summaryrefslogtreecommitdiff
path: root/standalone/tests/combined_test.cpp
blob: a2c06182a688a5a3246fa29fc417923e5654349a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//===-- combined_test.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "tests/scudo_unit_test.h"

#include "allocator_config.h"
#include "combined.h"

#include <condition_variable>
#include <mutex>
#include <thread>
#include <vector>

static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready = false;

static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc;

static void disableDebuggerdMaybe() {
#if SCUDO_ANDROID
  // Disable the debuggerd signal handler on Android, without this we can end
  // up spending a significant amount of time creating tombstones.
  signal(SIGSEGV, SIG_DFL);
#endif
}

template <class AllocatorT>
bool isTaggedAllocation(AllocatorT *Allocator, scudo::uptr Size,
                        scudo::uptr Alignment) {
  if (!Allocator->useMemoryTagging() ||
      !scudo::systemDetectsMemoryTagFaultsTestOnly())
    return false;

  const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG;
  if (Alignment < MinAlignment)
    Alignment = MinAlignment;
  const scudo::uptr NeededSize =
      scudo::roundUpTo(Size, MinAlignment) +
      ((Alignment > MinAlignment) ? Alignment : scudo::Chunk::getHeaderSize());
  return AllocatorT::PrimaryT::canAllocate(NeededSize);
}

template <class AllocatorT>
void checkMemoryTaggingMaybe(AllocatorT *Allocator, void *P, scudo::uptr Size,
                             scudo::uptr Alignment) {
  if (!isTaggedAllocation(Allocator, Size, Alignment))
    return;

  Size = scudo::roundUpTo(Size, scudo::archMemoryTagGranuleSize());
  EXPECT_DEATH(
      {
        disableDebuggerdMaybe();
        reinterpret_cast<char *>(P)[-1] = 0xaa;
      },
      "");
  EXPECT_DEATH(
      {
        disableDebuggerdMaybe();
        reinterpret_cast<char *>(P)[Size] = 0xaa;
      },
      "");
}

template <class Config> static void testAllocator() {
  using AllocatorT = scudo::Allocator<Config>;
  auto Deleter = [](AllocatorT *A) {
    A->unmapTestOnly();
    delete A;
  };
  std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
                                                           Deleter);
  Allocator->reset();

  EXPECT_FALSE(Allocator->isOwned(&Mutex));
  EXPECT_FALSE(Allocator->isOwned(&Allocator));
  scudo::u64 StackVariable = 0x42424242U;
  EXPECT_FALSE(Allocator->isOwned(&StackVariable));
  EXPECT_EQ(StackVariable, 0x42424242U);

  constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);

  // This allocates and deallocates a bunch of chunks, with a wide range of
  // sizes and alignments, with a focus on sizes that could trigger weird
  // behaviors (plus or minus a small delta of a power of two for example).
  for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
    for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) {
      const scudo::uptr Align = 1U << AlignLog;
      for (scudo::sptr Delta = -32; Delta <= 32; Delta++) {
        if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
          continue;
        const scudo::uptr Size = (1U << SizeLog) + Delta;
        void *P = Allocator->allocate(Size, Origin, Align);
        EXPECT_NE(P, nullptr);
        EXPECT_TRUE(Allocator->isOwned(P));
        EXPECT_TRUE(scudo::isAligned(reinterpret_cast<scudo::uptr>(P), Align));
        EXPECT_LE(Size, Allocator->getUsableSize(P));
        memset(P, 0xaa, Size);
        checkMemoryTaggingMaybe(Allocator.get(), P, Size, Align);
        Allocator->deallocate(P, Origin, Size);
      }
    }
  }
  Allocator->releaseToOS();

  // Ensure that specifying ZeroContents returns a zero'd out block.
  for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
    for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
      const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
      void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
      EXPECT_NE(P, nullptr);
      for (scudo::uptr I = 0; I < Size; I++)
        EXPECT_EQ((reinterpret_cast<char *>(P))[I], 0);
      memset(P, 0xaa, Size);
      Allocator->deallocate(P, Origin, Size);
    }
  }
  Allocator->releaseToOS();

  // Verify that a chunk will end up being reused, at some point.
  const scudo::uptr NeedleSize = 1024U;
  void *NeedleP = Allocator->allocate(NeedleSize, Origin);
  Allocator->deallocate(NeedleP, Origin);
  bool Found = false;
  for (scudo::uptr I = 0; I < 1024U && !Found; I++) {
    void *P = Allocator->allocate(NeedleSize, Origin);
    if (Allocator->untagPointerMaybe(P) ==
        Allocator->untagPointerMaybe(NeedleP))
      Found = true;
    Allocator->deallocate(P, Origin);
  }
  EXPECT_TRUE(Found);

  constexpr scudo::uptr MaxSize = Config::Primary::SizeClassMap::MaxSize;

  // Reallocate a large chunk all the way down to a byte, verifying that we
  // preserve the data in the process.
  scudo::uptr Size = MaxSize * 2;
  const scudo::uptr DataSize = 2048U;
  void *P = Allocator->allocate(Size, Origin);
  const char Marker = 0xab;
  memset(P, Marker, scudo::Min(Size, DataSize));
  while (Size > 1U) {
    Size /= 2U;
    void *NewP = Allocator->reallocate(P, Size);
    EXPECT_NE(NewP, nullptr);
    for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++)
      EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
    P = NewP;
  }
  Allocator->deallocate(P, Origin);

  // Check that reallocating a chunk to a slightly smaller or larger size
  // returns the same chunk. This requires that all the sizes we iterate on use
  // the same block size, but that should be the case for MaxSize - 64 with our
  // default class size maps.
  constexpr scudo::uptr ReallocSize = MaxSize - 64;
  P = Allocator->allocate(ReallocSize, Origin);
  memset(P, Marker, ReallocSize);
  for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) {
    const scudo::uptr NewSize = ReallocSize + Delta;
    void *NewP = Allocator->reallocate(P, NewSize);
    EXPECT_EQ(NewP, P);
    for (scudo::uptr I = 0; I < ReallocSize - 32; I++)
      EXPECT_EQ((reinterpret_cast<char *>(NewP))[I], Marker);
    checkMemoryTaggingMaybe(Allocator.get(), NewP, NewSize, 0);
  }
  Allocator->deallocate(P, Origin);

  // Allocates a bunch of chunks, then iterate over all the chunks, ensuring
  // they are the ones we allocated. This requires the allocator to not have any
  // other allocated chunk at this point (eg: won't work with the Quarantine).
  if (!UseQuarantine) {
    std::vector<void *> V;
    for (scudo::uptr I = 0; I < 64U; I++)
      V.push_back(Allocator->allocate(rand() % (MaxSize / 2U), Origin));
    Allocator->disable();
    Allocator->iterateOverChunks(
        0U, static_cast<scudo::uptr>(SCUDO_MMAP_RANGE_SIZE - 1),
        [](uintptr_t Base, size_t Size, void *Arg) {
          std::vector<void *> *V = reinterpret_cast<std::vector<void *> *>(Arg);
          void *P = reinterpret_cast<void *>(Base);
          EXPECT_NE(std::find(V->begin(), V->end(), P), V->end());
        },
        reinterpret_cast<void *>(&V));
    Allocator->enable();
    while (!V.empty()) {
      Allocator->deallocate(V.back(), Origin);
      V.pop_back();
    }
  }

  Allocator->releaseToOS();

  if (Allocator->useMemoryTagging() &&
      scudo::systemDetectsMemoryTagFaultsTestOnly()) {
    // Check that use-after-free is detected.
    for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
      const scudo::uptr Size = 1U << SizeLog;
      if (!isTaggedAllocation(Allocator.get(), Size, 1))
        continue;
      // UAF detection is probabilistic, so we repeat the test up to 256 times
      // if necessary. With 15 possible tags this means a 1 in 15^256 chance of
      // a false positive.
      EXPECT_DEATH(
          {
            disableDebuggerdMaybe();
            for (unsigned I = 0; I != 256; ++I) {
              void *P = Allocator->allocate(Size, Origin);
              Allocator->deallocate(P, Origin);
              reinterpret_cast<char *>(P)[0] = 0xaa;
            }
          },
          "");
      EXPECT_DEATH(
          {
            disableDebuggerdMaybe();
            for (unsigned I = 0; I != 256; ++I) {
              void *P = Allocator->allocate(Size, Origin);
              Allocator->deallocate(P, Origin);
              reinterpret_cast<char *>(P)[Size - 1] = 0xaa;
            }
          },
          "");
    }

    // Check that disabling memory tagging works correctly.
    void *P = Allocator->allocate(2048, Origin);
    EXPECT_DEATH(reinterpret_cast<char *>(P)[2048] = 0xaa, "");
    scudo::disableMemoryTagChecksTestOnly();
    Allocator->disableMemoryTagging();
    reinterpret_cast<char *>(P)[2048] = 0xaa;
    Allocator->deallocate(P, Origin);

    P = Allocator->allocate(2048, Origin);
    EXPECT_EQ(Allocator->untagPointerMaybe(P), P);
    reinterpret_cast<char *>(P)[2048] = 0xaa;
    Allocator->deallocate(P, Origin);

    Allocator->releaseToOS();

    // Disabling memory tag checks may interfere with subsequent tests.
    // Re-enable them now.
    scudo::enableMemoryTagChecksTestOnly();
  }

  scudo::uptr BufferSize = 8192;
  std::vector<char> Buffer(BufferSize);
  scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
  while (ActualSize > BufferSize) {
    BufferSize = ActualSize + 1024;
    Buffer.resize(BufferSize);
    ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
  }
  std::string Stats(Buffer.begin(), Buffer.end());
  // Basic checks on the contents of the statistics output, which also allows us
  // to verify that we got it all.
  EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos);
  EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos);
  EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos);
}

// Test that multiple instantiations of the allocator have not messed up the
// process's signal handlers (GWP-ASan used to do this).
void testSEGV() {
  const scudo::uptr Size = 4 * scudo::getPageSizeCached();
  scudo::MapPlatformData Data = {};
  void *P = scudo::map(nullptr, Size, "testSEGV", MAP_NOACCESS, &Data);
  EXPECT_NE(P, nullptr);
  EXPECT_DEATH(memset(P, 0xaa, Size), "");
  scudo::unmap(P, Size, UNMAP_ALL, &Data);
}

TEST(ScudoCombinedTest, BasicCombined) {
  UseQuarantine = false;
  testAllocator<scudo::AndroidSvelteConfig>();
#if SCUDO_FUCHSIA
  testAllocator<scudo::FuchsiaConfig>();
#else
  testAllocator<scudo::DefaultConfig>();
  UseQuarantine = true;
  testAllocator<scudo::AndroidConfig>();
  testSEGV();
#endif
}

template <typename AllocatorT> static void stressAllocator(AllocatorT *A) {
  {
    std::unique_lock<std::mutex> Lock(Mutex);
    while (!Ready)
      Cv.wait(Lock);
  }
  std::vector<std::pair<void *, scudo::uptr>> V;
  for (scudo::uptr I = 0; I < 256U; I++) {
    const scudo::uptr Size = std::rand() % 4096U;
    void *P = A->allocate(Size, Origin);
    // A region could have ran out of memory, resulting in a null P.
    if (P)
      V.push_back(std::make_pair(P, Size));
  }
  while (!V.empty()) {
    auto Pair = V.back();
    A->deallocate(Pair.first, Origin, Pair.second);
    V.pop_back();
  }
}

template <class Config> static void testAllocatorThreaded() {
  using AllocatorT = scudo::Allocator<Config>;
  auto Deleter = [](AllocatorT *A) {
    A->unmapTestOnly();
    delete A;
  };
  std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
                                                           Deleter);
  Allocator->reset();
  std::thread Threads[32];
  for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
    Threads[I] = std::thread(stressAllocator<AllocatorT>, Allocator.get());
  {
    std::unique_lock<std::mutex> Lock(Mutex);
    Ready = true;
    Cv.notify_all();
  }
  for (auto &T : Threads)
    T.join();
  Allocator->releaseToOS();
}

TEST(ScudoCombinedTest, ThreadedCombined) {
  UseQuarantine = false;
  testAllocatorThreaded<scudo::AndroidSvelteConfig>();
#if SCUDO_FUCHSIA
  testAllocatorThreaded<scudo::FuchsiaConfig>();
#else
  testAllocatorThreaded<scudo::DefaultConfig>();
  UseQuarantine = true;
  testAllocatorThreaded<scudo::AndroidConfig>();
#endif
}

struct DeathSizeClassConfig {
  static const scudo::uptr NumBits = 1;
  static const scudo::uptr MinSizeLog = 10;
  static const scudo::uptr MidSizeLog = 10;
  static const scudo::uptr MaxSizeLog = 13;
  static const scudo::u32 MaxNumCachedHint = 4;
  static const scudo::uptr MaxBytesCachedLog = 12;
};

static const scudo::uptr DeathRegionSizeLog = 20U;
struct DeathConfig {
  // Tiny allocator, its Primary only serves chunks of four sizes.
  using DeathSizeClassMap = scudo::FixedSizeClassMap<DeathSizeClassConfig>;
  typedef scudo::SizeClassAllocator64<DeathSizeClassMap, DeathRegionSizeLog>
      Primary;
  typedef scudo::MapAllocator<scudo::MapAllocatorNoCache> Secondary;
  template <class A> using TSDRegistryT = scudo::TSDRegistrySharedT<A, 1U>;
};

TEST(ScudoCombinedTest, DeathCombined) {
  using AllocatorT = scudo::Allocator<DeathConfig>;
  auto Deleter = [](AllocatorT *A) {
    A->unmapTestOnly();
    delete A;
  };
  std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
                                                           Deleter);
  Allocator->reset();

  const scudo::uptr Size = 1000U;
  void *P = Allocator->allocate(Size, Origin);
  EXPECT_NE(P, nullptr);

  // Invalid sized deallocation.
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), "");

  // Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available.
  UNUSED void *MisalignedP =
      reinterpret_cast<void *>(reinterpret_cast<scudo::uptr>(P) | 1U);
  EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), "");
  EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), "");

  // Header corruption.
  scudo::u64 *H =
      reinterpret_cast<scudo::u64 *>(scudo::Chunk::getAtomicHeader(P));
  *H ^= 0x42U;
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
  *H ^= 0x420042U;
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
  *H ^= 0x420000U;

  // Invalid chunk state.
  Allocator->deallocate(P, Origin, Size);
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
  EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), "");
  EXPECT_DEATH(Allocator->getUsableSize(P), "");
}

// Ensure that releaseToOS can be called prior to any other allocator
// operation without issue.
TEST(ScudoCombinedTest, ReleaseToOS) {
  using AllocatorT = scudo::Allocator<DeathConfig>;
  auto Deleter = [](AllocatorT *A) {
    A->unmapTestOnly();
    delete A;
  };
  std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
                                                           Deleter);
  Allocator->reset();

  Allocator->releaseToOS();
}

// Verify that when a region gets full, the allocator will still manage to
// fulfill the allocation through a larger size class.
TEST(ScudoCombinedTest, FullRegion) {
  using AllocatorT = scudo::Allocator<DeathConfig>;
  auto Deleter = [](AllocatorT *A) {
    A->unmapTestOnly();
    delete A;
  };
  std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
                                                           Deleter);
  Allocator->reset();

  std::vector<void *> V;
  scudo::uptr FailedAllocationsCount = 0;
  for (scudo::uptr ClassId = 1U;
       ClassId <= DeathConfig::DeathSizeClassMap::LargestClassId; ClassId++) {
    const scudo::uptr Size =
        DeathConfig::DeathSizeClassMap::getSizeByClassId(ClassId);
    // Allocate enough to fill all of the regions above this one.
    const scudo::uptr MaxNumberOfChunks =
        ((1U << DeathRegionSizeLog) / Size) *
        (DeathConfig::DeathSizeClassMap::LargestClassId - ClassId + 1);
    void *P;
    for (scudo::uptr I = 0; I <= MaxNumberOfChunks; I++) {
      P = Allocator->allocate(Size - 64U, Origin);
      if (!P)
        FailedAllocationsCount++;
      else
        V.push_back(P);
    }
    while (!V.empty()) {
      Allocator->deallocate(V.back(), Origin);
      V.pop_back();
    }
  }
  EXPECT_EQ(FailedAllocationsCount, 0U);
}