array of trivially // relocatable type is also permissible. // // --- means something sane: // struct T { char buf[N]; }; // // --- means something totally different: // void f(char buf[N]); // out.builtin.relocatable_or_array = true; writeln!(out, " ::rust::IsRelocatableOrArray<{}>::value,", id); } else { writeln!(out, " ::rust::IsRelocatable<{}>::value,", id); } writeln!( out, " \"type {} should be trivially move constructible and trivially destructible in C++ to be used as {} in Rust\");", id.trim_start_matches("::"), trivial::as_what(&alias.name, reasons), ); } fn write_struct_operator_decls<'a>(out: &mut OutFile<'a>, strct: &'a Struct) { out.set_namespace(&strct.name.namespace); out.begin_block(Block::ExternC); if derive::contains(&strct.derives, Trait::PartialEq) { let link_name = mangle::operator(&strct.name, "eq"); writeln!( out, "bool {}({1} const &, {1} const &) noexcept;", link_name, strct.name.cxx, ); if !derive::contains(&strct.derives, Trait::Eq) { let link_name = mangle::operator(&strct.name, "ne"); writeln!( out, "bool {}({1} const &, {1} const &) noexcept;", link_name, strct.name.cxx, ); } } if derive::contains(&strct.derives, Trait::PartialOrd) { let link_name = mangle::operator(&strct.name, "lt"); writeln!( out, "bool {}({1} const &, {1} const &) noexcept;", link_name, strct.name.cxx, ); let link_name = mangle::operator(&strct.name, "le"); writeln!( out, "bool {}({1} const &, {1} const &) noexcept;", link_name, strct.name.cxx, ); if !derive::contains(&strct.derives, Trait::Ord) { let link_name = mangle::operator(&strct.name, "gt"); writeln!( out, "bool {}({1} const &, {1} const &) noexcept;", link_name, strct.name.cxx, ); let link_name = mangle::operator(&strct.name, "ge"); writeln!( out, "bool {}({1} const &, {1} const &) noexcept;", link_name, strct.name.cxx, ); } } if derive::contains(&strct.derives, Trait::Hash) { out.include.cstddef = true; let link_name = mangle::operator(&strct.name, "hash"); writeln!( out, "::std::size_t {}({} const &) noexcept;", link_name, strct.name.cxx, ); } out.end_block(Block::ExternC); } fn write_struct_operators<'a>(out: &mut OutFile<'a>, strct: &'a Struct) { if out.header { return; } out.set_namespace(&strct.name.namespace); if derive::contains(&strct.derives, Trait::PartialEq) { out.next_section(); writeln!( out, "bool {0}::operator==({0} const &rhs) const noexcept {{", strct.name.cxx, ); let link_name = mangle::operator(&strct.name, "eq"); writeln!(out, " return {}(*this, rhs);", link_name); writeln!(out, "}}"); out.next_section(); writeln!( out, "bool {0}::operator!=({0} const &rhs) const noexcept {{", strct.name.cxx, ); if derive::contains(&strct.derives, Trait::Eq) { writeln!(out, " return !(*this == rhs);"); } else { let link_name = mangle::operator(&strct.name, "ne"); writeln!(out, " return {}(*this, rhs);", link_name); } writeln!(out, "}}"); } if derive::contains(&strct.derives, Trait::PartialOrd) { out.next_section(); writeln!( out, "bool {0}::operator<({0} const &rhs) const noexcept {{", strct.name.cxx, ); let link_name = mangle::operator(&strct.name, "lt"); writeln!(out, " return {}(*this, rhs);", link_name); writeln!(out, "}}"); out.next_section(); writeln!( out, "bool {0}::operator<=({0} const &rhs) const noexcept {{", strct.name.cxx, ); let link_name = mangle::operator(&strct.name, "le"); writeln!(out, " return {}(*this, rhs);", link_name); writeln!(out, "}}"); out.next_section(); writeln!( out, "bool {0}::operator>({0} const &rhs) const noexcept {{", strct.name.cxx, ); if derive::contains(&strct.derives, Trait::Ord) { writeln!(out, " return !(*this <= rhs);"); } else { let link_name = mangle::operator(&strct.name, "gt"); writeln!(out, " return {}(*this, rhs);", link_name); } writeln!(out, "}}"); out.next_section(); writeln!( out, "bool {0}::operator>=({0} const &rhs) const noexcept {{", strct.name.cxx, ); if derive::contains(&strct.derives, Trait::Ord) { writeln!(out, " return !(*this < rhs);"); } else { let link_name = mangle::operator(&strct.name, "ge"); writeln!(out, " return {}(*this, rhs);", link_name); } writeln!(out, "}}"); } } fn write_opaque_type_layout_decls<'a>(out: &mut OutFile<'a>, ety: &'a ExternType) { out.set_namespace(&ety.name.namespace); out.begin_block(Block::ExternC); let link_name = mangle::operator(&ety.name, "sizeof"); writeln!(out, "::std::size_t {}() noexcept;", link_name); let link_name = mangle::operator(&ety.name, "alignof"); writeln!(out, "::std::size_t {}() noexcept;", link_name); out.end_block(Block::ExternC); } fn write_opaque_type_layout<'a>(out: &mut OutFile<'a>, ety: &'a ExternType) { if out.header { return; } out.set_namespace(&ety.name.namespace); out.next_section(); let link_name = mangle::operator(&ety.name, "sizeof"); writeln!( out, "::std::size_t {}::layout::size() noexcept {{", ety.name.cxx, ); writeln!(out, " return {}();", link_name); writeln!(out, "}}"); out.next_section(); let link_name = mangle::operator(&ety.name, "alignof"); writeln!( out, "::std::size_t {}::layout::align() noexcept {{", ety.name.cxx, ); writeln!(out, " return {}();", link_name); writeln!(out, "}}"); } fn begin_function_definition(out: &mut OutFile) { if let Some(annotation) = &out.opt.cxx_impl_annotations { write!(out, "{} ", annotation); } } fn write_cxx_function_shim<'a>(out: &mut OutFile<'a>, efn: &'a ExternFn) { out.next_section(); out.set_namespace(&efn.name.namespace); out.begin_block(Block::ExternC); begin_function_definition(out); if efn.throws { out.builtin.ptr_len = true; write!(out, "::rust::repr::PtrLen "); } else { write_extern_return_type_space(out, &efn.ret); } let mangled = mangle::extern_fn(efn, out.types); write!(out, "{}(", mangled); if let Some(receiver) = &efn.receiver { write!( out, "{}", out.types.resolve(&receiver.ty).name.to_fully_qualified(), ); if !receiver.mutable { write!(out, " const"); } write!(out, " &self"); } for (i, arg) in efn.args.iter().enumerate() { if i > 0 || efn.receiver.is_some() { write!(out, ", "); } if arg.ty == RustString { write_type_space(out, &arg.ty); write!(out, "const *{}", arg.name.cxx); } else if let Type::RustVec(_) = arg.ty { write_type_space(out, &arg.ty); write!(out, "const *{}", arg.name.cxx); } else { write_extern_arg(out, arg); } } let indirect_return = indirect_return(efn, out.types); if indirect_return { if !efn.args.is_empty() || efn.receiver.is_some() { write!(out, ", "); } write_indirect_return_type_space(out, efn.ret.as_ref().unwrap()); write!(out, "*return$"); } writeln!(out, ") noexcept {{"); write!(out, " "); write_return_type(out, &efn.ret); match &efn.receiver { None => write!(out, "(*{}$)(", efn.name.rust), Some(receiver) => write!( out, "({}::*{}$)(", out.types.resolve(&receiver.ty).name.to_fully_qualified(), efn.name.rust, ), } for (i, arg) in efn.args.iter().enumerate() { if i > 0 { write!(out, ", "); } write_type(out, &arg.ty); } write!(out, ")"); if let Some(receiver) = &efn.receiver { if !receiver.mutable { write!(out, " const"); } } write!(out, " = "); match &efn.receiver { None => write!(out, "{}", efn.name.to_fully_qualified()), Some(receiver) => write!( out, "&{}::{}", out.types.resolve(&receiver.ty).name.to_fully_qualified(), efn.name.cxx, ), } writeln!(out, ";"); write!(out, " "); if efn.throws { out.builtin.ptr_len = true; out.builtin.trycatch = true; writeln!(out, "::rust::repr::PtrLen throw$;"); writeln!(out, " ::rust::behavior::trycatch("); writeln!(out, " [&] {{"); write!(out, " "); } if indirect_return { out.include.new = true; write!(out, "new (return$) "); write_indirect_return_type(out, efn.ret.as_ref().unwrap()); write!(out, "("); } else if efn.ret.is_some() { write!(out, "return "); } match &efn.ret { Some(Type::Ref(_)) => write!(out, "&"), Some(Type::Str(_)) if !indirect_return => { out.builtin.rust_str_repr = true; write!(out, "::rust::impl<::rust::Str>::repr("); } Some(ty @ Type::SliceRef(_)) if !indirect_return => { out.builtin.rust_slice_repr = true; write!(out, "::rust::impl<"); write_type(out, ty); write!(out, ">::repr("); } _ => {} } match &efn.receiver { None => write!(out, "{}$(", efn.name.rust), Some(_) => write!(out, "(self.*{}$)(", efn.name.rust), } for (i, arg) in efn.args.iter().enumerate() { if i > 0 { write!(out, ", "); } if let Type::RustBox(_) = &arg.ty { write_type(out, &arg.ty); write!(out, "::from_raw({})", arg.name.cxx); } else if let Type::UniquePtr(_) = &arg.ty { write_type(out, &arg.ty); write!(out, "({})", arg.name.cxx); } else if arg.ty == RustString { out.builtin.unsafe_bitcopy = true; write!( out, "::rust::String(::rust::unsafe_bitcopy, *{})", arg.name.cxx, ); } else if let Type::RustVec(_) = arg.ty { out.builtin.unsafe_bitcopy = true; write_type(out, &arg.ty); write!(out, "(::rust::unsafe_bitcopy, *{})", arg.name.cxx); } else if out.types.needs_indirect_abi(&arg.ty) { out.include.utility = true; write!(out, "::std::move(*{})", arg.name.cxx); } else { write!(out, "{}", arg.name.cxx); } } write!(out, ")"); match &efn.ret { Some(Type::RustBox(_)) => write!(out, ".into_raw()"), Some(Type::UniquePtr(_)) => write!(out, ".release()"), Some(Type::Str(_) | Type::SliceRef(_)) if !indirect_return => write!(out, ")"), _ => {} } if indirect_return { write!(out, ")"); } writeln!(out, ";"); if efn.throws { writeln!(out, " throw$.ptr = nullptr;"); writeln!(out, " }},"); writeln!(out, " ::rust::detail::Fail(throw$));"); writeln!(out, " return throw$;"); } writeln!(out, "}}"); for arg in &efn.args { if let Type::Fn(f) = &arg.ty { let var = &arg.name; write_function_pointer_trampoline(out, efn, var, f); } } out.end_block(Block::ExternC); } fn write_function_pointer_trampoline(out: &mut OutFile, efn: &ExternFn, var: &Pair, f: &Signature) { let r_trampoline = mangle::r_trampoline(efn, var, out.types); let indirect_call = true; write_rust_function_decl_impl(out, &r_trampoline, f, indirect_call); out.next_section(); let c_trampoline = mangle::c_trampoline(efn, var, out.types).to_string(); let doc = Doc::new(); write_rust_function_shim_impl(out, &c_trampoline, f, &doc, &r_trampoline, indirect_call); } fn write_rust_function_decl<'a>(out: &mut OutFile<'a>, efn: &'a ExternFn) { out.set_namespace(&efn.name.namespace); out.begin_block(Block::ExternC); let link_name = mangle::extern_fn(efn, out.types); let indirect_call = false; write_rust_function_decl_impl(out, &link_name, efn, indirect_call); out.end_block(Block::ExternC); } fn write_rust_function_decl_impl( out: &mut OutFile, link_name: &Symbol, sig: &Signature, indirect_call: bool, ) { out.next_section(); if sig.throws { out.builtin.ptr_len = true; write!(out, "::rust::repr::PtrLen "); } else { write_extern_return_type_space(out, &sig.ret); } write!(out, "{}(", link_name); let mut needs_comma = false; if let Some(receiver) = &sig.receiver { write!( out, "{}", out.types.resolve(&receiver.ty).name.to_fully_qualified(), ); if !receiver.mutable { write!(out, " const"); } write!(out, " &self"); needs_comma = true; } for arg in &sig.args { if needs_comma { write!(out, ", "); } write_extern_arg(out, arg); needs_comma = true; } if indirect_return(sig, out.types) { if needs_comma { write!(out, ", "); } match sig.ret.as_ref().unwrap() { Type::Ref(ret) => { write_type_space(out, &ret.inner); if !ret.mutable { write!(out, "const "); } write!(out, "*"); } ret => write_type_space(out, ret), } write!(out, "*return$"); needs_comma = true; } if indirect_call { if needs_comma { write!(out, ", "); } write!(out, "void *"); } writeln!(out, ") noexcept;"); } fn write_rust_function_shim<'a>(out: &mut OutFile<'a>, efn: &'a ExternFn) { out.set_namespace(&efn.name.namespace); let local_name = match &efn.sig.receiver { None => efn.name.cxx.to_string(), Some(receiver) => format!( "{}::{}", out.types.resolve(&receiver.ty).name.cxx, efn.name.cxx, ), }; let doc = &efn.doc; let invoke = mangle::extern_fn(efn, out.types); let indirect_call = false; write_rust_function_shim_impl(out, &local_name, efn, doc, &invoke, indirect_call); } fn write_rust_function_shim_decl( out: &mut OutFile, local_name: &str, sig: &Signature, indirect_call: bool, ) { begin_function_definition(out); write_return_type(out, &sig.ret); write!(out, "{}(", local_name); for (i, arg) in sig.args.iter().enumerate() { if i > 0 { write!(out, ", "); } write_type_space(out, &arg.ty); write!(out, "{}", arg.name.cxx); } if indirect_call { if !sig.args.is_empty() { write!(out, ", "); } write!(out, "void *extern$"); } write!(out, ")"); if let Some(receiver) = &sig.receiver { if !receiver.mutable { write!(out, " const"); } } if !sig.throws { write!(out, " noexcept"); } } fn write_rust_function_shim_impl( out: &mut OutFile, local_name: &str, sig: &Signature, doc: &Doc, invoke: &Symbol, indirect_call: bool, ) { if out.header && sig.receiver.is_some() { // We've already defined this inside the struct. return; } if sig.receiver.is_none() { // Member functions already documented at their declaration. write_doc(out, "", doc); } write_rust_function_shim_decl(out, local_name, sig, indirect_call); if out.header { writeln!(out, ";"); return; } writeln!(out, " {{"); for arg in &sig.args { if arg.ty != RustString && out.types.needs_indirect_abi(&arg.ty) { out.include.utility = true; out.builtin.manually_drop = true; write!(out, " ::rust::ManuallyDrop<"); write_type(out, &arg.ty); writeln!(out, "> {}$(::std::move({0}));", arg.name.cxx); } } write!(out, " "); let indirect_return = indirect_return(sig, out.types); if indirect_return { out.builtin.maybe_uninit = true; write!(out, "::rust::MaybeUninit<"); match sig.ret.as_ref().unwrap() { Type::Ref(ret) => { write_type_space(out, &ret.inner); if !ret.mutable { write!(out, "const "); } write!(out, "*"); } ret => write_type(out, ret), } writeln!(out, "> return$;"); write!(out, " "); } else if let Some(ret) = &sig.ret { write!(out, "return "); match ret { Type::RustBox(_) => { write_type(out, ret); write!(out, "::from_raw("); } Type::UniquePtr(_) => { write_type(out, ret); write!(out, "("); } Type::Ref(_) => write!(out, "*"), Type::Str(_) => { out.builtin.rust_str_new_unchecked = true; write!(out, "::rust::impl<::rust::Str>::new_unchecked("); } Type::SliceRef(_) => { out.builtin.rust_slice_new = true; write!(out, "::rust::impl<"); write_type(out, ret); write!(out, ">::slice("); } _ => {} } } if sig.throws { out.builtin.ptr_len = true; write!(out, "::rust::repr::PtrLen error$ = "); } write!(out, "{}(", invoke); let mut needs_comma = false; if sig.receiver.is_some() { write!(out, "*this"); needs_comma = true; } for arg in &sig.args { if needs_comma { write!(out, ", "); } if out.types.needs_indirect_abi(&arg.ty) { write!(out, "&"); } write!(out, "{}", arg.name.cxx); match &arg.ty { Type::RustBox(_) => write!(out, ".into_raw()"), Type::UniquePtr(_) => write!(out, ".release()"), ty if ty != RustString && out.types.needs_indirect_abi(ty) => write!(out, "$.value"), _ => {} } needs_comma = true; } if indirect_return { if needs_comma { write!(out, ", "); } write!(out, "&return$.value"); needs_comma = true; } if indirect_call { if needs_comma { write!(out, ", "); } write!(out, "extern$"); } write!(out, ")"); if !indirect_return { if let Some(ret) = &sig.ret { if let Type::RustBox(_) | Type::UniquePtr(_) | Type::Str(_) | Type::SliceRef(_) = ret { write!(out, ")"); } } } writeln!(out, ";"); if sig.throws { out.builtin.rust_error = true; writeln!(out, " if (error$.ptr) {{"); writeln!(out, " throw ::rust::impl<::rust::Error>::error(error$);"); writeln!(out, " }}"); } if indirect_return { write!(out, " return "); match sig.ret.as_ref().unwrap() { Type::Ref(_) => write!(out, "*return$.value"), _ => { out.include.utility = true; write!(out, "::std::move(return$.value)"); } } writeln!(out, ";"); } writeln!(out, "}}"); } fn write_return_type(out: &mut OutFile, ty: &Option) { match ty { None => write!(out, "void "), Some(ty) => write_type_space(out, ty), } } fn indirect_return(sig: &Signature, types: &Types) -> bool { sig.ret .as_ref() .map_or(false, |ret| sig.throws || types.needs_indirect_abi(ret)) } fn write_indirect_return_type(out: &mut OutFile, ty: &Type) { match ty { Type::RustBox(ty) | Type::UniquePtr(ty) => { write_type_space(out, &ty.inner); write!(out, "*"); } Type::Ref(ty) => { write_type_space(out, &ty.inner); if !ty.mutable { write!(out, "const "); } write!(out, "*"); } _ => write_type(out, ty), } } fn write_indirect_return_type_space(out: &mut OutFile, ty: &Type) { write_indirect_return_type(out, ty); match ty { Type::RustBox(_) | Type::UniquePtr(_) | Type::Ref(_) => {} Type::Str(_) | Type::SliceRef(_) => write!(out, " "), _ => write_space_after_type(out, ty), } } fn write_extern_return_type_space(out: &mut OutFile, ty: &Option) { match ty { Some(Type::RustBox(ty) | Type::UniquePtr(ty)) => { write_type_space(out, &ty.inner); write!(out, "*"); } Some(Type::Ref(ty)) => { write_type_space(out, &ty.inner); if !ty.mutable { write!(out, "const "); } write!(out, "*"); } Some(Type::Str(_) | Type::SliceRef(_)) => { out.builtin.repr_fat = true; write!(out, "::rust::repr::Fat "); } Some(ty) if out.types.needs_indirect_abi(ty) => write!(out, "void "), _ => write_return_type(out, ty), } } fn write_extern_arg(out: &mut OutFile, arg: &Var) { match &arg.ty { Type::RustBox(ty) | Type::UniquePtr(ty) | Type::CxxVector(ty) => { write_type_space(out, &ty.inner); write!(out, "*"); } _ => write_type_space(out, &arg.ty), } if out.types.needs_indirect_abi(&arg.ty) { write!(out, "*"); } write!(out, "{}", arg.name.cxx); } fn write_type(out: &mut OutFile, ty: &Type) { match ty { Type::Ident(ident) => match Atom::from(&ident.rust) { Some(atom) => write_atom(out, atom), None => write!( out, "{}", out.types.resolve(ident).name.to_fully_qualified(), ), }, Type::RustBox(ty) => { write!(out, "::rust::Box<"); write_type(out, &ty.inner); write!(out, ">"); } Type::RustVec(ty) => { write!(out, "::rust::Vec<"); write_type(out, &ty.inner); write!(out, ">"); } Type::UniquePtr(ptr) => { write!(out, "::std::unique_ptr<"); write_type(out, &ptr.inner); write!(out, ">"); } Type::SharedPtr(ptr) => { write!(out, "::std::shared_ptr<"); write_type(out, &ptr.inner); write!(out, ">"); } Type::WeakPtr(ptr) => { write!(out, "::std::weak_ptr<"); write_type(out, &ptr.inner); write!(out, ">"); } Type::CxxVector(ty) => { write!(out, "::std::vector<"); write_type(out, &ty.inner); write!(out, ">"); } Type::Ref(r) => { write_type_space(out, &r.inner); if !r.mutable { write!(out, "const "); } write!(out, "&"); } Type::Ptr(p) => { write_type_space(out, &p.inner); if !p.mutable { write!(out, "const "); } write!(out, "*"); } Type::Str(_) => { write!(out, "::rust::Str"); } Type::SliceRef(slice) => { write!(out, "::rust::Slice<"); write_type_space(out, &slice.inner); if slice.mutability.is_none() { write!(out, "const"); } write!(out, ">"); } Type::Fn(f) => { write!(out, "::rust::Fn<"); match &f.ret { Some(ret) => write_type(out, ret), None => write!(out, "void"), } write!(out, "("); for (i, arg) in f.args.iter().enumerate() { if i > 0 { write!(out, ", "); } write_type(out, &arg.ty); } write!(out, ")>"); } Type::Array(a) => { write!(out, "::std::array<"); write_type(out, &a.inner); write!(out, ", {}>", &a.len); } Type::Void(_) => unreachable!(), } } fn write_atom(out: &mut OutFile, atom: Atom) { match atom { Bool => write!(out, "bool"), Char => write!(out, "char"), U8 => write!(out, "::std::uint8_t"), U16 => write!(out, "::std::uint16_t"), U32 => write!(out, "::std::uint32_t"), U64 => write!(out, "::std::uint64_t"), Usize => write!(out, "::std::size_t"), I8 => write!(out, "::std::int8_t"), I16 => write!(out, "::std::int16_t"), I32 => write!(out, "::std::int32_t"), I64 => write!(out, "::std::int64_t"), Isize => write!(out, "::rust::isize"), F32 => write!(out, "float"), F64 => write!(out, "double"), CxxString => write!(out, "::std::string"), RustString => write!(out, "::rust::String"), } } fn write_type_space(out: &mut OutFile, ty: &Type) { write_type(out, ty); write_space_after_type(out, ty); } fn write_space_after_type(out: &mut OutFile, ty: &Type) { match ty { Type::Ident(_) | Type::RustBox(_) | Type::UniquePtr(_) | Type::SharedPtr(_) | Type::WeakPtr(_) | Type::Str(_) | Type::CxxVector(_) | Type::RustVec(_) | Type::SliceRef(_) | Type::Fn(_) | Type::Array(_) => write!(out, " "), Type::Ref(_) | Type::Ptr(_) => {} Type::Void(_) => unreachable!(), } } #[derive(Copy, Clone)] enum UniquePtr<'a> { Ident(&'a Ident), CxxVector(&'a Ident), } trait ToTypename { fn to_typename(&self, types: &Types) -> String; } impl ToTypename for Ident { fn to_typename(&self, types: &Types) -> String { types.resolve(self).name.to_fully_qualified() } } impl<'a> ToTypename for UniquePtr<'a> { fn to_typename(&self, types: &Types) -> String { match self { UniquePtr::Ident(ident) => ident.to_typename(types), UniquePtr::CxxVector(element) => { format!("::std::vector<{}>", element.to_typename(types)) } } } } trait ToMangled { fn to_mangled(&self, types: &Types) -> Symbol; } impl ToMangled for Ident { fn to_mangled(&self, types: &Types) -> Symbol { types.resolve(self).name.to_symbol() } } impl<'a> ToMangled for UniquePtr<'a> { fn to_mangled(&self, types: &Types) -> Symbol { match self { UniquePtr::Ident(ident) => ident.to_mangled(types), UniquePtr::CxxVector(element) => { symbol::join(&[&"std", &"vector", &element.to_mangled(types)]) } } } } fn write_generic_instantiations(out: &mut OutFile) { if out.header { return; } out.next_section(); out.set_namespace(Default::default()); out.begin_block(Block::ExternC); for impl_key in out.types.impls.keys() { out.next_section(); match *impl_key { ImplKey::RustBox(ident) => write_rust_box_extern(out, ident), ImplKey::RustVec(ident) => write_rust_vec_extern(out, ident), ImplKey::UniquePtr(ident) => write_unique_ptr(out, ident), ImplKey::SharedPtr(ident) => write_shared_ptr(out, ident), ImplKey::WeakPtr(ident) => write_weak_ptr(out, ident), ImplKey::CxxVector(ident) => write_cxx_vector(out, ident), } } out.end_block(Block::ExternC); out.begin_block(Block::Namespace("rust")); out.begin_block(Block::InlineNamespace("cxxbridge1")); for impl_key in out.types.impls.keys() { match *impl_key { ImplKey::RustBox(ident) => write_rust_box_impl(out, ident), ImplKey::RustVec(ident) => write_rust_vec_impl(out, ident), _ => {} } } out.end_block(Block::InlineNamespace("cxxbridge1")); out.end_block(Block::Namespace("rust")); } fn write_rust_box_extern(out: &mut OutFile, key: NamedImplKey) { let resolve = out.types.resolve(&key); let inner = resolve.name.to_fully_qualified(); let instance = resolve.name.to_symbol(); writeln!( out, "{} *cxxbridge1$box${}$alloc() noexcept;", inner, instance, ); writeln!( out, "void cxxbridge1$box${}$dealloc({} *) noexcept;", instance, inner, ); writeln!( out, "void cxxbridge1$box${}$drop(::rust::Box<{}> *ptr) noexcept;", instance, inner, ); } fn write_rust_vec_extern(out: &mut OutFile, key: NamedImplKey) { let element = key.rust; let inner = element.to_typename(out.types); let instance = element.to_mangled(out.types); out.include.cstddef = true; writeln!( out, "void cxxbridge1$rust_vec${}$new(::rust::Vec<{}> const *ptr) noexcept;", instance, inner, ); writeln!( out, "void cxxbridge1$rust_vec${}$drop(::rust::Vec<{}> *ptr) noexcept;", instance, inner, ); writeln!( out, "::std::size_t cxxbridge1$rust_vec${}$len(::rust::Vec<{}> const *ptr) noexcept;", instance, inner, ); writeln!( out, "::std::size_t cxxbridge1$rust_vec${}$capacity(::rust::Vec<{}> const *ptr) noexcept;", instance, inner, ); writeln!( out, "{} const *cxxbridge1$rust_vec${}$data(::rust::Vec<{0}> const *ptr) noexcept;", inner, instance, ); writeln!( out, "void cxxbridge1$rust_vec${}$reserve_total(::rust::Vec<{}> *ptr, ::std::size_t new_cap) noexcept;", instance, inner, ); writeln!( out, "void cxxbridge1$rust_vec${}$set_len(::rust::Vec<{}> *ptr, ::std::size_t len) noexcept;", instance, inner, ); writeln!( out, "void cxxbridge1$rust_vec${}$truncate(::rust::Vec<{}> *ptr, ::std::size_t len) noexcept;", instance, inner, ); } fn write_rust_box_impl(out: &mut OutFile, key: NamedImplKey) { let resolve = out.types.resolve(&key); let inner = resolve.name.to_fully_qualified(); let instance = resolve.name.to_symbol(); writeln!(out, "template <>"); begin_function_definition(out); writeln!( out, "{} *Box<{}>::allocation::alloc() noexcept {{", inner, inner, ); writeln!(out, " return cxxbridge1$box${}$alloc();", instance); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!( out, "void Box<{}>::allocation::dealloc({} *ptr) noexcept {{", inner, inner, ); writeln!(out, " cxxbridge1$box${}$dealloc(ptr);", instance); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!(out, "void Box<{}>::drop() noexcept {{", inner); writeln!(out, " cxxbridge1$box${}$drop(this);", instance); writeln!(out, "}}"); } fn write_rust_vec_impl(out: &mut OutFile, key: NamedImplKey) { let element = key.rust; let inner = element.to_typename(out.types); let instance = element.to_mangled(out.types); out.include.cstddef = true; writeln!(out, "template <>"); begin_function_definition(out); writeln!(out, "Vec<{}>::Vec() noexcept {{", inner); writeln!(out, " cxxbridge1$rust_vec${}$new(this);", instance); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!(out, "void Vec<{}>::drop() noexcept {{", inner); writeln!(out, " return cxxbridge1$rust_vec${}$drop(this);", instance); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!( out, "::std::size_t Vec<{}>::size() const noexcept {{", inner, ); writeln!(out, " return cxxbridge1$rust_vec${}$len(this);", instance); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!( out, "::std::size_t Vec<{}>::capacity() const noexcept {{", inner, ); writeln!( out, " return cxxbridge1$rust_vec${}$capacity(this);", instance, ); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!(out, "{} const *Vec<{0}>::data() const noexcept {{", inner); writeln!(out, " return cxxbridge1$rust_vec${}$data(this);", instance); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!( out, "void Vec<{}>::reserve_total(::std::size_t new_cap) noexcept {{", inner, ); writeln!( out, " return cxxbridge1$rust_vec${}$reserve_total(this, new_cap);", instance, ); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!( out, "void Vec<{}>::set_len(::std::size_t len) noexcept {{", inner, ); writeln!( out, " return cxxbridge1$rust_vec${}$set_len(this, len);", instance, ); writeln!(out, "}}"); writeln!(out, "template <>"); begin_function_definition(out); writeln!(out, "void Vec<{}>::truncate(::std::size_t len) {{", inner,); writeln!( out, " return cxxbridge1$rust_vec${}$truncate(this, len);", instance, ); writeln!(out, "}}"); } fn write_unique_ptr(out: &mut OutFile, key: NamedImplKey) { let ty = UniquePtr::Ident(key.rust); write_unique_ptr_common(out, ty); } // Shared by UniquePtr and UniquePtr>. fn write_unique_ptr_common(out: &mut OutFile, ty: UniquePtr) { out.include.new = true; out.include.utility = true; let inner = ty.to_typename(out.types); let instance = ty.to_mangled(out.types); let can_construct_from_value = match ty { // Some aliases are to opaque types; some are to trivial types. We can't // know at code generation time, so we generate both C++ and Rust side // bindings for a "new" method anyway. But the Rust code can't be called // for Opaque types because the 'new' method is not implemented. UniquePtr::Ident(ident) => out.types.is_maybe_trivial(ident), UniquePtr::CxxVector(_) => false, }; let conditional_delete = match ty { UniquePtr::Ident(ident) => { !out.types.structs.contains_key(ident) && !out.types.enums.contains_key(ident) } UniquePtr::CxxVector(_) => false, }; if conditional_delete { out.builtin.is_complete = true; let definition = match ty { UniquePtr::Ident(ty) => &out.types.resolve(ty).name.cxx, UniquePtr::CxxVector(_) => unreachable!(), }; writeln!( out, "static_assert(::rust::detail::is_complete<{}>::value, \"definition of {} is required\");", inner, definition, ); } writeln!( out, "static_assert(sizeof(::std::unique_ptr<{}>) == sizeof(void *), \"\");", inner, ); writeln!( out, "static_assert(alignof(::std::unique_ptr<{}>) == alignof(void *), \"\");", inner, ); begin_function_definition(out); writeln!( out, "void cxxbridge1$unique_ptr${}$null(::std::unique_ptr<{}> *ptr) noexcept {{", instance, inner, ); writeln!(out, " ::new (ptr) ::std::unique_ptr<{}>();", inner); writeln!(out, "}}"); if can_construct_from_value { out.builtin.maybe_uninit = true; begin_function_definition(out); writeln!( out, "{} *cxxbridge1$unique_ptr${}$uninit(::std::unique_ptr<{}> *ptr) noexcept {{", inner, instance, inner, ); writeln!( out, " {} *uninit = reinterpret_cast<{} *>(new ::rust::MaybeUninit<{}>);", inner, inner, inner, ); writeln!(out, " ::new (ptr) ::std::unique_ptr<{}>(uninit);", inner); writeln!(out, " return uninit;"); writeln!(out, "}}"); } begin_function_definition(out); writeln!( out, "void cxxbridge1$unique_ptr${}$raw(::std::unique_ptr<{}> *ptr, {} *raw) noexcept {{", instance, inner, inner, ); writeln!(out, " ::new (ptr) ::std::unique_ptr<{}>(raw);", inner); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "{} const *cxxbridge1$unique_ptr${}$get(::std::unique_ptr<{}> const &ptr) noexcept {{", inner, instance, inner, ); writeln!(out, " return ptr.get();"); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "{} *cxxbridge1$unique_ptr${}$release(::std::unique_ptr<{}> &ptr) noexcept {{", inner, instance, inner, ); writeln!(out, " return ptr.release();"); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "void cxxbridge1$unique_ptr${}$drop(::std::unique_ptr<{}> *ptr) noexcept {{", instance, inner, ); if conditional_delete { out.builtin.deleter_if = true; writeln!( out, " ::rust::deleter_if<::rust::detail::is_complete<{}>::value>{{}}(ptr);", inner, ); } else { writeln!(out, " ptr->~unique_ptr();"); } writeln!(out, "}}"); } fn write_shared_ptr(out: &mut OutFile, key: NamedImplKey) { let ident = key.rust; let resolve = out.types.resolve(ident); let inner = resolve.name.to_fully_qualified(); let instance = resolve.name.to_symbol(); out.include.new = true; out.include.utility = true; // Some aliases are to opaque types; some are to trivial types. We can't // know at code generation time, so we generate both C++ and Rust side // bindings for a "new" method anyway. But the Rust code can't be called for // Opaque types because the 'new' method is not implemented. let can_construct_from_value = out.types.is_maybe_trivial(ident); writeln!( out, "static_assert(sizeof(::std::shared_ptr<{}>) == 2 * sizeof(void *), \"\");", inner, ); writeln!( out, "static_assert(alignof(::std::shared_ptr<{}>) == alignof(void *), \"\");", inner, ); begin_function_definition(out); writeln!( out, "void cxxbridge1$shared_ptr${}$null(::std::shared_ptr<{}> *ptr) noexcept {{", instance, inner, ); writeln!(out, " ::new (ptr) ::std::shared_ptr<{}>();", inner); writeln!(out, "}}"); if can_construct_from_value { out.builtin.maybe_uninit = true; begin_function_definition(out); writeln!( out, "{} *cxxbridge1$shared_ptr${}$uninit(::std::shared_ptr<{}> *ptr) noexcept {{", inner, instance, inner, ); writeln!( out, " {} *uninit = reinterpret_cast<{} *>(new ::rust::MaybeUninit<{}>);", inner, inner, inner, ); writeln!(out, " ::new (ptr) ::std::shared_ptr<{}>(uninit);", inner); writeln!(out, " return uninit;"); writeln!(out, "}}"); } begin_function_definition(out); writeln!( out, "void cxxbridge1$shared_ptr${}$clone(::std::shared_ptr<{}> const &self, ::std::shared_ptr<{}> *ptr) noexcept {{", instance, inner, inner, ); writeln!(out, " ::new (ptr) ::std::shared_ptr<{}>(self);", inner); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "{} const *cxxbridge1$shared_ptr${}$get(::std::shared_ptr<{}> const &self) noexcept {{", inner, instance, inner, ); writeln!(out, " return self.get();"); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "void cxxbridge1$shared_ptr${}$drop(::std::shared_ptr<{}> *self) noexcept {{", instance, inner, ); writeln!(out, " self->~shared_ptr();"); writeln!(out, "}}"); } fn write_weak_ptr(out: &mut OutFile, key: NamedImplKey) { let resolve = out.types.resolve(&key); let inner = resolve.name.to_fully_qualified(); let instance = resolve.name.to_symbol(); out.include.new = true; out.include.utility = true; writeln!( out, "static_assert(sizeof(::std::weak_ptr<{}>) == 2 * sizeof(void *), \"\");", inner, ); writeln!( out, "static_assert(alignof(::std::weak_ptr<{}>) == alignof(void *), \"\");", inner, ); begin_function_definition(out); writeln!( out, "void cxxbridge1$weak_ptr${}$null(::std::weak_ptr<{}> *ptr) noexcept {{", instance, inner, ); writeln!(out, " ::new (ptr) ::std::weak_ptr<{}>();", inner); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "void cxxbridge1$weak_ptr${}$clone(::std::weak_ptr<{}> const &self, ::std::weak_ptr<{}> *ptr) noexcept {{", instance, inner, inner, ); writeln!(out, " ::new (ptr) ::std::weak_ptr<{}>(self);", inner); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "void cxxbridge1$weak_ptr${}$downgrade(::std::shared_ptr<{}> const &shared, ::std::weak_ptr<{}> *weak) noexcept {{", instance, inner, inner, ); writeln!(out, " ::new (weak) ::std::weak_ptr<{}>(shared);", inner); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "void cxxbridge1$weak_ptr${}$upgrade(::std::weak_ptr<{}> const &weak, ::std::shared_ptr<{}> *shared) noexcept {{", instance, inner, inner, ); writeln!( out, " ::new (shared) ::std::shared_ptr<{}>(weak.lock());", inner, ); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "void cxxbridge1$weak_ptr${}$drop(::std::weak_ptr<{}> *self) noexcept {{", instance, inner, ); writeln!(out, " self->~weak_ptr();"); writeln!(out, "}}"); } fn write_cxx_vector(out: &mut OutFile, key: NamedImplKey) { let element = key.rust; let inner = element.to_typename(out.types); let instance = element.to_mangled(out.types); out.include.cstddef = true; out.include.utility = true; out.builtin.destroy = true; begin_function_definition(out); writeln!( out, "::std::vector<{}> *cxxbridge1$std$vector${}$new() noexcept {{", inner, instance, ); writeln!(out, " return new ::std::vector<{}>();", inner); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "::std::size_t cxxbridge1$std$vector${}$size(::std::vector<{}> const &s) noexcept {{", instance, inner, ); writeln!(out, " return s.size();"); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "{} *cxxbridge1$std$vector${}$get_unchecked(::std::vector<{}> *s, ::std::size_t pos) noexcept {{", inner, instance, inner, ); writeln!(out, " return &(*s)[pos];"); writeln!(out, "}}"); if out.types.is_maybe_trivial(element) { begin_function_definition(out); writeln!( out, "void cxxbridge1$std$vector${}$push_back(::std::vector<{}> *v, {} *value) noexcept {{", instance, inner, inner, ); writeln!(out, " v->push_back(::std::move(*value));"); writeln!(out, " ::rust::destroy(value);"); writeln!(out, "}}"); begin_function_definition(out); writeln!( out, "void cxxbridge1$std$vector${}$pop_back(::std::vector<{}> *v, {} *out) noexcept {{", instance, inner, inner, ); writeln!(out, " ::new (out) {}(::std::move(v->back()));", inner); writeln!(out, " v->pop_back();"); writeln!(out, "}}"); } out.include.memory = true; write_unique_ptr_common(out, UniquePtr::CxxVector(element)); }