aboutsummaryrefslogtreecommitdiff
path: root/source/val/validate_cfg.cpp
blob: 7842e56de28ab9423ac81c77dd94b80aa830dca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <iterator>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "source/cfa.h"
#include "source/opcode.h"
#include "source/spirv_target_env.h"
#include "source/spirv_validator_options.h"
#include "source/val/basic_block.h"
#include "source/val/construct.h"
#include "source/val/function.h"
#include "source/val/validate.h"
#include "source/val/validation_state.h"

namespace spvtools {
namespace val {
namespace {

spv_result_t ValidatePhi(ValidationState_t& _, const Instruction* inst) {
  auto block = inst->block();
  size_t num_in_ops = inst->words().size() - 3;
  if (num_in_ops % 2 != 0) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpPhi does not have an equal number of incoming values and "
              "basic blocks.";
  }

  if (_.IsVoidType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "OpPhi must not have void result type";
  }
  if (_.IsPointerType(inst->type_id()) &&
      _.addressing_model() == SpvAddressingModelLogical) {
    if (!_.features().variable_pointers &&
        !_.features().variable_pointers_storage_buffer) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using pointers with OpPhi requires capability "
             << "VariablePointers or VariablePointersStorageBuffer";
    }
  }

  const Instruction* type_inst = _.FindDef(inst->type_id());
  assert(type_inst);
  const SpvOp type_opcode = type_inst->opcode();

  if (!_.options()->before_hlsl_legalization) {
    if (type_opcode == SpvOpTypeSampledImage ||
        (_.HasCapability(SpvCapabilityShader) &&
         (type_opcode == SpvOpTypeImage || type_opcode == SpvOpTypeSampler))) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Result type cannot be Op" << spvOpcodeString(type_opcode);
    }
  }

  // Create a uniqued vector of predecessor ids for comparison against
  // incoming values. OpBranchConditional %cond %label %label produces two
  // predecessors in the CFG.
  std::vector<uint32_t> pred_ids;
  std::transform(block->predecessors()->begin(), block->predecessors()->end(),
                 std::back_inserter(pred_ids),
                 [](const BasicBlock* b) { return b->id(); });
  std::sort(pred_ids.begin(), pred_ids.end());
  pred_ids.erase(std::unique(pred_ids.begin(), pred_ids.end()), pred_ids.end());

  size_t num_edges = num_in_ops / 2;
  if (num_edges != pred_ids.size()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpPhi's number of incoming blocks (" << num_edges
           << ") does not match block's predecessor count ("
           << block->predecessors()->size() << ").";
  }

  std::unordered_set<uint32_t> observed_predecessors;

  for (size_t i = 3; i < inst->words().size(); ++i) {
    auto inc_id = inst->word(i);
    if (i % 2 == 1) {
      // Incoming value type must match the phi result type.
      auto inc_type_id = _.GetTypeId(inc_id);
      if (inst->type_id() != inc_type_id) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "OpPhi's result type <id> " << _.getIdName(inst->type_id())
               << " does not match incoming value <id> " << _.getIdName(inc_id)
               << " type <id> " << _.getIdName(inc_type_id) << ".";
      }
    } else {
      if (_.GetIdOpcode(inc_id) != SpvOpLabel) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
               << " is not an OpLabel.";
      }

      // Incoming basic block must be an immediate predecessor of the phi's
      // block.
      if (!std::binary_search(pred_ids.begin(), pred_ids.end(), inc_id)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
               << " is not a predecessor of <id> " << _.getIdName(block->id())
               << ".";
      }

      // We must not have already seen this predecessor as one of the phi's
      // operands.
      if (observed_predecessors.count(inc_id) != 0) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "OpPhi references incoming basic block <id> "
               << _.getIdName(inc_id) << " multiple times.";
      }

      // Note the fact that we have now observed this predecessor.
      observed_predecessors.insert(inc_id);
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateBranch(ValidationState_t& _, const Instruction* inst) {
  // target operands must be OpLabel
  const auto id = inst->GetOperandAs<uint32_t>(0);
  const auto target = _.FindDef(id);
  if (!target || SpvOpLabel != target->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "'Target Label' operands for OpBranch must be the ID "
              "of an OpLabel instruction";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateBranchConditional(ValidationState_t& _,
                                       const Instruction* inst) {
  // num_operands is either 3 or 5 --- if 5, the last two need to be literal
  // integers
  const auto num_operands = inst->operands().size();
  if (num_operands != 3 && num_operands != 5) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpBranchConditional requires either 3 or 5 parameters";
  }

  // grab the condition operand and check that it is a bool
  const auto cond_id = inst->GetOperandAs<uint32_t>(0);
  const auto cond_op = _.FindDef(cond_id);
  if (!cond_op || !cond_op->type_id() ||
      !_.IsBoolScalarType(cond_op->type_id())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst) << "Condition operand for "
                                                 "OpBranchConditional must be "
                                                 "of boolean type";
  }

  // target operands must be OpLabel
  // note that we don't need to check that the target labels are in the same
  // function,
  // PerformCfgChecks already checks for that
  const auto true_id = inst->GetOperandAs<uint32_t>(1);
  const auto true_target = _.FindDef(true_id);
  if (!true_target || SpvOpLabel != true_target->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The 'True Label' operand for OpBranchConditional must be the "
              "ID of an OpLabel instruction";
  }

  const auto false_id = inst->GetOperandAs<uint32_t>(2);
  const auto false_target = _.FindDef(false_id);
  if (!false_target || SpvOpLabel != false_target->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The 'False Label' operand for OpBranchConditional must be the "
              "ID of an OpLabel instruction";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateSwitch(ValidationState_t& _, const Instruction* inst) {
  const auto num_operands = inst->operands().size();
  // At least two operands (selector, default), any more than that are
  // literal/target.

  const auto sel_type_id = _.GetOperandTypeId(inst, 0);
  if (!_.IsIntScalarType(sel_type_id)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Selector type must be OpTypeInt";
  }

  const auto default_label = _.FindDef(inst->GetOperandAs<uint32_t>(1));
  if (default_label->opcode() != SpvOpLabel) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Default must be an OpLabel instruction";
  }

  // target operands must be OpLabel
  for (size_t i = 2; i < num_operands; i += 2) {
    // literal, id
    const auto id = inst->GetOperandAs<uint32_t>(i + 1);
    const auto target = _.FindDef(id);
    if (!target || SpvOpLabel != target->opcode()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "'Target Label' operands for OpSwitch must be IDs of an "
                "OpLabel instruction";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateReturnValue(ValidationState_t& _,
                                 const Instruction* inst) {
  const auto value_id = inst->GetOperandAs<uint32_t>(0);
  const auto value = _.FindDef(value_id);
  if (!value || !value->type_id()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpReturnValue Value <id> '" << _.getIdName(value_id)
           << "' does not represent a value.";
  }
  auto value_type = _.FindDef(value->type_id());
  if (!value_type || SpvOpTypeVoid == value_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpReturnValue value's type <id> '"
           << _.getIdName(value->type_id()) << "' is missing or void.";
  }

  const bool uses_variable_pointer =
      _.features().variable_pointers ||
      _.features().variable_pointers_storage_buffer;

  if (_.addressing_model() == SpvAddressingModelLogical &&
      SpvOpTypePointer == value_type->opcode() && !uses_variable_pointer &&
      !_.options()->relax_logical_pointer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpReturnValue value's type <id> '"
           << _.getIdName(value->type_id())
           << "' is a pointer, which is invalid in the Logical addressing "
              "model.";
  }

  const auto function = inst->function();
  const auto return_type = _.FindDef(function->GetResultTypeId());
  if (!return_type || return_type->id() != value_type->id()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpReturnValue Value <id> '" << _.getIdName(value_id)
           << "'s type does not match OpFunction's return type.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateLoopMerge(ValidationState_t& _, const Instruction* inst) {
  const auto merge_id = inst->GetOperandAs<uint32_t>(0);
  const auto merge = _.FindDef(merge_id);
  if (!merge || merge->opcode() != SpvOpLabel) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Merge Block " << _.getIdName(merge_id) << " must be an OpLabel";
  }
  if (merge_id == inst->block()->id()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Merge Block may not be the block containing the OpLoopMerge\n";
  }

  const auto continue_id = inst->GetOperandAs<uint32_t>(1);
  const auto continue_target = _.FindDef(continue_id);
  if (!continue_target || continue_target->opcode() != SpvOpLabel) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Continue Target " << _.getIdName(continue_id)
           << " must be an OpLabel";
  }

  if (merge_id == continue_id) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Merge Block and Continue Target must be different ids";
  }

  const auto loop_control = inst->GetOperandAs<uint32_t>(2);
  if ((loop_control >> SpvLoopControlUnrollShift) & 0x1 &&
      (loop_control >> SpvLoopControlDontUnrollShift) & 0x1) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Unroll and DontUnroll loop controls must not both be specified";
  }
  if ((loop_control >> SpvLoopControlDontUnrollShift) & 0x1 &&
      (loop_control >> SpvLoopControlPeelCountShift) & 0x1) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PeelCount and DontUnroll "
                                                   "loop controls must not "
                                                   "both be specified";
  }
  if ((loop_control >> SpvLoopControlDontUnrollShift) & 0x1 &&
      (loop_control >> SpvLoopControlPartialCountShift) & 0x1) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PartialCount and "
                                                   "DontUnroll loop controls "
                                                   "must not both be specified";
  }

  uint32_t operand = 3;
  if ((loop_control >> SpvLoopControlDependencyLengthShift) & 0x1) {
    ++operand;
  }
  if ((loop_control >> SpvLoopControlMinIterationsShift) & 0x1) {
    ++operand;
  }
  if ((loop_control >> SpvLoopControlMaxIterationsShift) & 0x1) {
    ++operand;
  }
  if ((loop_control >> SpvLoopControlIterationMultipleShift) & 0x1) {
    if (inst->operands().size() < operand ||
        inst->GetOperandAs<uint32_t>(operand) == 0) {
      return _.diag(SPV_ERROR_INVALID_DATA, inst) << "IterationMultiple loop "
                                                     "control operand must be "
                                                     "greater than zero";
    }
    ++operand;
  }
  if ((loop_control >> SpvLoopControlPeelCountShift) & 0x1) {
    ++operand;
  }
  if ((loop_control >> SpvLoopControlPartialCountShift) & 0x1) {
    ++operand;
  }

  // That the right number of operands is present is checked by the parser. The
  // above code tracks operands for expanded validation checking in the future.

  return SPV_SUCCESS;
}

}  // namespace

void printDominatorList(const BasicBlock& b) {
  std::cout << b.id() << " is dominated by: ";
  const BasicBlock* bb = &b;
  while (bb->immediate_dominator() != bb) {
    bb = bb->immediate_dominator();
    std::cout << bb->id() << " ";
  }
}

#define CFG_ASSERT(ASSERT_FUNC, TARGET) \
  if (spv_result_t rcode = ASSERT_FUNC(_, TARGET)) return rcode

spv_result_t FirstBlockAssert(ValidationState_t& _, uint32_t target) {
  if (_.current_function().IsFirstBlock(target)) {
    return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
           << "First block " << _.getIdName(target) << " of function "
           << _.getIdName(_.current_function().id()) << " is targeted by block "
           << _.getIdName(_.current_function().current_block()->id());
  }
  return SPV_SUCCESS;
}

spv_result_t MergeBlockAssert(ValidationState_t& _, uint32_t merge_block) {
  if (_.current_function().IsBlockType(merge_block, kBlockTypeMerge)) {
    return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
           << "Block " << _.getIdName(merge_block)
           << " is already a merge block for another header";
  }
  return SPV_SUCCESS;
}

/// Update the continue construct's exit blocks once the backedge blocks are
/// identified in the CFG.
void UpdateContinueConstructExitBlocks(
    Function& function,
    const std::vector<std::pair<uint32_t, uint32_t>>& back_edges) {
  auto& constructs = function.constructs();
  // TODO(umar): Think of a faster way to do this
  for (auto& edge : back_edges) {
    uint32_t back_edge_block_id;
    uint32_t loop_header_block_id;
    std::tie(back_edge_block_id, loop_header_block_id) = edge;
    auto is_this_header = [=](Construct& c) {
      return c.type() == ConstructType::kLoop &&
             c.entry_block()->id() == loop_header_block_id;
    };

    for (auto construct : constructs) {
      if (is_this_header(construct)) {
        Construct* continue_construct =
            construct.corresponding_constructs().back();
        assert(continue_construct->type() == ConstructType::kContinue);

        BasicBlock* back_edge_block;
        std::tie(back_edge_block, std::ignore) =
            function.GetBlock(back_edge_block_id);
        continue_construct->set_exit(back_edge_block);
      }
    }
  }
}

std::tuple<std::string, std::string, std::string> ConstructNames(
    ConstructType type) {
  std::string construct_name, header_name, exit_name;

  switch (type) {
    case ConstructType::kSelection:
      construct_name = "selection";
      header_name = "selection header";
      exit_name = "merge block";
      break;
    case ConstructType::kLoop:
      construct_name = "loop";
      header_name = "loop header";
      exit_name = "merge block";
      break;
    case ConstructType::kContinue:
      construct_name = "continue";
      header_name = "continue target";
      exit_name = "back-edge block";
      break;
    case ConstructType::kCase:
      construct_name = "case";
      header_name = "case entry block";
      exit_name = "case exit block";
      break;
    default:
      assert(1 == 0 && "Not defined type");
  }

  return std::make_tuple(construct_name, header_name, exit_name);
}

/// Constructs an error message for construct validation errors
std::string ConstructErrorString(const Construct& construct,
                                 const std::string& header_string,
                                 const std::string& exit_string,
                                 const std::string& dominate_text) {
  std::string construct_name, header_name, exit_name;
  std::tie(construct_name, header_name, exit_name) =
      ConstructNames(construct.type());

  // TODO(umar): Add header block for continue constructs to error message
  return "The " + construct_name + " construct with the " + header_name + " " +
         header_string + " " + dominate_text + " the " + exit_name + " " +
         exit_string;
}

// Finds the fall through case construct of |target_block| and records it in
// |case_fall_through|. Returns SPV_ERROR_INVALID_CFG if the case construct
// headed by |target_block| branches to multiple case constructs.
spv_result_t FindCaseFallThrough(
    ValidationState_t& _, BasicBlock* target_block, uint32_t* case_fall_through,
    const BasicBlock* merge, const std::unordered_set<uint32_t>& case_targets,
    Function* function) {
  std::vector<BasicBlock*> stack;
  stack.push_back(target_block);
  std::unordered_set<const BasicBlock*> visited;
  bool target_reachable = target_block->reachable();
  int target_depth = function->GetBlockDepth(target_block);
  while (!stack.empty()) {
    auto block = stack.back();
    stack.pop_back();

    if (block == merge) continue;

    if (!visited.insert(block).second) continue;

    if (target_reachable && block->reachable() &&
        target_block->dominates(*block)) {
      // Still in the case construct.
      for (auto successor : *block->successors()) {
        stack.push_back(successor);
      }
    } else {
      // Exiting the case construct to non-merge block.
      if (!case_targets.count(block->id())) {
        int depth = function->GetBlockDepth(block);
        if ((depth < target_depth) ||
            (depth == target_depth && block->is_type(kBlockTypeContinue))) {
          continue;
        }

        return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
               << "Case construct that targets "
               << _.getIdName(target_block->id())
               << " has invalid branch to block " << _.getIdName(block->id())
               << " (not another case construct, corresponding merge, outer "
                  "loop merge or outer loop continue)";
      }

      if (*case_fall_through == 0u) {
        if (target_block != block) {
          *case_fall_through = block->id();
        }
      } else if (*case_fall_through != block->id()) {
        // Case construct has at most one branch to another case construct.
        return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
               << "Case construct that targets "
               << _.getIdName(target_block->id())
               << " has branches to multiple other case construct targets "
               << _.getIdName(*case_fall_through) << " and "
               << _.getIdName(block->id());
      }
    }
  }

  return SPV_SUCCESS;
}

spv_result_t StructuredSwitchChecks(ValidationState_t& _, Function* function,
                                    const Instruction* switch_inst,
                                    const BasicBlock* header,
                                    const BasicBlock* merge) {
  std::unordered_set<uint32_t> case_targets;
  for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
    uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
    if (target != merge->id()) case_targets.insert(target);
  }
  // Tracks how many times each case construct is targeted by another case
  // construct.
  std::map<uint32_t, uint32_t> num_fall_through_targeted;
  uint32_t default_case_fall_through = 0u;
  uint32_t default_target = switch_inst->GetOperandAs<uint32_t>(1u);
  bool default_appears_multiple_times = false;
  for (uint32_t i = 3; i < switch_inst->operands().size(); i += 2) {
    if (default_target == switch_inst->GetOperandAs<uint32_t>(i)) {
      default_appears_multiple_times = true;
      break;
    }
  }
  std::unordered_map<uint32_t, uint32_t> seen_to_fall_through;
  for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
    uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
    if (target == merge->id()) continue;

    uint32_t case_fall_through = 0u;
    auto seen_iter = seen_to_fall_through.find(target);
    if (seen_iter == seen_to_fall_through.end()) {
      const auto target_block = function->GetBlock(target).first;
      // OpSwitch must dominate all its case constructs.
      if (header->reachable() && target_block->reachable() &&
          !header->dominates(*target_block)) {
        return _.diag(SPV_ERROR_INVALID_CFG, header->label())
               << "Selection header " << _.getIdName(header->id())
               << " does not dominate its case construct "
               << _.getIdName(target);
      }

      if (auto error = FindCaseFallThrough(_, target_block, &case_fall_through,
                                           merge, case_targets, function)) {
        return error;
      }

      // Track how many time the fall through case has been targeted.
      if (case_fall_through != 0u) {
        auto where = num_fall_through_targeted.lower_bound(case_fall_through);
        if (where == num_fall_through_targeted.end() ||
            where->first != case_fall_through) {
          num_fall_through_targeted.insert(
              where, std::make_pair(case_fall_through, 1));
        } else {
          where->second++;
        }
      }
      seen_to_fall_through.insert(std::make_pair(target, case_fall_through));
    } else {
      case_fall_through = seen_iter->second;
    }

    if (case_fall_through == default_target &&
        !default_appears_multiple_times) {
      case_fall_through = default_case_fall_through;
    }
    if (case_fall_through != 0u) {
      bool is_default = i == 1;
      if (is_default) {
        default_case_fall_through = case_fall_through;
      } else {
        // Allow code like:
        // case x:
        // case y:
        //   ...
        // case z:
        //
        // Where x and y target the same block and fall through to z.
        uint32_t j = i;
        while ((j + 2 < switch_inst->operands().size()) &&
               target == switch_inst->GetOperandAs<uint32_t>(j + 2)) {
          j += 2;
        }
        // If Target T1 branches to Target T2, or if Target T1 branches to the
        // Default target and the Default target branches to Target T2, then T1
        // must immediately precede T2 in the list of OpSwitch Target operands.
        if ((switch_inst->operands().size() < j + 2) ||
            (case_fall_through != switch_inst->GetOperandAs<uint32_t>(j + 2))) {
          return _.diag(SPV_ERROR_INVALID_CFG, switch_inst)
                 << "Case construct that targets " << _.getIdName(target)
                 << " has branches to the case construct that targets "
                 << _.getIdName(case_fall_through)
                 << ", but does not immediately precede it in the "
                    "OpSwitch's target list";
        }
      }
    }
  }

  // Each case construct must be branched to by at most one other case
  // construct.
  for (const auto& pair : num_fall_through_targeted) {
    if (pair.second > 1) {
      return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pair.first))
             << "Multiple case constructs have branches to the case construct "
                "that targets "
             << _.getIdName(pair.first);
    }
  }

  return SPV_SUCCESS;
}

// Validates that all CFG divergences (i.e. conditional branch or switch) are
// structured correctly. Either divergence is preceded by a merge instruction
// or the divergence introduces at most one unseen label.
spv_result_t ValidateStructuredSelections(
    ValidationState_t& _, const std::vector<const BasicBlock*>& postorder) {
  std::unordered_set<uint32_t> seen;
  for (auto iter = postorder.rbegin(); iter != postorder.rend(); ++iter) {
    const auto* block = *iter;
    const auto* terminator = block->terminator();
    if (!terminator) continue;
    const auto index = terminator - &_.ordered_instructions()[0];
    auto* merge = &_.ordered_instructions()[index - 1];
    // Marks merges and continues as seen.
    if (merge->opcode() == SpvOpSelectionMerge) {
      seen.insert(merge->GetOperandAs<uint32_t>(0));
    } else if (merge->opcode() == SpvOpLoopMerge) {
      seen.insert(merge->GetOperandAs<uint32_t>(0));
      seen.insert(merge->GetOperandAs<uint32_t>(1));
    } else {
      // Only track the pointer if it is a merge instruction.
      merge = nullptr;
    }

    // Skip unreachable blocks.
    if (!block->reachable()) continue;

    if (terminator->opcode() == SpvOpBranchConditional) {
      const auto true_label = terminator->GetOperandAs<uint32_t>(1);
      const auto false_label = terminator->GetOperandAs<uint32_t>(2);
      // Mark the upcoming blocks as seen now, but only error out if this block
      // was missing a merge instruction and both labels hadn't been seen
      // previously.
      const bool true_label_unseen = seen.insert(true_label).second;
      const bool false_label_unseen = seen.insert(false_label).second;
      if (!merge && true_label_unseen && false_label_unseen) {
        return _.diag(SPV_ERROR_INVALID_CFG, terminator)
               << "Selection must be structured";
      }
    } else if (terminator->opcode() == SpvOpSwitch) {
      if (!merge) {
        return _.diag(SPV_ERROR_INVALID_CFG, terminator)
               << "OpSwitch must be preceeded by an OpSelectionMerge "
                  "instruction";
      }
      // Mark the targets as seen.
      for (uint32_t i = 1; i < terminator->operands().size(); i += 2) {
        const auto target = terminator->GetOperandAs<uint32_t>(i);
        seen.insert(target);
      }
    }
  }

  return SPV_SUCCESS;
}

spv_result_t StructuredControlFlowChecks(
    ValidationState_t& _, Function* function,
    const std::vector<std::pair<uint32_t, uint32_t>>& back_edges,
    const std::vector<const BasicBlock*>& postorder) {
  /// Check all backedges target only loop headers and have exactly one
  /// back-edge branching to it

  // Map a loop header to blocks with back-edges to the loop header.
  std::map<uint32_t, std::unordered_set<uint32_t>> loop_latch_blocks;
  for (auto back_edge : back_edges) {
    uint32_t back_edge_block;
    uint32_t header_block;
    std::tie(back_edge_block, header_block) = back_edge;
    if (!function->IsBlockType(header_block, kBlockTypeLoop)) {
      return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(back_edge_block))
             << "Back-edges (" << _.getIdName(back_edge_block) << " -> "
             << _.getIdName(header_block)
             << ") can only be formed between a block and a loop header.";
    }
    loop_latch_blocks[header_block].insert(back_edge_block);
  }

  // Check the loop headers have exactly one back-edge branching to it
  for (BasicBlock* loop_header : function->ordered_blocks()) {
    if (!loop_header->reachable()) continue;
    if (!loop_header->is_type(kBlockTypeLoop)) continue;
    auto loop_header_id = loop_header->id();
    auto num_latch_blocks = loop_latch_blocks[loop_header_id].size();
    if (num_latch_blocks != 1) {
      return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(loop_header_id))
             << "Loop header " << _.getIdName(loop_header_id)
             << " is targeted by " << num_latch_blocks
             << " back-edge blocks but the standard requires exactly one";
    }
  }

  // Check construct rules
  for (const Construct& construct : function->constructs()) {
    auto header = construct.entry_block();
    auto merge = construct.exit_block();

    if (header->reachable() && !merge) {
      std::string construct_name, header_name, exit_name;
      std::tie(construct_name, header_name, exit_name) =
          ConstructNames(construct.type());
      return _.diag(SPV_ERROR_INTERNAL, _.FindDef(header->id()))
             << "Construct " + construct_name + " with " + header_name + " " +
                    _.getIdName(header->id()) + " does not have a " +
                    exit_name + ". This may be a bug in the validator.";
    }

    // If the exit block is reachable then it's dominated by the
    // header.
    if (merge && merge->reachable()) {
      if (!header->dominates(*merge)) {
        return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
               << ConstructErrorString(construct, _.getIdName(header->id()),
                                       _.getIdName(merge->id()),
                                       "does not dominate");
      }
      // If it's really a merge block for a selection or loop, then it must be
      // *strictly* dominated by the header.
      if (construct.ExitBlockIsMergeBlock() && (header == merge)) {
        return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
               << ConstructErrorString(construct, _.getIdName(header->id()),
                                       _.getIdName(merge->id()),
                                       "does not strictly dominate");
      }
    }
    // Check post-dominance for continue constructs.  But dominance and
    // post-dominance only make sense when the construct is reachable.
    if (header->reachable() && construct.type() == ConstructType::kContinue) {
      if (!merge->postdominates(*header)) {
        return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
               << ConstructErrorString(construct, _.getIdName(header->id()),
                                       _.getIdName(merge->id()),
                                       "is not post dominated by");
      }
    }

    Construct::ConstructBlockSet construct_blocks = construct.blocks(function);
    std::string construct_name, header_name, exit_name;
    std::tie(construct_name, header_name, exit_name) =
        ConstructNames(construct.type());
    for (auto block : construct_blocks) {
      // Check that all exits from the construct are via structured exits.
      for (auto succ : *block->successors()) {
        if (block->reachable() && !construct_blocks.count(succ) &&
            !construct.IsStructuredExit(_, succ)) {
          return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
                 << "block <ID> " << _.getIdName(block->id()) << " exits the "
                 << construct_name << " headed by <ID> "
                 << _.getIdName(header->id())
                 << ", but not via a structured exit";
        }
      }
      if (block == header) continue;
      // Check that for all non-header blocks, all predecessors are within this
      // construct.
      for (auto pred : *block->predecessors()) {
        if (pred->reachable() && !construct_blocks.count(pred)) {
          return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pred->id()))
                 << "block <ID> " << pred->id() << " branches to the "
                 << construct_name << " construct, but not to the "
                 << header_name << " <ID> " << header->id();
        }
      }

      if (block->is_type(BlockType::kBlockTypeSelection) ||
          block->is_type(BlockType::kBlockTypeLoop)) {
        size_t index = (block->terminator() - &_.ordered_instructions()[0]) - 1;
        const auto& merge_inst = _.ordered_instructions()[index];
        if (merge_inst.opcode() == SpvOpSelectionMerge ||
            merge_inst.opcode() == SpvOpLoopMerge) {
          uint32_t merge_id = merge_inst.GetOperandAs<uint32_t>(0);
          auto merge_block = function->GetBlock(merge_id).first;
          if (merge_block->reachable() &&
              !construct_blocks.count(merge_block)) {
            return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
                   << "Header block " << _.getIdName(block->id())
                   << " is contained in the " << construct_name
                   << " construct headed by " << _.getIdName(header->id())
                   << ", but its merge block " << _.getIdName(merge_id)
                   << " is not";
          }
        }
      }
    }

    // Checks rules for case constructs.
    if (construct.type() == ConstructType::kSelection &&
        header->terminator()->opcode() == SpvOpSwitch) {
      const auto terminator = header->terminator();
      if (auto error =
              StructuredSwitchChecks(_, function, terminator, header, merge)) {
        return error;
      }
    }
  }

  if (auto error = ValidateStructuredSelections(_, postorder)) {
    return error;
  }

  return SPV_SUCCESS;
}

spv_result_t PerformCfgChecks(ValidationState_t& _) {
  for (auto& function : _.functions()) {
    // Check all referenced blocks are defined within a function
    if (function.undefined_block_count() != 0) {
      std::string undef_blocks("{");
      bool first = true;
      for (auto undefined_block : function.undefined_blocks()) {
        undef_blocks += _.getIdName(undefined_block);
        if (!first) {
          undef_blocks += " ";
        }
        first = false;
      }
      return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(function.id()))
             << "Block(s) " << undef_blocks << "}"
             << " are referenced but not defined in function "
             << _.getIdName(function.id());
    }

    // Set each block's immediate dominator and immediate postdominator,
    // and find all back-edges.
    //
    // We want to analyze all the blocks in the function, even in degenerate
    // control flow cases including unreachable blocks.  So use the augmented
    // CFG to ensure we cover all the blocks.
    std::vector<const BasicBlock*> postorder;
    std::vector<const BasicBlock*> postdom_postorder;
    std::vector<std::pair<uint32_t, uint32_t>> back_edges;
    auto ignore_block = [](const BasicBlock*) {};
    auto ignore_edge = [](const BasicBlock*, const BasicBlock*) {};
    if (!function.ordered_blocks().empty()) {
      /// calculate dominators
      CFA<BasicBlock>::DepthFirstTraversal(
          function.first_block(), function.AugmentedCFGSuccessorsFunction(),
          ignore_block, [&](const BasicBlock* b) { postorder.push_back(b); },
          ignore_edge);
      auto edges = CFA<BasicBlock>::CalculateDominators(
          postorder, function.AugmentedCFGPredecessorsFunction());
      for (auto edge : edges) {
        if (edge.first != edge.second)
          edge.first->SetImmediateDominator(edge.second);
      }

      /// calculate post dominators
      CFA<BasicBlock>::DepthFirstTraversal(
          function.pseudo_exit_block(),
          function.AugmentedCFGPredecessorsFunction(), ignore_block,
          [&](const BasicBlock* b) { postdom_postorder.push_back(b); },
          ignore_edge);
      auto postdom_edges = CFA<BasicBlock>::CalculateDominators(
          postdom_postorder, function.AugmentedCFGSuccessorsFunction());
      for (auto edge : postdom_edges) {
        edge.first->SetImmediatePostDominator(edge.second);
      }
      /// calculate back edges.
      CFA<BasicBlock>::DepthFirstTraversal(
          function.pseudo_entry_block(),
          function
              .AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge(),
          ignore_block, ignore_block,
          [&](const BasicBlock* from, const BasicBlock* to) {
            back_edges.emplace_back(from->id(), to->id());
          });
    }
    UpdateContinueConstructExitBlocks(function, back_edges);

    auto& blocks = function.ordered_blocks();
    if (!blocks.empty()) {
      // Check if the order of blocks in the binary appear before the blocks
      // they dominate
      for (auto block = begin(blocks) + 1; block != end(blocks); ++block) {
        if (auto idom = (*block)->immediate_dominator()) {
          if (idom != function.pseudo_entry_block() &&
              block == std::find(begin(blocks), block, idom)) {
            return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(idom->id()))
                   << "Block " << _.getIdName((*block)->id())
                   << " appears in the binary before its dominator "
                   << _.getIdName(idom->id());
          }
        }
      }
      // If we have structed control flow, check that no block has a control
      // flow nesting depth larger than the limit.
      if (_.HasCapability(SpvCapabilityShader)) {
        const int control_flow_nesting_depth_limit =
            _.options()->universal_limits_.max_control_flow_nesting_depth;
        for (auto block = begin(blocks); block != end(blocks); ++block) {
          if (function.GetBlockDepth(*block) >
              control_flow_nesting_depth_limit) {
            return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef((*block)->id()))
                   << "Maximum Control Flow nesting depth exceeded.";
          }
        }
      }
    }

    /// Structured control flow checks are only required for shader capabilities
    if (_.HasCapability(SpvCapabilityShader)) {
      if (auto error =
              StructuredControlFlowChecks(_, &function, back_edges, postorder))
        return error;
    }
  }
  return SPV_SUCCESS;
}

spv_result_t CfgPass(ValidationState_t& _, const Instruction* inst) {
  SpvOp opcode = inst->opcode();
  switch (opcode) {
    case SpvOpLabel:
      if (auto error = _.current_function().RegisterBlock(inst->id()))
        return error;

      // TODO(github:1661) This should be done in the
      // ValidationState::RegisterInstruction method but because of the order of
      // passes the OpLabel ends up not being part of the basic block it starts.
      _.current_function().current_block()->set_label(inst);
      break;
    case SpvOpLoopMerge: {
      uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
      uint32_t continue_block = inst->GetOperandAs<uint32_t>(1);
      CFG_ASSERT(MergeBlockAssert, merge_block);

      if (auto error = _.current_function().RegisterLoopMerge(merge_block,
                                                              continue_block))
        return error;
    } break;
    case SpvOpSelectionMerge: {
      uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
      CFG_ASSERT(MergeBlockAssert, merge_block);

      if (auto error = _.current_function().RegisterSelectionMerge(merge_block))
        return error;
    } break;
    case SpvOpBranch: {
      uint32_t target = inst->GetOperandAs<uint32_t>(0);
      CFG_ASSERT(FirstBlockAssert, target);

      _.current_function().RegisterBlockEnd({target});
    } break;
    case SpvOpBranchConditional: {
      uint32_t tlabel = inst->GetOperandAs<uint32_t>(1);
      uint32_t flabel = inst->GetOperandAs<uint32_t>(2);
      CFG_ASSERT(FirstBlockAssert, tlabel);
      CFG_ASSERT(FirstBlockAssert, flabel);

      _.current_function().RegisterBlockEnd({tlabel, flabel});
    } break;

    case SpvOpSwitch: {
      std::vector<uint32_t> cases;
      for (size_t i = 1; i < inst->operands().size(); i += 2) {
        uint32_t target = inst->GetOperandAs<uint32_t>(i);
        CFG_ASSERT(FirstBlockAssert, target);
        cases.push_back(target);
      }
      _.current_function().RegisterBlockEnd({cases});
    } break;
    case SpvOpReturn: {
      const uint32_t return_type = _.current_function().GetResultTypeId();
      const Instruction* return_type_inst = _.FindDef(return_type);
      assert(return_type_inst);
      if (return_type_inst->opcode() != SpvOpTypeVoid)
        return _.diag(SPV_ERROR_INVALID_CFG, inst)
               << "OpReturn can only be called from a function with void "
               << "return type.";
      _.current_function().RegisterBlockEnd(std::vector<uint32_t>());
      break;
    }
    case SpvOpKill:
    case SpvOpReturnValue:
    case SpvOpUnreachable:
    case SpvOpTerminateInvocation:
    case SpvOpIgnoreIntersectionKHR:
    case SpvOpTerminateRayKHR:
      _.current_function().RegisterBlockEnd(std::vector<uint32_t>());
      if (opcode == SpvOpKill) {
        _.current_function().RegisterExecutionModelLimitation(
            SpvExecutionModelFragment,
            "OpKill requires Fragment execution model");
      }
      if (opcode == SpvOpTerminateInvocation) {
        _.current_function().RegisterExecutionModelLimitation(
            SpvExecutionModelFragment,
            "OpTerminateInvocation requires Fragment execution model");
      }
      if (opcode == SpvOpIgnoreIntersectionKHR) {
        _.current_function().RegisterExecutionModelLimitation(
            SpvExecutionModelAnyHitKHR,
            "OpIgnoreIntersectionKHR requires AnyHit execution model");
      }
      if (opcode == SpvOpTerminateRayKHR) {
        _.current_function().RegisterExecutionModelLimitation(
            SpvExecutionModelAnyHitKHR,
            "OpTerminateRayKHR requires AnyHit execution model");
      }

      break;
    default:
      break;
  }
  return SPV_SUCCESS;
}

void ReachabilityPass(ValidationState_t& _) {
  for (auto& f : _.functions()) {
    std::vector<BasicBlock*> stack;
    auto entry = f.first_block();
    // Skip function declarations.
    if (entry) stack.push_back(entry);

    while (!stack.empty()) {
      auto block = stack.back();
      stack.pop_back();

      if (block->reachable()) continue;

      block->set_reachable(true);
      for (auto succ : *block->successors()) {
        stack.push_back(succ);
      }
    }
  }
}

spv_result_t ControlFlowPass(ValidationState_t& _, const Instruction* inst) {
  switch (inst->opcode()) {
    case SpvOpPhi:
      if (auto error = ValidatePhi(_, inst)) return error;
      break;
    case SpvOpBranch:
      if (auto error = ValidateBranch(_, inst)) return error;
      break;
    case SpvOpBranchConditional:
      if (auto error = ValidateBranchConditional(_, inst)) return error;
      break;
    case SpvOpReturnValue:
      if (auto error = ValidateReturnValue(_, inst)) return error;
      break;
    case SpvOpSwitch:
      if (auto error = ValidateSwitch(_, inst)) return error;
      break;
    case SpvOpLoopMerge:
      if (auto error = ValidateLoopMerge(_, inst)) return error;
      break;
    default:
      break;
  }

  return SPV_SUCCESS;
}

}  // namespace val
}  // namespace spvtools