aboutsummaryrefslogtreecommitdiff
path: root/source/util/huffman_codec.h
blob: 2e74d6b8a51dd10ec8eae30ad8f0e38523e2ed56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Contains utils for reading, writing and debug printing bit streams.

#ifndef LIBSPIRV_UTIL_HUFFMAN_CODEC_H_
#define LIBSPIRV_UTIL_HUFFMAN_CODEC_H_

#include <algorithm>
#include <cassert>
#include <functional>
#include <queue>
#include <iomanip>
#include <map>
#include <memory>
#include <ostream>
#include <sstream>
#include <stack>
#include <tuple>
#include <unordered_map>
#include <vector>

namespace spvutils {

// Used to generate and apply a Huffman coding scheme.
// |Val| is the type of variable being encoded (for example a string or a
// literal).
template <class Val>
class HuffmanCodec {
  struct Node;

 public:
  // Creates Huffman codec from a histogramm.
  // Histogramm counts must not be zero.
  explicit HuffmanCodec(const std::map<Val, uint32_t>& hist) {
    if (hist.empty()) return;

    // Heuristic estimate.
    all_nodes_.reserve(3 * hist.size());

    // The queue is sorted in ascending order by weight (or by node id if
    // weights are equal).
    std::vector<Node*> queue_vector;
    queue_vector.reserve(hist.size());
    std::priority_queue<Node*, std::vector<Node*>,
        std::function<bool(const Node*, const Node*)>>
            queue(LeftIsBigger, std::move(queue_vector));

    // Put all leaves in the queue.
    for (const auto& pair : hist) {
      Node* node = CreateNode();
      node->val = pair.first;
      node->weight = pair.second;
      assert(node->weight);
      queue.push(node);
    }

    // Form the tree by combining two subtrees with the least weight,
    // and pushing the root of the new tree in the queue.
    while (true) {
      // We push a node at the end of each iteration, so the queue is never
      // supposed to be empty at this point, unless there are no leaves, but
      // that case was already handled.
      assert(!queue.empty());
      Node* right = queue.top();
      queue.pop();

      // If the queue is empty at this point, then the last node is
      // the root of the complete Huffman tree.
      if (queue.empty()) {
        root_ = right;
        break;
      }

      Node* left = queue.top();
      queue.pop();

      // Combine left and right into a new tree and push it into the queue.
      Node* parent = CreateNode();
      parent->weight = right->weight + left->weight;
      parent->left = left;
      parent->right = right;
      queue.push(parent);
    }

    // Traverse the tree and form encoding table.
    CreateEncodingTable();
  }

  // Prints the Huffman tree in the following format:
  // w------w------'x'
  //        w------'y'
  // Where w stands for the weight of the node.
  // Right tree branches appear above left branches. Taking the right path
  // adds 1 to the code, taking the left adds 0.
  void PrintTree(std::ostream& out) {
    PrintTreeInternal(out, root_, 0);
  }

  // Traverses the tree and prints the Huffman table: value, code
  // and optionally node weight for every leaf.
  void PrintTable(std::ostream& out, bool print_weights = true) {
    std::queue<std::pair<Node*, std::string>> queue;
    queue.emplace(root_, "");

    while (!queue.empty()) {
      const Node* node = queue.front().first;
      const std::string code = queue.front().second;
      queue.pop();
      if (!node->right && !node->left) {
        out << node->val;
        if (print_weights)
            out << " " << node->weight;
        out << " " << code << std::endl;
      } else {
        if (node->left)
          queue.emplace(node->left, code + "0");

        if (node->right)
          queue.emplace(node->right, code + "1");
      }
    }
  }

  // Returns the Huffman table. The table was built at at construction time,
  // this function just returns a const reference.
  const std::unordered_map<Val, std::pair<uint64_t, size_t>>&
      GetEncodingTable() const {
    return encoding_table_;
  }

  // Encodes |val| and stores its Huffman code in the lower |num_bits| of
  // |bits|. Returns false of |val| is not in the Huffman table.
  bool Encode(const Val& val, uint64_t* bits, size_t* num_bits) {
    auto it = encoding_table_.find(val);
    if (it == encoding_table_.end())
      return false;
    *bits = it->second.first;
    *num_bits = it->second.second;
    return true;
  }

  // Reads bits one-by-one using callback |read_bit| until a match is found.
  // Matching value is stored in |val|. Returns false if |read_bit| terminates
  // before a code was mathced.
  // |read_bit| has type bool func(bool* bit). When called, the next bit is
  // stored in |bit|. |read_bit| returns false if the stream terminates
  // prematurely.
  bool DecodeFromStream(const std::function<bool(bool*)>& read_bit, Val* val) {
    Node* node = root_;
    while (true) {
      assert(node);

      if (node->left == nullptr && node->right == nullptr) {
        *val = node->val;
        return true;
      }

      bool go_right;
      if (!read_bit(&go_right))
        return false;

      if (go_right)
        node = node->right;
      else
        node = node->left;
    }

    assert (0);
    return false;
  }

 private:
  // Huffman tree node.
  struct Node {
    Val val = Val();
    uint32_t weight = 0;
    // Ids are issued sequentially starting from 1. Ids are used as an ordering
    // tie-breaker, to make sure that the ordering (and resulting coding scheme)
    // are consistent accross multiple platforms.
    uint32_t id = 0;
    Node* left = nullptr;
    Node* right = nullptr;
  };

  // Returns true if |left| has bigger weight than |right|. Node ids are
  // used as tie-breaker.
  static bool LeftIsBigger(const Node* left, const Node* right) {
    if (left->weight == right->weight) {
      assert (left->id != right->id);
      return left->id > right->id;
    }
    return left->weight > right->weight;
  }

  // Prints subtree (helper function used by PrintTree).
  static void PrintTreeInternal(std::ostream& out, Node* node, size_t depth) {
    if (!node)
      return;

    const size_t kTextFieldWidth = 7;

    if (!node->right && !node->left) {
      out << node->val << std::endl;
    } else {
      if (node->right) {
        std::stringstream label;
        label << std::setfill('-') << std::left << std::setw(kTextFieldWidth)
              << node->right->weight;
        out << label.str();
        PrintTreeInternal(out, node->right, depth + 1);
      }

      if (node->left) {
        out << std::string(depth * kTextFieldWidth, ' ');
        std::stringstream label;
        label << std::setfill('-') << std::left << std::setw(kTextFieldWidth)
              << node->left->weight;
        out << label.str();
        PrintTreeInternal(out, node->left, depth + 1);
      }
    }
  }

  // Traverses the Huffman tree and saves paths to the leaves as bit
  // sequences to encoding_table_.
  void CreateEncodingTable() {
    struct Context {
      Context(Node* in_node, uint64_t in_bits, size_t in_depth)
          :  node(in_node), bits(in_bits), depth(in_depth) {}
      Node* node;
      // Huffman tree depth cannot exceed 64 as histogramm counts are expected
      // to be positive and limited by numeric_limits<uint32_t>::max().
      // For practical applications tree depth would be much smaller than 64.
      uint64_t bits;
      size_t depth;
    };

    std::queue<Context> queue;
    queue.emplace(root_, 0, 0);

    while (!queue.empty()) {
      const Context& context = queue.front();
      const Node* node = context.node;
      const uint64_t bits = context.bits;
      const size_t depth = context.depth;
      queue.pop();

      if (!node->right && !node->left) {
        auto insertion_result = encoding_table_.emplace(
            node->val, std::pair<uint64_t, size_t>(bits, depth));
        assert(insertion_result.second);
        (void)insertion_result;
      } else {
        if (node->left)
          queue.emplace(node->left, bits, depth + 1);

        if (node->right)
          queue.emplace(node->right, bits | (1ULL << depth), depth + 1);
      }
    }
  }

  // Creates new Huffman tree node and stores it in the deleter array.
  Node* CreateNode() {
    all_nodes_.emplace_back(new Node());
    all_nodes_.back()->id = next_node_id_++;
    return all_nodes_.back().get();
  }

  // Huffman tree root.
  Node* root_ = nullptr;

  // Huffman tree deleter.
  std::vector<std::unique_ptr<Node>> all_nodes_;

  // Encoding table value -> {bits, num_bits}.
  // Huffman codes are expected to never exceed 64 bit length (this is in fact
  // impossible if frequencies are stored as uint32_t).
  std::unordered_map<Val, std::pair<uint64_t, size_t>> encoding_table_;

  // Next node id issued by CreateNode();
  uint32_t next_node_id_ = 1;
};

}  // namespace spvutils

#endif  // LIBSPIRV_UTIL_HUFFMAN_CODEC_H_