// Vendored from libstd: // https://github.com/rust-lang/rust/blob/1.57.0/library/core/src/hash/sip.rs // // TODO: maybe depend on a hasher from crates.io if this becomes annoying to // maintain, or change this to a simpler one. #![cfg(not(feature = "std"))] use core::cmp; use core::hash::Hasher; use core::mem; use core::ptr; /// An implementation of SipHash 1-3. /// /// This is currently the default hashing function used by standard library /// (e.g., `collections::HashMap` uses it by default). /// /// See: pub struct SipHasher13 { k0: u64, k1: u64, length: usize, // how many bytes we've processed state: State, // hash State tail: u64, // unprocessed bytes le ntail: usize, // how many bytes in tail are valid } #[derive(Clone, Copy)] #[repr(C)] struct State { // v0, v2 and v1, v3 show up in pairs in the algorithm, // and simd implementations of SipHash will use vectors // of v02 and v13. By placing them in this order in the struct, // the compiler can pick up on just a few simd optimizations by itself. v0: u64, v2: u64, v1: u64, v3: u64, } macro_rules! compress { ($state:expr) => { compress!($state.v0, $state.v1, $state.v2, $state.v3) }; ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => { $v0 = $v0.wrapping_add($v1); $v1 = $v1.rotate_left(13); $v1 ^= $v0; $v0 = $v0.rotate_left(32); $v2 = $v2.wrapping_add($v3); $v3 = $v3.rotate_left(16); $v3 ^= $v2; $v0 = $v0.wrapping_add($v3); $v3 = $v3.rotate_left(21); $v3 ^= $v0; $v2 = $v2.wrapping_add($v1); $v1 = $v1.rotate_left(17); $v1 ^= $v2; $v2 = $v2.rotate_left(32); }; } /// Loads an integer of the desired type from a byte stream, in LE order. Uses /// `copy_nonoverlapping` to let the compiler generate the most efficient way /// to load it from a possibly unaligned address. /// /// Unsafe because: unchecked indexing at i..i+size_of(int_ty) macro_rules! load_int_le { ($buf:expr, $i:expr, $int_ty:ident) => {{ debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len()); let mut data = 0 as $int_ty; ptr::copy_nonoverlapping( $buf.as_ptr().add($i), &mut data as *mut _ as *mut u8, mem::size_of::<$int_ty>(), ); data.to_le() }}; } /// Loads a u64 using up to 7 bytes of a byte slice. It looks clumsy but the /// `copy_nonoverlapping` calls that occur (via `load_int_le!`) all have fixed /// sizes and avoid calling `memcpy`, which is good for speed. /// /// Unsafe because: unchecked indexing at start..start+len unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 { debug_assert!(len < 8); let mut i = 0; // current byte index (from LSB) in the output u64 let mut out = 0; if i + 3 < len { // SAFETY: `i` cannot be greater than `len`, and the caller must guarantee // that the index start..start+len is in bounds. out = unsafe { load_int_le!(buf, start + i, u32) } as u64; i += 4; } if i + 1 < len { // SAFETY: same as above. out |= (unsafe { load_int_le!(buf, start + i, u16) } as u64) << (i * 8); i += 2 } if i < len { // SAFETY: same as above. out |= (unsafe { *buf.get_unchecked(start + i) } as u64) << (i * 8); i += 1; } debug_assert_eq!(i, len); out } impl SipHasher13 { /// Creates a new `SipHasher13` with the two initial keys set to 0. pub fn new() -> Self { Self::new_with_keys(0, 0) } /// Creates a `SipHasher13` that is keyed off the provided keys. fn new_with_keys(key0: u64, key1: u64) -> Self { let mut state = SipHasher13 { k0: key0, k1: key1, length: 0, state: State { v0: 0, v1: 0, v2: 0, v3: 0, }, tail: 0, ntail: 0, }; state.reset(); state } fn reset(&mut self) { self.length = 0; self.state.v0 = self.k0 ^ 0x736f6d6570736575; self.state.v1 = self.k1 ^ 0x646f72616e646f6d; self.state.v2 = self.k0 ^ 0x6c7967656e657261; self.state.v3 = self.k1 ^ 0x7465646279746573; self.ntail = 0; } } impl Hasher for SipHasher13 { // Note: no integer hashing methods (`write_u*`, `write_i*`) are defined // for this type. We could add them, copy the `short_write` implementation // in librustc_data_structures/sip128.rs, and add `write_u*`/`write_i*` // methods to `SipHasher`, `SipHasher13`, and `DefaultHasher`. This would // greatly speed up integer hashing by those hashers, at the cost of // slightly slowing down compile speeds on some benchmarks. See #69152 for // details. fn write(&mut self, msg: &[u8]) { let length = msg.len(); self.length += length; let mut needed = 0; if self.ntail != 0 { needed = 8 - self.ntail; // SAFETY: `cmp::min(length, needed)` is guaranteed to not be over `length` self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail); if length < needed { self.ntail += length; return; } else { self.state.v3 ^= self.tail; Sip13Rounds::c_rounds(&mut self.state); self.state.v0 ^= self.tail; self.ntail = 0; } } // Buffered tail is now flushed, process new input. let len = length - needed; let left = len & 0x7; // len % 8 let mut i = needed; while i < len - left { // SAFETY: because `len - left` is the biggest multiple of 8 under // `len`, and because `i` starts at `needed` where `len` is `length - needed`, // `i + 8` is guaranteed to be less than or equal to `length`. let mi = unsafe { load_int_le!(msg, i, u64) }; self.state.v3 ^= mi; Sip13Rounds::c_rounds(&mut self.state); self.state.v0 ^= mi; i += 8; } // SAFETY: `i` is now `needed + len.div_euclid(8) * 8`, // so `i + left` = `needed + len` = `length`, which is by // definition equal to `msg.len()`. self.tail = unsafe { u8to64_le(msg, i, left) }; self.ntail = left; } fn finish(&self) -> u64 { let mut state = self.state; let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail; state.v3 ^= b; Sip13Rounds::c_rounds(&mut state); state.v0 ^= b; state.v2 ^= 0xff; Sip13Rounds::d_rounds(&mut state); state.v0 ^ state.v1 ^ state.v2 ^ state.v3 } } struct Sip13Rounds; impl Sip13Rounds { fn c_rounds(state: &mut State) { compress!(state); } fn d_rounds(state: &mut State) { compress!(state); compress!(state); compress!(state); } }