//! Less used details of `CxxVector` are exposed in this module. `CxxVector` //! itself is exposed at the crate root. use crate::extern_type::ExternType; use crate::kind::Trivial; use crate::string::CxxString; use core::ffi::c_void; use core::fmt::{self, Debug}; use core::iter::FusedIterator; use core::marker::{PhantomData, PhantomPinned}; use core::mem::{self, ManuallyDrop, MaybeUninit}; use core::pin::Pin; use core::slice; /// Binding to C++ `std::vector>`. /// /// # Invariants /// /// As an invariant of this API and the static analysis of the cxx::bridge /// macro, in Rust code we can never obtain a `CxxVector` by value. Instead in /// Rust code we will only ever look at a vector behind a reference or smart /// pointer, as in `&CxxVector` or `UniquePtr>`. #[repr(C, packed)] pub struct CxxVector { // A thing, because repr(C) structs are not allowed to consist exclusively // of PhantomData fields. _void: [c_void; 0], // The conceptual vector elements to ensure that autotraits are propagated // correctly, e.g. CxxVector is UnwindSafe iff T is. _elements: PhantomData<[T]>, // Prevent unpin operation from Pin<&mut CxxVector> to &mut CxxVector. _pinned: PhantomData, } impl CxxVector where T: VectorElement, { /// Returns the number of elements in the vector. /// /// Matches the behavior of C++ [std::vector\::size][size]. /// /// [size]: https://en.cppreference.com/w/cpp/container/vector/size pub fn len(&self) -> usize { T::__vector_size(self) } /// Returns true if the vector contains no elements. /// /// Matches the behavior of C++ [std::vector\::empty][empty]. /// /// [empty]: https://en.cppreference.com/w/cpp/container/vector/empty pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns a reference to an element at the given position, or `None` if /// out of bounds. pub fn get(&self, pos: usize) -> Option<&T> { if pos < self.len() { Some(unsafe { self.get_unchecked(pos) }) } else { None } } /// Returns a pinned mutable reference to an element at the given position, /// or `None` if out of bounds. pub fn index_mut(self: Pin<&mut Self>, pos: usize) -> Option> { if pos < self.len() { Some(unsafe { self.index_unchecked_mut(pos) }) } else { None } } /// Returns a reference to an element without doing bounds checking. /// /// This is generally not recommended, use with caution! Calling this method /// with an out-of-bounds index is undefined behavior even if the resulting /// reference is not used. /// /// Matches the behavior of C++ /// [std::vector\::operator\[\] const][operator_at]. /// /// [operator_at]: https://en.cppreference.com/w/cpp/container/vector/operator_at pub unsafe fn get_unchecked(&self, pos: usize) -> &T { let this = self as *const CxxVector as *mut CxxVector; unsafe { let ptr = T::__get_unchecked(this, pos) as *const T; &*ptr } } /// Returns a pinned mutable reference to an element without doing bounds /// checking. /// /// This is generally not recommended, use with caution! Calling this method /// with an out-of-bounds index is undefined behavior even if the resulting /// reference is not used. /// /// Matches the behavior of C++ /// [std::vector\::operator\[\]][operator_at]. /// /// [operator_at]: https://en.cppreference.com/w/cpp/container/vector/operator_at pub unsafe fn index_unchecked_mut(self: Pin<&mut Self>, pos: usize) -> Pin<&mut T> { unsafe { let ptr = T::__get_unchecked(self.get_unchecked_mut(), pos); Pin::new_unchecked(&mut *ptr) } } /// Returns a slice to the underlying contiguous array of elements. pub fn as_slice(&self) -> &[T] where T: ExternType, { let len = self.len(); if len == 0 { // The slice::from_raw_parts in the other branch requires a nonnull // and properly aligned data ptr. C++ standard does not guarantee // that data() on a vector with size 0 would return a nonnull // pointer or sufficiently aligned pointer, so using it would be // undefined behavior. Create our own empty slice in Rust instead // which upholds the invariants. &[] } else { let this = self as *const CxxVector as *mut CxxVector; let ptr = unsafe { T::__get_unchecked(this, 0) }; unsafe { slice::from_raw_parts(ptr, len) } } } /// Returns a slice to the underlying contiguous array of elements by /// mutable reference. pub fn as_mut_slice(self: Pin<&mut Self>) -> &mut [T] where T: ExternType, { let len = self.len(); if len == 0 { &mut [] } else { let ptr = unsafe { T::__get_unchecked(self.get_unchecked_mut(), 0) }; unsafe { slice::from_raw_parts_mut(ptr, len) } } } /// Returns an iterator over elements of type `&T`. pub fn iter(&self) -> Iter { Iter { v: self, index: 0 } } /// Returns an iterator over elements of type `Pin<&mut T>`. pub fn iter_mut(self: Pin<&mut Self>) -> IterMut { IterMut { v: self, index: 0 } } /// Appends an element to the back of the vector. /// /// Matches the behavior of C++ [std::vector\::push_back][push_back]. /// /// [push_back]: https://en.cppreference.com/w/cpp/container/vector/push_back pub fn push(self: Pin<&mut Self>, value: T) where T: ExternType, { let mut value = ManuallyDrop::new(value); unsafe { // C++ calls move constructor followed by destructor on `value`. T::__push_back(self, &mut value); } } /// Removes the last element from a vector and returns it, or `None` if the /// vector is empty. pub fn pop(self: Pin<&mut Self>) -> Option where T: ExternType, { if self.is_empty() { None } else { let mut value = MaybeUninit::uninit(); Some(unsafe { T::__pop_back(self, &mut value); value.assume_init() }) } } } /// Iterator over elements of a `CxxVector` by shared reference. /// /// The iterator element type is `&'a T`. pub struct Iter<'a, T> { v: &'a CxxVector, index: usize, } impl<'a, T> IntoIterator for &'a CxxVector where T: VectorElement, { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, T> Iterator for Iter<'a, T> where T: VectorElement, { type Item = &'a T; fn next(&mut self) -> Option { let next = self.v.get(self.index)?; self.index += 1; Some(next) } fn size_hint(&self) -> (usize, Option) { let len = self.len(); (len, Some(len)) } } impl<'a, T> ExactSizeIterator for Iter<'a, T> where T: VectorElement, { fn len(&self) -> usize { self.v.len() - self.index } } impl<'a, T> FusedIterator for Iter<'a, T> where T: VectorElement {} /// Iterator over elements of a `CxxVector` by pinned mutable reference. /// /// The iterator element type is `Pin<&'a mut T>`. pub struct IterMut<'a, T> { v: Pin<&'a mut CxxVector>, index: usize, } impl<'a, T> IntoIterator for Pin<&'a mut CxxVector> where T: VectorElement, { type Item = Pin<&'a mut T>; type IntoIter = IterMut<'a, T>; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } impl<'a, T> Iterator for IterMut<'a, T> where T: VectorElement, { type Item = Pin<&'a mut T>; fn next(&mut self) -> Option { let next = self.v.as_mut().index_mut(self.index)?; self.index += 1; // Extend lifetime to allow simultaneous holding of nonoverlapping // elements, analogous to slice::split_first_mut. unsafe { let ptr = Pin::into_inner_unchecked(next) as *mut T; Some(Pin::new_unchecked(&mut *ptr)) } } fn size_hint(&self) -> (usize, Option) { let len = self.len(); (len, Some(len)) } } impl<'a, T> ExactSizeIterator for IterMut<'a, T> where T: VectorElement, { fn len(&self) -> usize { self.v.len() - self.index } } impl<'a, T> FusedIterator for IterMut<'a, T> where T: VectorElement {} impl Debug for CxxVector where T: VectorElement + Debug, { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.debug_list().entries(self).finish() } } /// Trait bound for types which may be used as the `T` inside of a /// `CxxVector` in generic code. /// /// This trait has no publicly callable or implementable methods. Implementing /// it outside of the CXX codebase is not supported. /// /// # Example /// /// A bound `T: VectorElement` may be necessary when manipulating [`CxxVector`] /// in generic code. /// /// ``` /// use cxx::vector::{CxxVector, VectorElement}; /// use std::fmt::Display; /// /// pub fn take_generic_vector(vector: &CxxVector) /// where /// T: VectorElement + Display, /// { /// println!("the vector elements are:"); /// for element in vector { /// println!(" • {}", element); /// } /// } /// ``` /// /// Writing the same generic function without a `VectorElement` trait bound /// would not compile. pub unsafe trait VectorElement: Sized { #[doc(hidden)] fn __typename(f: &mut fmt::Formatter) -> fmt::Result; #[doc(hidden)] fn __vector_size(v: &CxxVector) -> usize; #[doc(hidden)] unsafe fn __get_unchecked(v: *mut CxxVector, pos: usize) -> *mut Self; #[doc(hidden)] unsafe fn __push_back(v: Pin<&mut CxxVector>, value: &mut ManuallyDrop) { // Opaque C type vector elements do not get this method because they can // never exist by value on the Rust side of the bridge. let _ = v; let _ = value; unreachable!() } #[doc(hidden)] unsafe fn __pop_back(v: Pin<&mut CxxVector>, out: &mut MaybeUninit) { // Opaque C type vector elements do not get this method because they can // never exist by value on the Rust side of the bridge. let _ = v; let _ = out; unreachable!() } #[doc(hidden)] fn __unique_ptr_null() -> MaybeUninit<*mut c_void>; #[doc(hidden)] unsafe fn __unique_ptr_raw(raw: *mut CxxVector) -> MaybeUninit<*mut c_void>; #[doc(hidden)] unsafe fn __unique_ptr_get(repr: MaybeUninit<*mut c_void>) -> *const CxxVector; #[doc(hidden)] unsafe fn __unique_ptr_release(repr: MaybeUninit<*mut c_void>) -> *mut CxxVector; #[doc(hidden)] unsafe fn __unique_ptr_drop(repr: MaybeUninit<*mut c_void>); } macro_rules! vector_element_by_value_methods { (opaque, $segment:expr, $ty:ty) => {}; (trivial, $segment:expr, $ty:ty) => { unsafe fn __push_back(v: Pin<&mut CxxVector<$ty>>, value: &mut ManuallyDrop<$ty>) { extern "C" { attr! { #[link_name = concat!("cxxbridge1$std$vector$", $segment, "$push_back")] fn __push_back(_: Pin<&mut CxxVector<$ty>>, _: &mut ManuallyDrop<$ty>); } } unsafe { __push_back(v, value) } } unsafe fn __pop_back(v: Pin<&mut CxxVector<$ty>>, out: &mut MaybeUninit<$ty>) { extern "C" { attr! { #[link_name = concat!("cxxbridge1$std$vector$", $segment, "$pop_back")] fn __pop_back(_: Pin<&mut CxxVector<$ty>>, _: &mut MaybeUninit<$ty>); } } unsafe { __pop_back(v, out) } } }; } macro_rules! impl_vector_element { ($kind:ident, $segment:expr, $name:expr, $ty:ty) => { const_assert_eq!(0, mem::size_of::>()); const_assert_eq!(1, mem::align_of::>()); unsafe impl VectorElement for $ty { fn __typename(f: &mut fmt::Formatter) -> fmt::Result { f.write_str($name) } fn __vector_size(v: &CxxVector<$ty>) -> usize { extern "C" { attr! { #[link_name = concat!("cxxbridge1$std$vector$", $segment, "$size")] fn __vector_size(_: &CxxVector<$ty>) -> usize; } } unsafe { __vector_size(v) } } unsafe fn __get_unchecked(v: *mut CxxVector<$ty>, pos: usize) -> *mut $ty { extern "C" { attr! { #[link_name = concat!("cxxbridge1$std$vector$", $segment, "$get_unchecked")] fn __get_unchecked(_: *mut CxxVector<$ty>, _: usize) -> *mut $ty; } } unsafe { __get_unchecked(v, pos) } } vector_element_by_value_methods!($kind, $segment, $ty); fn __unique_ptr_null() -> MaybeUninit<*mut c_void> { extern "C" { attr! { #[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$null")] fn __unique_ptr_null(this: *mut MaybeUninit<*mut c_void>); } } let mut repr = MaybeUninit::uninit(); unsafe { __unique_ptr_null(&mut repr) } repr } unsafe fn __unique_ptr_raw(raw: *mut CxxVector) -> MaybeUninit<*mut c_void> { extern "C" { attr! { #[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$raw")] fn __unique_ptr_raw(this: *mut MaybeUninit<*mut c_void>, raw: *mut CxxVector<$ty>); } } let mut repr = MaybeUninit::uninit(); unsafe { __unique_ptr_raw(&mut repr, raw) } repr } unsafe fn __unique_ptr_get(repr: MaybeUninit<*mut c_void>) -> *const CxxVector { extern "C" { attr! { #[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$get")] fn __unique_ptr_get(this: *const MaybeUninit<*mut c_void>) -> *const CxxVector<$ty>; } } unsafe { __unique_ptr_get(&repr) } } unsafe fn __unique_ptr_release(mut repr: MaybeUninit<*mut c_void>) -> *mut CxxVector { extern "C" { attr! { #[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$release")] fn __unique_ptr_release(this: *mut MaybeUninit<*mut c_void>) -> *mut CxxVector<$ty>; } } unsafe { __unique_ptr_release(&mut repr) } } unsafe fn __unique_ptr_drop(mut repr: MaybeUninit<*mut c_void>) { extern "C" { attr! { #[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$drop")] fn __unique_ptr_drop(this: *mut MaybeUninit<*mut c_void>); } } unsafe { __unique_ptr_drop(&mut repr) } } } }; } macro_rules! impl_vector_element_for_primitive { ($ty:ident) => { impl_vector_element!(trivial, stringify!($ty), stringify!($ty), $ty); }; } impl_vector_element_for_primitive!(u8); impl_vector_element_for_primitive!(u16); impl_vector_element_for_primitive!(u32); impl_vector_element_for_primitive!(u64); impl_vector_element_for_primitive!(usize); impl_vector_element_for_primitive!(i8); impl_vector_element_for_primitive!(i16); impl_vector_element_for_primitive!(i32); impl_vector_element_for_primitive!(i64); impl_vector_element_for_primitive!(isize); impl_vector_element_for_primitive!(f32); impl_vector_element_for_primitive!(f64); impl_vector_element!(opaque, "string", "CxxString", CxxString);