aboutsummaryrefslogtreecommitdiff
path: root/SPIRV/SpvBuilder.h
blob: 02e9cf4005f018e8411afe7bbb47c1217300e997 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
//
// Copyright (C) 2014-2015 LunarG, Inc.
// Copyright (C) 2015-2020 Google, Inc.
// Copyright (C) 2017 ARM Limited.
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.

//
// "Builder" is an interface to fully build SPIR-V IR.   Allocate one of
// these to build (a thread safe) internal SPIR-V representation (IR),
// and then dump it as a binary stream according to the SPIR-V specification.
//
// A Builder has a 1:1 relationship with a SPIR-V module.
//

#pragma once
#ifndef SpvBuilder_H
#define SpvBuilder_H

#include "Logger.h"
#include "spirv.hpp"
#include "spvIR.h"
namespace spv {
    #include "GLSL.ext.KHR.h"
    #include "NonSemanticShaderDebugInfo100.h"
}

#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <stack>
#include <unordered_map>
#include <map>

namespace spv {

typedef enum {
    Spv_1_0 = (1 << 16),
    Spv_1_1 = (1 << 16) | (1 << 8),
    Spv_1_2 = (1 << 16) | (2 << 8),
    Spv_1_3 = (1 << 16) | (3 << 8),
    Spv_1_4 = (1 << 16) | (4 << 8),
    Spv_1_5 = (1 << 16) | (5 << 8),
} SpvVersion;

class Builder {
public:
    Builder(unsigned int spvVersion, unsigned int userNumber, SpvBuildLogger* logger);
    virtual ~Builder();

    static const int maxMatrixSize = 4;

    unsigned int getSpvVersion() const { return spvVersion; }

    void setSource(spv::SourceLanguage lang, int version)
    {
        sourceLang = lang;
        sourceVersion = version;
    }
    spv::Id getStringId(const std::string& str)
    {
        auto sItr = stringIds.find(str);
        if (sItr != stringIds.end())
            return sItr->second;
        spv::Id strId = getUniqueId();
        Instruction* fileString = new Instruction(strId, NoType, OpString);
        const char* file_c_str = str.c_str();
        fileString->addStringOperand(file_c_str);
        strings.push_back(std::unique_ptr<Instruction>(fileString));
        module.mapInstruction(fileString);
        stringIds[file_c_str] = strId;
        return strId;
    }
    spv::Id getSourceFile() const 
    {
        return sourceFileStringId;
    }
    void setSourceFile(const std::string& file)
    {
        sourceFileStringId = getStringId(file);
        currentFileId = sourceFileStringId;
    }
    void setSourceText(const std::string& text) { sourceText = text; }
    void addSourceExtension(const char* ext) { sourceExtensions.push_back(ext); }
    void addModuleProcessed(const std::string& p) { moduleProcesses.push_back(p.c_str()); }
    void setEmitOpLines() { emitOpLines = true; }
    void setEmitNonSemanticShaderDebugInfo(bool const emit)
    {
        emitNonSemanticShaderDebugInfo = emit;

        if(emit)
        {
            importNonSemanticShaderDebugInfoInstructions();
        }
    }
    void setEmitNonSemanticShaderDebugSource(bool const src)
    {
        emitNonSemanticShaderDebugSource = src;
    }
    void addExtension(const char* ext) { extensions.insert(ext); }
    void removeExtension(const char* ext)
    {
        extensions.erase(ext);
    }
    void addIncorporatedExtension(const char* ext, SpvVersion incorporatedVersion)
    {
        if (getSpvVersion() < static_cast<unsigned>(incorporatedVersion))
            addExtension(ext);
    }
    void promoteIncorporatedExtension(const char* baseExt, const char* promoExt, SpvVersion incorporatedVersion)
    {
        removeExtension(baseExt);
        addIncorporatedExtension(promoExt, incorporatedVersion);
    }
    void addInclude(const std::string& name, const std::string& text)
    {
        spv::Id incId = getStringId(name);
        includeFiles[incId] = &text;
    }
    Id import(const char*);
    void setMemoryModel(spv::AddressingModel addr, spv::MemoryModel mem)
    {
        addressModel = addr;
        memoryModel = mem;
    }

    void addCapability(spv::Capability cap) { capabilities.insert(cap); }

    // To get a new <id> for anything needing a new one.
    Id getUniqueId() { return ++uniqueId; }

    // To get a set of new <id>s, e.g., for a set of function parameters
    Id getUniqueIds(int numIds)
    {
        Id id = uniqueId + 1;
        uniqueId += numIds;
        return id;
    }

    // Generate OpLine for non-filename-based #line directives (ie no filename
    // seen yet): Log the current line, and if different than the last one,
    // issue a new OpLine using the new line and current source file name.
    void setLine(int line);

    // If filename null, generate OpLine for non-filename-based line directives,
    // else do filename-based: Log the current line and file, and if different
    // than the last one, issue a new OpLine using the new line and file
    // name.
    void setLine(int line, const char* filename);
    // Low-level OpLine. See setLine() for a layered helper.
    void addLine(Id fileName, int line, int column);
    void addDebugScopeAndLine(Id fileName, int line, int column);

    // For creating new types (will return old type if the requested one was already made).
    Id makeVoidType();
    Id makeBoolType(bool const compilerGenerated = true);
    Id makePointer(StorageClass, Id pointee);
    Id makeForwardPointer(StorageClass);
    Id makePointerFromForwardPointer(StorageClass, Id forwardPointerType, Id pointee);
    Id makeIntegerType(int width, bool hasSign);   // generic
    Id makeIntType(int width) { return makeIntegerType(width, true); }
    Id makeUintType(int width) { return makeIntegerType(width, false); }
    Id makeFloatType(int width);
    Id makeStructType(const std::vector<Id>& members, const char* name, bool const compilerGenerated = true);
    Id makeStructResultType(Id type0, Id type1);
    Id makeVectorType(Id component, int size);
    Id makeMatrixType(Id component, int cols, int rows);
    Id makeArrayType(Id element, Id sizeId, int stride);  // 0 stride means no stride decoration
    Id makeRuntimeArray(Id element);
    Id makeFunctionType(Id returnType, const std::vector<Id>& paramTypes);
    Id makeImageType(Id sampledType, Dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format);
    Id makeSamplerType();
    Id makeSampledImageType(Id imageType);
    Id makeCooperativeMatrixType(Id component, Id scope, Id rows, Id cols);
    Id makeGenericType(spv::Op opcode, std::vector<spv::IdImmediate>& operands);

    // SPIR-V NonSemantic Shader DebugInfo Instructions
    struct DebugTypeLoc {
        std::string name {};
        int line {0};
        int column {0};
    };
    std::unordered_map<Id, DebugTypeLoc> debugTypeLocs;
    Id makeDebugInfoNone();
    Id makeBoolDebugType(int const size);
    Id makeIntegerDebugType(int const width, bool const hasSign);
    Id makeFloatDebugType(int const width);
    Id makeSequentialDebugType(Id const baseType, Id const componentCount, NonSemanticShaderDebugInfo100Instructions const sequenceType);
    Id makeArrayDebugType(Id const baseType, Id const componentCount);
    Id makeVectorDebugType(Id const baseType, int const componentCount);
    Id makeMatrixDebugType(Id const vectorType, int const vectorCount, bool columnMajor = true);
    Id makeMemberDebugType(Id const memberType, DebugTypeLoc const& debugTypeLoc);
    Id makeCompositeDebugType(std::vector<Id> const& memberTypes, char const*const name,
        NonSemanticShaderDebugInfo100DebugCompositeType const tag, bool const isOpaqueType = false);
    Id makeDebugSource(const Id fileName);
    Id makeDebugCompilationUnit();
    Id createDebugGlobalVariable(Id const type, char const*const name, Id const variable);
    Id createDebugLocalVariable(Id type, char const*const name, size_t const argNumber = 0);
    Id makeDebugExpression();
    Id makeDebugDeclare(Id const debugLocalVariable, Id const localVariable);
    Id makeDebugValue(Id const debugLocalVariable, Id const value);
    Id makeDebugFunctionType(Id returnType, const std::vector<Id>& paramTypes);
    Id makeDebugFunction(Function* function, Id nameId, Id funcTypeId);
    Id makeDebugLexicalBlock(uint32_t line);
    std::string unmangleFunctionName(std::string const& name) const;

    // accelerationStructureNV type
    Id makeAccelerationStructureType();
    // rayQueryEXT type
    Id makeRayQueryType();
    // hitObjectNV type
    Id makeHitObjectNVType();

    // For querying about types.
    Id getTypeId(Id resultId) const { return module.getTypeId(resultId); }
    Id getDerefTypeId(Id resultId) const;
    Op getOpCode(Id id) const { return module.getInstruction(id)->getOpCode(); }
    Op getTypeClass(Id typeId) const { return getOpCode(typeId); }
    Op getMostBasicTypeClass(Id typeId) const;
    int getNumComponents(Id resultId) const { return getNumTypeComponents(getTypeId(resultId)); }
    int getNumTypeConstituents(Id typeId) const;
    int getNumTypeComponents(Id typeId) const { return getNumTypeConstituents(typeId); }
    Id getScalarTypeId(Id typeId) const;
    Id getContainedTypeId(Id typeId) const;
    Id getContainedTypeId(Id typeId, int) const;
    StorageClass getTypeStorageClass(Id typeId) const { return module.getStorageClass(typeId); }
    ImageFormat getImageTypeFormat(Id typeId) const
        { return (ImageFormat)module.getInstruction(typeId)->getImmediateOperand(6); }
    Id getResultingAccessChainType() const;

    bool isPointer(Id resultId)      const { return isPointerType(getTypeId(resultId)); }
    bool isScalar(Id resultId)       const { return isScalarType(getTypeId(resultId)); }
    bool isVector(Id resultId)       const { return isVectorType(getTypeId(resultId)); }
    bool isMatrix(Id resultId)       const { return isMatrixType(getTypeId(resultId)); }
    bool isCooperativeMatrix(Id resultId)const { return isCooperativeMatrixType(getTypeId(resultId)); }
    bool isAggregate(Id resultId)    const { return isAggregateType(getTypeId(resultId)); }
    bool isSampledImage(Id resultId) const { return isSampledImageType(getTypeId(resultId)); }

    bool isBoolType(Id typeId)
        { return groupedTypes[OpTypeBool].size() > 0 && typeId == groupedTypes[OpTypeBool].back()->getResultId(); }
    bool isIntType(Id typeId)          const
        { return getTypeClass(typeId) == OpTypeInt && module.getInstruction(typeId)->getImmediateOperand(1) != 0; }
    bool isUintType(Id typeId)         const
        { return getTypeClass(typeId) == OpTypeInt && module.getInstruction(typeId)->getImmediateOperand(1) == 0; }
    bool isFloatType(Id typeId)        const { return getTypeClass(typeId) == OpTypeFloat; }
    bool isPointerType(Id typeId)      const { return getTypeClass(typeId) == OpTypePointer; }
    bool isScalarType(Id typeId)       const
        { return getTypeClass(typeId) == OpTypeFloat || getTypeClass(typeId) == OpTypeInt ||
          getTypeClass(typeId) == OpTypeBool; }
    bool isVectorType(Id typeId)       const { return getTypeClass(typeId) == OpTypeVector; }
    bool isMatrixType(Id typeId)       const { return getTypeClass(typeId) == OpTypeMatrix; }
    bool isStructType(Id typeId)       const { return getTypeClass(typeId) == OpTypeStruct; }
    bool isArrayType(Id typeId)        const { return getTypeClass(typeId) == OpTypeArray; }
#ifdef GLSLANG_WEB
    bool isCooperativeMatrixType(Id typeId)const { return false; }
#else
    bool isCooperativeMatrixType(Id typeId)const { return getTypeClass(typeId) == OpTypeCooperativeMatrixNV; }
#endif
    bool isAggregateType(Id typeId)    const
        { return isArrayType(typeId) || isStructType(typeId) || isCooperativeMatrixType(typeId); }
    bool isImageType(Id typeId)        const { return getTypeClass(typeId) == OpTypeImage; }
    bool isSamplerType(Id typeId)      const { return getTypeClass(typeId) == OpTypeSampler; }
    bool isSampledImageType(Id typeId) const { return getTypeClass(typeId) == OpTypeSampledImage; }
    bool containsType(Id typeId, Op typeOp, unsigned int width) const;
    bool containsPhysicalStorageBufferOrArray(Id typeId) const;

    bool isConstantOpCode(Op opcode) const;
    bool isSpecConstantOpCode(Op opcode) const;
    bool isConstant(Id resultId) const { return isConstantOpCode(getOpCode(resultId)); }
    bool isConstantScalar(Id resultId) const { return getOpCode(resultId) == OpConstant; }
    bool isSpecConstant(Id resultId) const { return isSpecConstantOpCode(getOpCode(resultId)); }
    unsigned int getConstantScalar(Id resultId) const
        { return module.getInstruction(resultId)->getImmediateOperand(0); }
    StorageClass getStorageClass(Id resultId) const { return getTypeStorageClass(getTypeId(resultId)); }

    bool isVariableOpCode(Op opcode) const { return opcode == OpVariable; }
    bool isVariable(Id resultId) const { return isVariableOpCode(getOpCode(resultId)); }
    bool isGlobalStorage(Id resultId) const { return getStorageClass(resultId) != StorageClassFunction; }
    bool isGlobalVariable(Id resultId) const { return isVariable(resultId) && isGlobalStorage(resultId); }
    // See if a resultId is valid for use as an initializer.
    bool isValidInitializer(Id resultId) const { return isConstant(resultId) || isGlobalVariable(resultId); }

    bool isRayTracingOpCode(Op opcode) const;

    int getScalarTypeWidth(Id typeId) const
    {
        Id scalarTypeId = getScalarTypeId(typeId);
        assert(getTypeClass(scalarTypeId) == OpTypeInt || getTypeClass(scalarTypeId) == OpTypeFloat);
        return module.getInstruction(scalarTypeId)->getImmediateOperand(0);
    }

    int getTypeNumColumns(Id typeId) const
    {
        assert(isMatrixType(typeId));
        return getNumTypeConstituents(typeId);
    }
    int getNumColumns(Id resultId) const { return getTypeNumColumns(getTypeId(resultId)); }
    int getTypeNumRows(Id typeId) const
    {
        assert(isMatrixType(typeId));
        return getNumTypeComponents(getContainedTypeId(typeId));
    }
    int getNumRows(Id resultId) const { return getTypeNumRows(getTypeId(resultId)); }

    Dim getTypeDimensionality(Id typeId) const
    {
        assert(isImageType(typeId));
        return (Dim)module.getInstruction(typeId)->getImmediateOperand(1);
    }
    Id getImageType(Id resultId) const
    {
        Id typeId = getTypeId(resultId);
        assert(isImageType(typeId) || isSampledImageType(typeId));
        return isSampledImageType(typeId) ? module.getInstruction(typeId)->getIdOperand(0) : typeId;
    }
    bool isArrayedImageType(Id typeId) const
    {
        assert(isImageType(typeId));
        return module.getInstruction(typeId)->getImmediateOperand(3) != 0;
    }

    // For making new constants (will return old constant if the requested one was already made).
    Id makeNullConstant(Id typeId);
    Id makeBoolConstant(bool b, bool specConstant = false);
    Id makeInt8Constant(int i, bool specConstant = false)
        { return makeIntConstant(makeIntType(8),  (unsigned)i, specConstant); }
    Id makeUint8Constant(unsigned u, bool specConstant = false)
        { return makeIntConstant(makeUintType(8),           u, specConstant); }
    Id makeInt16Constant(int i, bool specConstant = false)
        { return makeIntConstant(makeIntType(16),  (unsigned)i, specConstant); }
    Id makeUint16Constant(unsigned u, bool specConstant = false)
        { return makeIntConstant(makeUintType(16),           u, specConstant); }
    Id makeIntConstant(int i, bool specConstant = false)
        { return makeIntConstant(makeIntType(32),  (unsigned)i, specConstant); }
    Id makeUintConstant(unsigned u, bool specConstant = false)
        { return makeIntConstant(makeUintType(32),           u, specConstant); }
    Id makeInt64Constant(long long i, bool specConstant = false)
        { return makeInt64Constant(makeIntType(64),  (unsigned long long)i, specConstant); }
    Id makeUint64Constant(unsigned long long u, bool specConstant = false)
        { return makeInt64Constant(makeUintType(64),                     u, specConstant); }
    Id makeFloatConstant(float f, bool specConstant = false);
    Id makeDoubleConstant(double d, bool specConstant = false);
    Id makeFloat16Constant(float f16, bool specConstant = false);
    Id makeFpConstant(Id type, double d, bool specConstant = false);

    Id importNonSemanticShaderDebugInfoInstructions();

    // Turn the array of constants into a proper spv constant of the requested type.
    Id makeCompositeConstant(Id type, const std::vector<Id>& comps, bool specConst = false);

    // Methods for adding information outside the CFG.
    Instruction* addEntryPoint(ExecutionModel, Function*, const char* name);
    void addExecutionMode(Function*, ExecutionMode mode, int value1 = -1, int value2 = -1, int value3 = -1);
    void addExecutionMode(Function*, ExecutionMode mode, const std::vector<unsigned>& literals);
    void addExecutionModeId(Function*, ExecutionMode mode, const std::vector<Id>& operandIds);
    void addName(Id, const char* name);
    void addMemberName(Id, int member, const char* name);
    void addDecoration(Id, Decoration, int num = -1);
    void addDecoration(Id, Decoration, const char*);
    void addDecoration(Id, Decoration, const std::vector<unsigned>& literals);
    void addDecoration(Id, Decoration, const std::vector<const char*>& strings);
    void addDecorationId(Id id, Decoration, Id idDecoration);
    void addDecorationId(Id id, Decoration, const std::vector<Id>& operandIds);
    void addMemberDecoration(Id, unsigned int member, Decoration, int num = -1);
    void addMemberDecoration(Id, unsigned int member, Decoration, const char*);
    void addMemberDecoration(Id, unsigned int member, Decoration, const std::vector<unsigned>& literals);
    void addMemberDecoration(Id, unsigned int member, Decoration, const std::vector<const char*>& strings);

    // At the end of what block do the next create*() instructions go?
    // Also reset current last DebugScope and current source line to unknown
    void setBuildPoint(Block* bp) {
        buildPoint = bp;
        lastDebugScopeId = NoResult;
        currentLine = 0;
    }
    Block* getBuildPoint() const { return buildPoint; }

    // Make the entry-point function. The returned pointer is only valid
    // for the lifetime of this builder.
    Function* makeEntryPoint(const char*);

    // Make a shader-style function, and create its entry block if entry is non-zero.
    // Return the function, pass back the entry.
    // The returned pointer is only valid for the lifetime of this builder.
    Function* makeFunctionEntry(Decoration precision, Id returnType, const char* name,
        const std::vector<Id>& paramTypes, const std::vector<char const*>& paramNames,
        const std::vector<std::vector<Decoration>>& precisions, Block **entry = nullptr);

    // Create a return. An 'implicit' return is one not appearing in the source
    // code.  In the case of an implicit return, no post-return block is inserted.
    void makeReturn(bool implicit, Id retVal = 0);

    // Initialize state and generate instructions for new lexical scope
    void enterScope(uint32_t line);

    // Set state and generate instructions to exit current lexical scope
    void leaveScope();

    // Prepare builder for generation of instructions for a function.
    void enterFunction(Function const* function);

    // Generate all the code needed to finish up a function.
    void leaveFunction();

    // Create block terminator instruction for certain statements like
    // discard, terminate-invocation, terminateRayEXT, or ignoreIntersectionEXT
    void makeStatementTerminator(spv::Op opcode, const char *name);

    // Create block terminator instruction for statements that have input operands
    // such as OpEmitMeshTasksEXT
    void makeStatementTerminator(spv::Op opcode, const std::vector<Id>& operands, const char* name);

    // Create a global or function local or IO variable.
    Id createVariable(Decoration precision, StorageClass storageClass, Id type, const char* name = nullptr,
        Id initializer = NoResult, bool const compilerGenerated = true);

    // Create an intermediate with an undefined value.
    Id createUndefined(Id type);

    // Store into an Id and return the l-value
    void createStore(Id rValue, Id lValue, spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone,
        spv::Scope scope = spv::ScopeMax, unsigned int alignment = 0);

    // Load from an Id and return it
    Id createLoad(Id lValue, spv::Decoration precision,
        spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone,
        spv::Scope scope = spv::ScopeMax, unsigned int alignment = 0);

    // Create an OpAccessChain instruction
    Id createAccessChain(StorageClass, Id base, const std::vector<Id>& offsets);

    // Create an OpArrayLength instruction
    Id createArrayLength(Id base, unsigned int member);

    // Create an OpCooperativeMatrixLengthNV instruction
    Id createCooperativeMatrixLength(Id type);

    // Create an OpCompositeExtract instruction
    Id createCompositeExtract(Id composite, Id typeId, unsigned index);
    Id createCompositeExtract(Id composite, Id typeId, const std::vector<unsigned>& indexes);
    Id createCompositeInsert(Id object, Id composite, Id typeId, unsigned index);
    Id createCompositeInsert(Id object, Id composite, Id typeId, const std::vector<unsigned>& indexes);

    Id createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex);
    Id createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex);

    void createNoResultOp(Op);
    void createNoResultOp(Op, Id operand);
    void createNoResultOp(Op, const std::vector<Id>& operands);
    void createNoResultOp(Op, const std::vector<IdImmediate>& operands);
    void createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask);
    void createMemoryBarrier(unsigned executionScope, unsigned memorySemantics);
    Id createUnaryOp(Op, Id typeId, Id operand);
    Id createBinOp(Op, Id typeId, Id operand1, Id operand2);
    Id createTriOp(Op, Id typeId, Id operand1, Id operand2, Id operand3);
    Id createOp(Op, Id typeId, const std::vector<Id>& operands);
    Id createOp(Op, Id typeId, const std::vector<IdImmediate>& operands);
    Id createFunctionCall(spv::Function*, const std::vector<spv::Id>&);
    Id createSpecConstantOp(Op, Id typeId, const std::vector<spv::Id>& operands, const std::vector<unsigned>& literals);

    // Take an rvalue (source) and a set of channels to extract from it to
    // make a new rvalue, which is returned.
    Id createRvalueSwizzle(Decoration precision, Id typeId, Id source, const std::vector<unsigned>& channels);

    // Take a copy of an lvalue (target) and a source of components, and set the
    // source components into the lvalue where the 'channels' say to put them.
    // An updated version of the target is returned.
    // (No true lvalue or stores are used.)
    Id createLvalueSwizzle(Id typeId, Id target, Id source, const std::vector<unsigned>& channels);

    // If both the id and precision are valid, the id
    // gets tagged with the requested precision.
    // The passed in id is always the returned id, to simplify use patterns.
    Id setPrecision(Id id, Decoration precision)
    {
        if (precision != NoPrecision && id != NoResult)
            addDecoration(id, precision);

        return id;
    }

    // Can smear a scalar to a vector for the following forms:
    //   - promoteScalar(scalar, vector)  // smear scalar to width of vector
    //   - promoteScalar(vector, scalar)  // smear scalar to width of vector
    //   - promoteScalar(pointer, scalar) // smear scalar to width of what pointer points to
    //   - promoteScalar(scalar, scalar)  // do nothing
    // Other forms are not allowed.
    //
    // Generally, the type of 'scalar' does not need to be the same type as the components in 'vector'.
    // The type of the created vector is a vector of components of the same type as the scalar.
    //
    // Note: One of the arguments will change, with the result coming back that way rather than
    // through the return value.
    void promoteScalar(Decoration precision, Id& left, Id& right);

    // Make a value by smearing the scalar to fill the type.
    // vectorType should be the correct type for making a vector of scalarVal.
    // (No conversions are done.)
    Id smearScalar(Decoration precision, Id scalarVal, Id vectorType);

    // Create a call to a built-in function.
    Id createBuiltinCall(Id resultType, Id builtins, int entryPoint, const std::vector<Id>& args);

    // List of parameters used to create a texture operation
    struct TextureParameters {
        Id sampler;
        Id coords;
        Id bias;
        Id lod;
        Id Dref;
        Id offset;
        Id offsets;
        Id gradX;
        Id gradY;
        Id sample;
        Id component;
        Id texelOut;
        Id lodClamp;
        Id granularity;
        Id coarse;
        bool nonprivate;
        bool volatil;
    };

    // Select the correct texture operation based on all inputs, and emit the correct instruction
    Id createTextureCall(Decoration precision, Id resultType, bool sparse, bool fetch, bool proj, bool gather,
        bool noImplicit, const TextureParameters&, ImageOperandsMask);

    // Emit the OpTextureQuery* instruction that was passed in.
    // Figure out the right return value and type, and return it.
    Id createTextureQueryCall(Op, const TextureParameters&, bool isUnsignedResult);

    Id createSamplePositionCall(Decoration precision, Id, Id);

    Id createBitFieldExtractCall(Decoration precision, Id, Id, Id, bool isSigned);
    Id createBitFieldInsertCall(Decoration precision, Id, Id, Id, Id);

    // Reduction comparison for composites:  For equal and not-equal resulting in a scalar.
    Id createCompositeCompare(Decoration precision, Id, Id, bool /* true if for equal, false if for not-equal */);

    // OpCompositeConstruct
    Id createCompositeConstruct(Id typeId, const std::vector<Id>& constituents);

    // vector or scalar constructor
    Id createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId);

    // matrix constructor
    Id createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id constructee);

    // Helper to use for building nested control flow with if-then-else.
    class If {
    public:
        If(Id condition, unsigned int ctrl, Builder& builder);
        ~If() {}

        void makeBeginElse();
        void makeEndIf();

    private:
        If(const If&);
        If& operator=(If&);

        Builder& builder;
        Id condition;
        unsigned int control;
        Function* function;
        Block* headerBlock;
        Block* thenBlock;
        Block* elseBlock;
        Block* mergeBlock;
    };

    // Make a switch statement.  A switch has 'numSegments' of pieces of code, not containing
    // any case/default labels, all separated by one or more case/default labels.  Each possible
    // case value v is a jump to the caseValues[v] segment.  The defaultSegment is also in this
    // number space.  How to compute the value is given by 'condition', as in switch(condition).
    //
    // The SPIR-V Builder will maintain the stack of post-switch merge blocks for nested switches.
    //
    // Use a defaultSegment < 0 if there is no default segment (to branch to post switch).
    //
    // Returns the right set of basic blocks to start each code segment with, so that the caller's
    // recursion stack can hold the memory for it.
    //
    void makeSwitch(Id condition, unsigned int control, int numSegments, const std::vector<int>& caseValues,
                    const std::vector<int>& valueToSegment, int defaultSegment, std::vector<Block*>& segmentBB);

    // Add a branch to the innermost switch's merge block.
    void addSwitchBreak();

    // Move to the next code segment, passing in the return argument in makeSwitch()
    void nextSwitchSegment(std::vector<Block*>& segmentBB, int segment);

    // Finish off the innermost switch.
    void endSwitch(std::vector<Block*>& segmentBB);

    struct LoopBlocks {
        LoopBlocks(Block& head, Block& body, Block& merge, Block& continue_target) :
            head(head), body(body), merge(merge), continue_target(continue_target) { }
        Block &head, &body, &merge, &continue_target;
    private:
        LoopBlocks();
        LoopBlocks& operator=(const LoopBlocks&) = delete;
    };

    // Start a new loop and prepare the builder to generate code for it.  Until
    // closeLoop() is called for this loop, createLoopContinue() and
    // createLoopExit() will target its corresponding blocks.
    LoopBlocks& makeNewLoop();

    // Create a new block in the function containing the build point.  Memory is
    // owned by the function object.
    Block& makeNewBlock();

    // Add a branch to the continue_target of the current (innermost) loop.
    void createLoopContinue();

    // Add an exit (e.g. "break") from the innermost loop that we're currently
    // in.
    void createLoopExit();

    // Close the innermost loop that you're in
    void closeLoop();

    //
    // Access chain design for an R-Value vs. L-Value:
    //
    // There is a single access chain the builder is building at
    // any particular time.  Such a chain can be used to either to a load or
    // a store, when desired.
    //
    // Expressions can be r-values, l-values, or both, or only r-values:
    //    a[b.c].d = ....  // l-value
    //    ... = a[b.c].d;  // r-value, that also looks like an l-value
    //    ++a[b.c].d;      // r-value and l-value
    //    (x + y)[2];      // r-value only, can't possibly be l-value
    //
    // Computing an r-value means generating code.  Hence,
    // r-values should only be computed when they are needed, not speculatively.
    //
    // Computing an l-value means saving away information for later use in the compiler,
    // no code is generated until the l-value is later dereferenced.  It is okay
    // to speculatively generate an l-value, just not okay to speculatively dereference it.
    //
    // The base of the access chain (the left-most variable or expression
    // from which everything is based) can be set either as an l-value
    // or as an r-value.  Most efficient would be to set an l-value if one
    // is available.  If an expression was evaluated, the resulting r-value
    // can be set as the chain base.
    //
    // The users of this single access chain can save and restore if they
    // want to nest or manage multiple chains.
    //

    struct AccessChain {
        Id base;                       // for l-values, pointer to the base object, for r-values, the base object
        std::vector<Id> indexChain;
        Id instr;                      // cache the instruction that generates this access chain
        std::vector<unsigned> swizzle; // each std::vector element selects the next GLSL component number
        Id component;                  // a dynamic component index, can coexist with a swizzle,
                                       // done after the swizzle, NoResult if not present
        Id preSwizzleBaseType;         // dereferenced type, before swizzle or component is applied;
                                       // NoType unless a swizzle or component is present
        bool isRValue;                 // true if 'base' is an r-value, otherwise, base is an l-value
        unsigned int alignment;        // bitwise OR of alignment values passed in. Accumulates worst alignment.
                                       // Only tracks base and (optional) component selection alignment.

        // Accumulate whether anything in the chain of structures has coherent decorations.
        struct CoherentFlags {
            CoherentFlags() { clear(); }
#ifdef GLSLANG_WEB
            void clear() { }
            bool isVolatile() const { return false; }
            CoherentFlags operator |=(const CoherentFlags &other) { return *this; }
#else
            bool isVolatile() const { return volatil; }
            bool isNonUniform() const { return nonUniform; }
            bool anyCoherent() const {
                return coherent || devicecoherent || queuefamilycoherent || workgroupcoherent ||
                    subgroupcoherent || shadercallcoherent;
            }

            unsigned coherent : 1;
            unsigned devicecoherent : 1;
            unsigned queuefamilycoherent : 1;
            unsigned workgroupcoherent : 1;
            unsigned subgroupcoherent : 1;
            unsigned shadercallcoherent : 1;
            unsigned nonprivate : 1;
            unsigned volatil : 1;
            unsigned isImage : 1;
            unsigned nonUniform : 1;

            void clear() {
                coherent = 0;
                devicecoherent = 0;
                queuefamilycoherent = 0;
                workgroupcoherent = 0;
                subgroupcoherent = 0;
                shadercallcoherent = 0;
                nonprivate = 0;
                volatil = 0;
                isImage = 0;
                nonUniform = 0;
            }

            CoherentFlags operator |=(const CoherentFlags &other) {
                coherent |= other.coherent;
                devicecoherent |= other.devicecoherent;
                queuefamilycoherent |= other.queuefamilycoherent;
                workgroupcoherent |= other.workgroupcoherent;
                subgroupcoherent |= other.subgroupcoherent;
                shadercallcoherent |= other.shadercallcoherent;
                nonprivate |= other.nonprivate;
                volatil |= other.volatil;
                isImage |= other.isImage;
                nonUniform |= other.nonUniform;
                return *this;
            }
#endif
        };
        CoherentFlags coherentFlags;
    };

    //
    // the SPIR-V builder maintains a single active chain that
    // the following methods operate on
    //

    // for external save and restore
    AccessChain getAccessChain() { return accessChain; }
    void setAccessChain(AccessChain newChain) { accessChain = newChain; }

    // clear accessChain
    void clearAccessChain();

    // set new base as an l-value base
    void setAccessChainLValue(Id lValue)
    {
        assert(isPointer(lValue));
        accessChain.base = lValue;
    }

    // set new base value as an r-value
    void setAccessChainRValue(Id rValue)
    {
        accessChain.isRValue = true;
        accessChain.base = rValue;
    }

    // push offset onto the end of the chain
    void accessChainPush(Id offset, AccessChain::CoherentFlags coherentFlags, unsigned int alignment)
    {
        accessChain.indexChain.push_back(offset);
        accessChain.coherentFlags |= coherentFlags;
        accessChain.alignment |= alignment;
    }

    // push new swizzle onto the end of any existing swizzle, merging into a single swizzle
    void accessChainPushSwizzle(std::vector<unsigned>& swizzle, Id preSwizzleBaseType,
        AccessChain::CoherentFlags coherentFlags, unsigned int alignment);

    // push a dynamic component selection onto the access chain, only applicable with a
    // non-trivial swizzle or no swizzle
    void accessChainPushComponent(Id component, Id preSwizzleBaseType, AccessChain::CoherentFlags coherentFlags,
        unsigned int alignment)
    {
        if (accessChain.swizzle.size() != 1) {
            accessChain.component = component;
            if (accessChain.preSwizzleBaseType == NoType)
                accessChain.preSwizzleBaseType = preSwizzleBaseType;
        }
        accessChain.coherentFlags |= coherentFlags;
        accessChain.alignment |= alignment;
    }

    // use accessChain and swizzle to store value
    void accessChainStore(Id rvalue, Decoration nonUniform,
        spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone,
        spv::Scope scope = spv::ScopeMax, unsigned int alignment = 0);

    // use accessChain and swizzle to load an r-value
    Id accessChainLoad(Decoration precision, Decoration l_nonUniform, Decoration r_nonUniform, Id ResultType,
        spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone, spv::Scope scope = spv::ScopeMax,
            unsigned int alignment = 0);

    // Return whether or not the access chain can be represented in SPIR-V
    // as an l-value.
    // E.g., a[3].yx cannot be, while a[3].y and a[3].y[x] can be.
    bool isSpvLvalue() const { return accessChain.swizzle.size() <= 1; }

    // get the direct pointer for an l-value
    Id accessChainGetLValue();

    // Get the inferred SPIR-V type of the result of the current access chain,
    // based on the type of the base and the chain of dereferences.
    Id accessChainGetInferredType();

    // Add capabilities, extensions, remove unneeded decorations, etc.,
    // based on the resulting SPIR-V.
    void postProcess();

    // Prune unreachable blocks in the CFG and remove unneeded decorations.
    void postProcessCFG();

#ifndef GLSLANG_WEB
    // Add capabilities, extensions based on instructions in the module.
    void postProcessFeatures();
    // Hook to visit each instruction in a block in a function
    void postProcess(Instruction&);
    // Hook to visit each non-32-bit sized float/int operation in a block.
    void postProcessType(const Instruction&, spv::Id typeId);
#endif

    void dump(std::vector<unsigned int>&) const;

    void createBranch(Block* block);
    void createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock);
    void createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control,
        const std::vector<unsigned int>& operands);

    // Sets to generate opcode for specialization constants.
    void setToSpecConstCodeGenMode() { generatingOpCodeForSpecConst = true; }
    // Sets to generate opcode for non-specialization constants (normal mode).
    void setToNormalCodeGenMode() { generatingOpCodeForSpecConst = false; }
    // Check if the builder is generating code for spec constants.
    bool isInSpecConstCodeGenMode() { return generatingOpCodeForSpecConst; }

 protected:
    Id makeIntConstant(Id typeId, unsigned value, bool specConstant);
    Id makeInt64Constant(Id typeId, unsigned long long value, bool specConstant);
    Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value);
    Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2);
    Id findCompositeConstant(Op typeClass, Id typeId, const std::vector<Id>& comps);
    Id findStructConstant(Id typeId, const std::vector<Id>& comps);
    Id collapseAccessChain();
    void remapDynamicSwizzle();
    void transferAccessChainSwizzle(bool dynamic);
    void simplifyAccessChainSwizzle();
    void createAndSetNoPredecessorBlock(const char*);
    void createSelectionMerge(Block* mergeBlock, unsigned int control);
    void dumpSourceInstructions(std::vector<unsigned int>&) const;
    void dumpSourceInstructions(const spv::Id fileId, const std::string& text, std::vector<unsigned int>&) const;
    void dumpInstructions(std::vector<unsigned int>&, const std::vector<std::unique_ptr<Instruction> >&) const;
    void dumpModuleProcesses(std::vector<unsigned int>&) const;
    spv::MemoryAccessMask sanitizeMemoryAccessForStorageClass(spv::MemoryAccessMask memoryAccess, StorageClass sc)
        const;

    unsigned int spvVersion;     // the version of SPIR-V to emit in the header
    SourceLanguage sourceLang;
    int sourceVersion;
    spv::Id sourceFileStringId;
    spv::Id nonSemanticShaderCompilationUnitId {0};
    spv::Id nonSemanticShaderDebugInfo {0};
    spv::Id debugInfoNone {0};
    spv::Id debugExpression {0}; // Debug expression with zero operations.
    std::string sourceText;
    int currentLine;
    const char* currentFile;
    spv::Id currentFileId;
    std::stack<spv::Id> currentDebugScopeId;
    spv::Id lastDebugScopeId;
    bool emitOpLines;
    bool emitNonSemanticShaderDebugInfo;
    bool restoreNonSemanticShaderDebugInfo;
    bool emitNonSemanticShaderDebugSource;
    std::set<std::string> extensions;
    std::vector<const char*> sourceExtensions;
    std::vector<const char*> moduleProcesses;
    AddressingModel addressModel;
    MemoryModel memoryModel;
    std::set<spv::Capability> capabilities;
    int builderNumber;
    Module module;
    Block* buildPoint;
    Id uniqueId;
    Function* entryPointFunction;
    bool generatingOpCodeForSpecConst;
    AccessChain accessChain;

    // special blocks of instructions for output
    std::vector<std::unique_ptr<Instruction> > strings;
    std::vector<std::unique_ptr<Instruction> > imports;
    std::vector<std::unique_ptr<Instruction> > entryPoints;
    std::vector<std::unique_ptr<Instruction> > executionModes;
    std::vector<std::unique_ptr<Instruction> > names;
    std::vector<std::unique_ptr<Instruction> > decorations;
    std::vector<std::unique_ptr<Instruction> > constantsTypesGlobals;
    std::vector<std::unique_ptr<Instruction> > externals;
    std::vector<std::unique_ptr<Function> > functions;

    // not output, internally used for quick & dirty canonical (unique) creation

    // map type opcodes to constant inst.
    std::unordered_map<unsigned int, std::vector<Instruction*>> groupedConstants;
    // map struct-id to constant instructions
    std::unordered_map<unsigned int, std::vector<Instruction*>> groupedStructConstants;
    // map type opcodes to type instructions
    std::unordered_map<unsigned int, std::vector<Instruction*>> groupedTypes;
    // map type opcodes to debug type instructions
    std::unordered_map<unsigned int, std::vector<Instruction*>> groupedDebugTypes;
    // list of OpConstantNull instructions
    std::vector<Instruction*> nullConstants;

    // stack of switches
    std::stack<Block*> switchMerges;

    // Our loop stack.
    std::stack<LoopBlocks> loops;

    // map from strings to their string ids
    std::unordered_map<std::string, spv::Id> stringIds;

    // map from include file name ids to their contents
    std::map<spv::Id, const std::string*> includeFiles;

    // map from core id to debug id
    std::map <spv::Id, spv::Id> debugId;

    // map from file name string id to DebugSource id
    std::unordered_map<spv::Id, spv::Id> debugSourceId;

    // The stream for outputting warnings and errors.
    SpvBuildLogger* logger;
};  // end Builder class

};  // end spv namespace

#endif // SpvBuilder_H