// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/text_handler.h" #include #include #include #include #include #include "source/assembly_grammar.h" #include "source/binary.h" #include "source/ext_inst.h" #include "source/instruction.h" #include "source/opcode.h" #include "source/text.h" #include "source/util/bitutils.h" #include "source/util/hex_float.h" #include "source/util/parse_number.h" namespace spvtools { namespace { // Advances |text| to the start of the next line and writes the new position to // |position|. spv_result_t advanceLine(spv_text text, spv_position position) { while (true) { if (position->index >= text->length) return SPV_END_OF_STREAM; switch (text->str[position->index]) { case '\0': return SPV_END_OF_STREAM; case '\n': position->column = 0; position->line++; position->index++; return SPV_SUCCESS; default: position->column++; position->index++; break; } } } // Advances |text| to first non white space character and writes the new // position to |position|. // If a null terminator is found during the text advance, SPV_END_OF_STREAM is // returned, SPV_SUCCESS otherwise. No error checking is performed on the // parameters, its the users responsibility to ensure these are non null. spv_result_t advance(spv_text text, spv_position position) { // NOTE: Consume white space, otherwise don't advance. if (position->index >= text->length) return SPV_END_OF_STREAM; switch (text->str[position->index]) { case '\0': return SPV_END_OF_STREAM; case ';': if (spv_result_t error = advanceLine(text, position)) return error; return advance(text, position); case ' ': case '\t': case '\r': position->column++; position->index++; return advance(text, position); case '\n': position->column = 0; position->line++; position->index++; return advance(text, position); default: break; } return SPV_SUCCESS; } // Fetches the next word from the given text stream starting from the given // *position. On success, writes the decoded word into *word and updates // *position to the location past the returned word. // // A word ends at the next comment or whitespace. However, double-quoted // strings remain intact, and a backslash always escapes the next character. spv_result_t getWord(spv_text text, spv_position position, std::string* word) { if (!text->str || !text->length) return SPV_ERROR_INVALID_TEXT; if (!position) return SPV_ERROR_INVALID_POINTER; const size_t start_index = position->index; bool quoting = false; bool escaping = false; // NOTE: Assumes first character is not white space! while (true) { if (position->index >= text->length) { word->assign(text->str + start_index, text->str + position->index); return SPV_SUCCESS; } const char ch = text->str[position->index]; if (ch == '\\') { escaping = !escaping; } else { switch (ch) { case '"': if (!escaping) quoting = !quoting; break; case ' ': case ';': case '\t': case '\n': case '\r': if (escaping || quoting) break; // Fall through. case '\0': { // NOTE: End of word found! word->assign(text->str + start_index, text->str + position->index); return SPV_SUCCESS; } default: break; } escaping = false; } position->column++; position->index++; } } // Returns true if the characters in the text as position represent // the start of an Opcode. bool startsWithOp(spv_text text, spv_position position) { if (text->length < position->index + 3) return false; char ch0 = text->str[position->index]; char ch1 = text->str[position->index + 1]; char ch2 = text->str[position->index + 2]; return ('O' == ch0 && 'p' == ch1 && ('A' <= ch2 && ch2 <= 'Z')); } } // namespace const IdType kUnknownType = {0, false, IdTypeClass::kBottom}; // TODO(dneto): Reorder AssemblyContext definitions to match declaration order. // This represents all of the data that is only valid for the duration of // a single compilation. uint32_t AssemblyContext::spvNamedIdAssignOrGet(const char* textValue) { if (!ids_to_preserve_.empty()) { uint32_t id = 0; if (spvtools::utils::ParseNumber(textValue, &id)) { if (ids_to_preserve_.find(id) != ids_to_preserve_.end()) { bound_ = std::max(bound_, id + 1); return id; } } } const auto it = named_ids_.find(textValue); if (it == named_ids_.end()) { uint32_t id = next_id_++; if (!ids_to_preserve_.empty()) { while (ids_to_preserve_.find(id) != ids_to_preserve_.end()) { id = next_id_++; } } named_ids_.emplace(textValue, id); bound_ = std::max(bound_, id + 1); return id; } return it->second; } uint32_t AssemblyContext::getBound() const { return bound_; } spv_result_t AssemblyContext::advance() { return spvtools::advance(text_, ¤t_position_); } spv_result_t AssemblyContext::getWord(std::string* word, spv_position next_position) { *next_position = current_position_; return spvtools::getWord(text_, next_position, word); } bool AssemblyContext::startsWithOp() { return spvtools::startsWithOp(text_, ¤t_position_); } bool AssemblyContext::isStartOfNewInst() { spv_position_t pos = current_position_; if (spvtools::advance(text_, &pos)) return false; if (spvtools::startsWithOp(text_, &pos)) return true; std::string word; pos = current_position_; if (spvtools::getWord(text_, &pos, &word)) return false; if ('%' != word.front()) return false; if (spvtools::advance(text_, &pos)) return false; if (spvtools::getWord(text_, &pos, &word)) return false; if ("=" != word) return false; if (spvtools::advance(text_, &pos)) return false; if (spvtools::startsWithOp(text_, &pos)) return true; return false; } char AssemblyContext::peek() const { return text_->str[current_position_.index]; } bool AssemblyContext::hasText() const { return text_->length > current_position_.index; } void AssemblyContext::seekForward(uint32_t size) { current_position_.index += size; current_position_.column += size; } spv_result_t AssemblyContext::binaryEncodeU32(const uint32_t value, spv_instruction_t* pInst) { pInst->words.insert(pInst->words.end(), value); return SPV_SUCCESS; } spv_result_t AssemblyContext::binaryEncodeNumericLiteral( const char* val, spv_result_t error_code, const IdType& type, spv_instruction_t* pInst) { using spvtools::utils::EncodeNumberStatus; // Populate the NumberType from the IdType for parsing. spvtools::utils::NumberType number_type; switch (type.type_class) { case IdTypeClass::kOtherType: return diagnostic(SPV_ERROR_INTERNAL) << "Unexpected numeric literal type"; case IdTypeClass::kScalarIntegerType: if (type.isSigned) { number_type = {type.bitwidth, SPV_NUMBER_SIGNED_INT}; } else { number_type = {type.bitwidth, SPV_NUMBER_UNSIGNED_INT}; } break; case IdTypeClass::kScalarFloatType: number_type = {type.bitwidth, SPV_NUMBER_FLOATING}; break; case IdTypeClass::kBottom: // kBottom means the type is unknown and we need to infer the type before // parsing the number. The rule is: If there is a decimal point, treat // the value as a floating point value, otherwise a integer value, then // if the first char of the integer text is '-', treat the integer as a // signed integer, otherwise an unsigned integer. uint32_t bitwidth = static_cast(assumedBitWidth(type)); if (strchr(val, '.')) { number_type = {bitwidth, SPV_NUMBER_FLOATING}; } else if (type.isSigned || val[0] == '-') { number_type = {bitwidth, SPV_NUMBER_SIGNED_INT}; } else { number_type = {bitwidth, SPV_NUMBER_UNSIGNED_INT}; } break; } std::string error_msg; EncodeNumberStatus parse_status = ParseAndEncodeNumber( val, number_type, [this, pInst](uint32_t d) { this->binaryEncodeU32(d, pInst); }, &error_msg); switch (parse_status) { case EncodeNumberStatus::kSuccess: return SPV_SUCCESS; case EncodeNumberStatus::kInvalidText: return diagnostic(error_code) << error_msg; case EncodeNumberStatus::kUnsupported: return diagnostic(SPV_ERROR_INTERNAL) << error_msg; case EncodeNumberStatus::kInvalidUsage: return diagnostic(SPV_ERROR_INVALID_TEXT) << error_msg; } // This line is not reachable, only added to satisfy the compiler. return diagnostic(SPV_ERROR_INTERNAL) << "Unexpected result code from ParseAndEncodeNumber()"; } spv_result_t AssemblyContext::binaryEncodeString(const char* value, spv_instruction_t* pInst) { const size_t length = strlen(value); const size_t wordCount = (length / 4) + 1; const size_t oldWordCount = pInst->words.size(); const size_t newWordCount = oldWordCount + wordCount; // TODO(dneto): We can just defer this check until later. if (newWordCount > SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX) { return diagnostic() << "Instruction too long: more than " << SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX << " words."; } pInst->words.resize(newWordCount); // Make sure all the bytes in the last word are 0, in case we only // write a partial word at the end. pInst->words.back() = 0; char* dest = (char*)&pInst->words[oldWordCount]; strncpy(dest, value, length + 1); return SPV_SUCCESS; } spv_result_t AssemblyContext::recordTypeDefinition( const spv_instruction_t* pInst) { uint32_t value = pInst->words[1]; if (types_.find(value) != types_.end()) { return diagnostic() << "Value " << value << " has already been used to generate a type"; } if (pInst->opcode == SpvOpTypeInt) { if (pInst->words.size() != 4) return diagnostic() << "Invalid OpTypeInt instruction"; types_[value] = {pInst->words[2], pInst->words[3] != 0, IdTypeClass::kScalarIntegerType}; } else if (pInst->opcode == SpvOpTypeFloat) { if (pInst->words.size() != 3) return diagnostic() << "Invalid OpTypeFloat instruction"; types_[value] = {pInst->words[2], false, IdTypeClass::kScalarFloatType}; } else { types_[value] = {0, false, IdTypeClass::kOtherType}; } return SPV_SUCCESS; } IdType AssemblyContext::getTypeOfTypeGeneratingValue(uint32_t value) const { auto type = types_.find(value); if (type == types_.end()) { return kUnknownType; } return std::get<1>(*type); } IdType AssemblyContext::getTypeOfValueInstruction(uint32_t value) const { auto type_value = value_types_.find(value); if (type_value == value_types_.end()) { return {0, false, IdTypeClass::kBottom}; } return getTypeOfTypeGeneratingValue(std::get<1>(*type_value)); } spv_result_t AssemblyContext::recordTypeIdForValue(uint32_t value, uint32_t type) { bool successfully_inserted = false; std::tie(std::ignore, successfully_inserted) = value_types_.insert(std::make_pair(value, type)); if (!successfully_inserted) return diagnostic() << "Value is being defined a second time"; return SPV_SUCCESS; } spv_result_t AssemblyContext::recordIdAsExtInstImport( uint32_t id, spv_ext_inst_type_t type) { bool successfully_inserted = false; std::tie(std::ignore, successfully_inserted) = import_id_to_ext_inst_type_.insert(std::make_pair(id, type)); if (!successfully_inserted) return diagnostic() << "Import Id is being defined a second time"; return SPV_SUCCESS; } spv_ext_inst_type_t AssemblyContext::getExtInstTypeForId(uint32_t id) const { auto type = import_id_to_ext_inst_type_.find(id); if (type == import_id_to_ext_inst_type_.end()) { return SPV_EXT_INST_TYPE_NONE; } return std::get<1>(*type); } std::set AssemblyContext::GetNumericIds() const { std::set ids; for (const auto& kv : named_ids_) { uint32_t id; if (spvtools::utils::ParseNumber(kv.first.c_str(), &id)) ids.insert(id); } return ids; } } // namespace spvtools