/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/Device.h" #include "include/core/SkBitmap.h" #include "include/core/SkColorSpace.h" #include "include/gpu/GrRecordingContext.h" #include "include/private/base/SkTPin.h" #include "src/core/SkDraw.h" #include "src/core/SkMaskFilterBase.h" #include "src/core/SkSamplingPriv.h" #include "src/core/SkSpecialImage.h" #include "src/gpu/TiledTextureUtils.h" #include "src/gpu/ganesh/GrBlurUtils.h" #include "src/gpu/ganesh/GrColorSpaceXform.h" #include "src/gpu/ganesh/GrFPArgs.h" #include "src/gpu/ganesh/GrFragmentProcessors.h" #include "src/gpu/ganesh/GrOpsTypes.h" #include "src/gpu/ganesh/GrStyle.h" #include "src/gpu/ganesh/SkGr.h" #include "src/gpu/ganesh/SurfaceDrawContext.h" #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h" #include "src/gpu/ganesh/effects/GrTextureEffect.h" #include "src/gpu/ganesh/geometry/GrRect.h" #include "src/gpu/ganesh/geometry/GrStyledShape.h" #include "src/gpu/ganesh/image/GrImageUtils.h" #include "src/gpu/ganesh/image/SkImage_Ganesh.h" #include "src/gpu/ganesh/image/SkSpecialImage_Ganesh.h" #include "src/image/SkImage_Base.h" using namespace skia_private; namespace { inline bool use_shader(bool textureIsAlphaOnly, const SkPaint& paint) { return textureIsAlphaOnly && paint.getShader(); } ////////////////////////////////////////////////////////////////////////////// // Helper functions for dropping src rect subset with GrSamplerState::Filter::kLinear. static const SkScalar kColorBleedTolerance = 0.001f; bool has_aligned_samples(const SkRect& srcRect, const SkRect& transformedRect) { // detect pixel disalignment if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - transformedRect.left()) < kColorBleedTolerance && SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - transformedRect.top()) < kColorBleedTolerance && SkScalarAbs(transformedRect.width() - srcRect.width()) < kColorBleedTolerance && SkScalarAbs(transformedRect.height() - srcRect.height()) < kColorBleedTolerance) { return true; } return false; } bool may_color_bleed(const SkRect& srcRect, const SkRect& transformedRect, const SkMatrix& m, int numSamples) { // Only gets called if has_aligned_samples returned false. // So we can assume that sampling is axis aligned but not texel aligned. SkASSERT(!has_aligned_samples(srcRect, transformedRect)); SkRect innerSrcRect(srcRect), innerTransformedRect, outerTransformedRect(transformedRect); if (numSamples > 1) { innerSrcRect.inset(SK_Scalar1, SK_Scalar1); } else { innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); } m.mapRect(&innerTransformedRect, innerSrcRect); // The gap between outerTransformedRect and innerTransformedRect // represents the projection of the source border area, which is // problematic for color bleeding. We must check whether any // destination pixels sample the border area. outerTransformedRect.inset(kColorBleedTolerance, kColorBleedTolerance); innerTransformedRect.outset(kColorBleedTolerance, kColorBleedTolerance); SkIRect outer, inner; outerTransformedRect.round(&outer); innerTransformedRect.round(&inner); // If the inner and outer rects round to the same result, it means the // border does not overlap any pixel centers. Yay! return inner != outer; } bool can_ignore_linear_filtering_subset(const SkRect& srcSubset, const SkMatrix& srcRectToDeviceSpace, int numSamples) { if (srcRectToDeviceSpace.rectStaysRect()) { // sampling is axis-aligned SkRect transformedRect; srcRectToDeviceSpace.mapRect(&transformedRect, srcSubset); if (has_aligned_samples(srcSubset, transformedRect) || !may_color_bleed(srcSubset, transformedRect, srcRectToDeviceSpace, numSamples)) { return true; } } return false; } ////////////////////////////////////////////////////////////////////////////// // Helper functions for drawing an image with ganesh::SurfaceDrawContext /** * Checks whether the paint is compatible with using SurfaceDrawContext::drawTexture. It is more * efficient than the SkImage general case. */ bool can_use_draw_texture(const SkPaint& paint, const SkSamplingOptions& sampling) { return (!paint.getColorFilter() && !paint.getShader() && !paint.getMaskFilter() && !paint.getImageFilter() && !paint.getBlender() && !sampling.isAniso() && !sampling.useCubic && sampling.mipmap == SkMipmapMode::kNone); } SkPMColor4f texture_color(SkColor4f paintColor, float entryAlpha, GrColorType srcColorType, const GrColorInfo& dstColorInfo) { paintColor.fA *= entryAlpha; if (GrColorTypeIsAlphaOnly(srcColorType)) { return SkColor4fPrepForDst(paintColor, dstColorInfo).premul(); } else { float paintAlpha = SkTPin(paintColor.fA, 0.f, 1.f); return { paintAlpha, paintAlpha, paintAlpha, paintAlpha }; } } // Assumes srcRect and dstRect have already been optimized to fit the proxy void draw_texture(skgpu::ganesh::SurfaceDrawContext* sdc, const GrClip* clip, const SkMatrix& ctm, const SkPaint& paint, GrSamplerState::Filter filter, const SkRect& srcRect, const SkRect& dstRect, const SkPoint dstClip[4], GrQuadAAFlags aaFlags, SkCanvas::SrcRectConstraint constraint, GrSurfaceProxyView view, const GrColorInfo& srcColorInfo) { if (GrColorTypeIsAlphaOnly(srcColorInfo.colorType())) { view.concatSwizzle(skgpu::Swizzle("aaaa")); } const GrColorInfo& dstInfo = sdc->colorInfo(); auto textureXform = GrColorSpaceXform::Make(srcColorInfo, sdc->colorInfo()); GrSurfaceProxy* proxy = view.proxy(); // Must specify the strict constraint when the proxy is not functionally exact and the src // rect would access pixels outside the proxy's content area without the constraint. if (constraint != SkCanvas::kStrict_SrcRectConstraint && !proxy->isFunctionallyExact()) { // Conservative estimate of how much a coord could be outset from src rect: // 1/2 pixel for AA and 1/2 pixel for linear filtering float buffer = 0.5f * (aaFlags != GrQuadAAFlags::kNone) + GrTextureEffect::kLinearInset * (filter == GrSamplerState::Filter::kLinear); SkRect safeBounds = proxy->getBoundsRect(); safeBounds.inset(buffer, buffer); if (!safeBounds.contains(srcRect)) { constraint = SkCanvas::kStrict_SrcRectConstraint; } } SkPMColor4f color = texture_color(paint.getColor4f(), 1.f, srcColorInfo.colorType(), dstInfo); if (dstClip) { // Get source coords corresponding to dstClip SkPoint srcQuad[4]; GrMapRectPoints(dstRect, srcRect, dstClip, srcQuad, 4); sdc->drawTextureQuad(clip, std::move(view), srcColorInfo.colorType(), srcColorInfo.alphaType(), filter, GrSamplerState::MipmapMode::kNone, paint.getBlendMode_or(SkBlendMode::kSrcOver), color, srcQuad, dstClip, aaFlags, constraint == SkCanvas::kStrict_SrcRectConstraint ? &srcRect : nullptr, ctm, std::move(textureXform)); } else { sdc->drawTexture(clip, std::move(view), srcColorInfo.alphaType(), filter, GrSamplerState::MipmapMode::kNone, paint.getBlendMode_or(SkBlendMode::kSrcOver), color, srcRect, dstRect, aaFlags, constraint, ctm, std::move(textureXform)); } } SkFilterMode downgrade_to_filter(const SkSamplingOptions& sampling) { SkFilterMode filter = sampling.filter; if (sampling.isAniso() || sampling.useCubic || sampling.mipmap != SkMipmapMode::kNone) { // if we were "fancier" than just bilerp, only do bilerp filter = SkFilterMode::kLinear; } return filter; } } // anonymous namespace ////////////////////////////////////////////////////////////////////////////// namespace skgpu::ganesh { void Device::drawEdgeAAImage(const SkImage* image, const SkRect& src, const SkRect& dst, const SkPoint dstClip[4], SkCanvas::QuadAAFlags canvasAAFlags, const SkMatrix& localToDevice, const SkSamplingOptions& sampling, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint, const SkMatrix& srcToDst, SkTileMode tm) { GrRecordingContext* rContext = fContext.get(); SurfaceDrawContext* sdc = fSurfaceDrawContext.get(); const GrClip* clip = this->clip(); GrQuadAAFlags aaFlags = SkToGrQuadAAFlags(canvasAAFlags); auto ib = as_IB(image); if (tm == SkTileMode::kClamp && !ib->isYUVA() && can_use_draw_texture(paint, sampling)) { // We've done enough checks above to allow us to pass ClampNearest() and not check for // scaling adjustments. auto [view, ct] = skgpu::ganesh::AsView(rContext, image, skgpu::Mipmapped::kNo); if (!view) { return; } GrColorInfo info(image->imageInfo().colorInfo()); info = info.makeColorType(ct); draw_texture(sdc, clip, localToDevice, paint, sampling.filter, src, dst, dstClip, aaFlags, constraint, std::move(view), info); return; } const SkMaskFilter* mf = paint.getMaskFilter(); // The shader expects proper local coords, so we can't replace local coords with texture coords // if the shader will be used. If we have a mask filter we will change the underlying geometry // that is rendered. bool canUseTextureCoordsAsLocalCoords = !use_shader(image->isAlphaOnly(), paint) && !mf; // Specifying the texture coords as local coordinates is an attempt to enable more GrDrawOp // combining by not baking anything about the srcRect, dstRect, or ctm, into the texture // FP. In the future this should be an opaque optimization enabled by the combination of // GrDrawOp/GP and FP. if (GrFragmentProcessors::IsSupported(mf)) { mf = nullptr; } bool restrictToSubset = SkCanvas::kStrict_SrcRectConstraint == constraint; // If we have to outset for AA then we will generate texture coords outside the src rect. The // same happens for any mask filter that extends the bounds rendered in the dst. // This is conservative as a mask filter does not have to expand the bounds rendered. bool coordsAllInsideSrcRect = aaFlags == GrQuadAAFlags::kNone && !mf; // Check for optimization to drop the src rect constraint when using linear filtering. // TODO: Just rely on image to handle this. if (sampling.isAniso() && !sampling.useCubic && sampling.filter == SkFilterMode::kLinear && restrictToSubset && sampling.mipmap == SkMipmapMode::kNone && coordsAllInsideSrcRect && !ib->isYUVA()) { SkMatrix combinedMatrix; combinedMatrix.setConcat(localToDevice, srcToDst); if (can_ignore_linear_filtering_subset(src, combinedMatrix, sdc->numSamples())) { restrictToSubset = false; } } SkMatrix textureMatrix; if (canUseTextureCoordsAsLocalCoords) { textureMatrix = SkMatrix::I(); } else { if (!srcToDst.invert(&textureMatrix)) { return; } } const SkRect* subset = restrictToSubset ? &src : nullptr; const SkRect* domain = coordsAllInsideSrcRect ? &src : nullptr; SkTileMode tileModes[] = {tm, tm}; std::unique_ptr fp = skgpu::ganesh::AsFragmentProcessor( rContext, image, sampling, tileModes, textureMatrix, subset, domain); fp = GrColorSpaceXformEffect::Make( std::move(fp), image->imageInfo().colorInfo(), sdc->colorInfo()); if (image->isAlphaOnly()) { if (const auto* shader = as_SB(paint.getShader())) { auto shaderFP = GrFragmentProcessors::Make(shader, GrFPArgs(rContext, &sdc->colorInfo(), sdc->surfaceProps(), GrFPArgs::Scope::kDefault), localToDevice); if (!shaderFP) { return; } fp = GrBlendFragmentProcessor::Make(std::move(fp), std::move(shaderFP)); } else { // Multiply the input (paint) color by the texture (alpha) fp = GrFragmentProcessor::MulInputByChildAlpha(std::move(fp)); } } GrPaint grPaint; if (!SkPaintToGrPaintReplaceShader(rContext, sdc->colorInfo(), paint, localToDevice, std::move(fp), sdc->surfaceProps(), &grPaint)) { return; } if (!mf) { // Can draw the image directly (any mask filter on the paint was converted to an FP already) if (dstClip) { SkPoint srcClipPoints[4]; SkPoint* srcClip = nullptr; if (canUseTextureCoordsAsLocalCoords) { // Calculate texture coordinates that match the dst clip GrMapRectPoints(dst, src, dstClip, srcClipPoints, 4); srcClip = srcClipPoints; } sdc->fillQuadWithEdgeAA(clip, std::move(grPaint), aaFlags, localToDevice, dstClip, srcClip); } else { // Provide explicit texture coords when possible, otherwise rely on texture matrix sdc->fillRectWithEdgeAA(clip, std::move(grPaint), aaFlags, localToDevice, dst, canUseTextureCoordsAsLocalCoords ? &src : nullptr); } } else { // Must draw the mask filter as a GrStyledShape. For now, this loses the per-edge AA // information since it always draws with AA, but that should not be noticeable since the // mask filter is probably a blur. GrStyledShape shape; if (dstClip) { // Represent it as an SkPath formed from the dstClip SkPath path; path.addPoly(dstClip, 4, true); shape = GrStyledShape(path); } else { shape = GrStyledShape(dst); } GrBlurUtils::DrawShapeWithMaskFilter( rContext, sdc, clip, shape, std::move(grPaint), localToDevice, mf); } } void Device::drawSpecial(SkSpecialImage* special, const SkMatrix& localToDevice, const SkSamplingOptions& origSampling, const SkPaint& paint) { SkASSERT(!paint.getMaskFilter() && !paint.getImageFilter()); SkASSERT(special->isGaneshBacked()); SkRect src = SkRect::Make(special->subset()); SkRect dst = SkRect::MakeWH(special->width(), special->height()); SkMatrix srcToDst = SkMatrix::RectToRect(src, dst); SkSamplingOptions sampling = SkSamplingOptions(downgrade_to_filter(origSampling)); GrAA aa = fSurfaceDrawContext->chooseAA(paint); SkCanvas::QuadAAFlags aaFlags = (aa == GrAA::kYes) ? SkCanvas::kAll_QuadAAFlags : SkCanvas::kNone_QuadAAFlags; GrSurfaceProxyView view = SkSpecialImages::AsView(this->recordingContext(), special); if (!view) { // This shouldn't happen since we shouldn't be mixing SkSpecialImage subclasses but // returning early should avoid problems in release builds. SkASSERT(false); return; } SkImage_Ganesh image(sk_ref_sp(special->getContext()), special->uniqueID(), std::move(view), special->colorInfo()); // In most cases this ought to hit draw_texture since there won't be a color filter, // alpha-only texture+shader, or a high filter quality. this->drawEdgeAAImage(&image, src, dst, /* dstClip= */nullptr, aaFlags, localToDevice, sampling, paint, SkCanvas::kStrict_SrcRectConstraint, srcToDst, SkTileMode::kClamp); } void Device::drawImageQuadDirect(const SkImage* image, const SkRect& srcRect, const SkRect& dstRect, const SkPoint dstClip[4], SkCanvas::QuadAAFlags aaFlags, const SkMatrix* preViewMatrix, const SkSamplingOptions& origSampling, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { SkRect src; SkRect dst; SkMatrix srcToDst; auto mode = TiledTextureUtils::OptimizeSampleArea(SkISize::Make(image->width(), image->height()), srcRect, dstRect, dstClip, &src, &dst, &srcToDst); if (mode == TiledTextureUtils::ImageDrawMode::kSkip) { return; } if (src.contains(image->bounds())) { constraint = SkCanvas::kFast_SrcRectConstraint; } // Depending on the nature of image, it can flow through more or less optimal pipelines SkTileMode tileMode = mode == TiledTextureUtils::ImageDrawMode::kDecal ? SkTileMode::kDecal : SkTileMode::kClamp; // Get final CTM matrix SkMatrix ctm = this->localToDevice(); if (preViewMatrix) { ctm.preConcat(*preViewMatrix); } SkSamplingOptions sampling = origSampling; if (sampling.mipmap != SkMipmapMode::kNone && TiledTextureUtils::CanDisableMipmap(ctm, srcToDst)) { sampling = SkSamplingOptions(sampling.filter); } this->drawEdgeAAImage(image, src, dst, dstClip, aaFlags, ctm, sampling, paint, constraint, srcToDst, tileMode); } void Device::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry set[], int count, const SkPoint dstClips[], const SkMatrix preViewMatrices[], const SkSamplingOptions& sampling, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { SkASSERT(count > 0); if (!can_use_draw_texture(paint, sampling)) { // Send every entry through drawImageQuad() to handle the more complicated paint int dstClipIndex = 0; for (int i = 0; i < count; ++i) { // Only no clip or quad clip are supported SkASSERT(!set[i].fHasClip || dstClips); SkASSERT(set[i].fMatrixIndex < 0 || preViewMatrices); SkTCopyOnFirstWrite entryPaint(paint); if (set[i].fAlpha != 1.f) { auto paintAlpha = paint.getAlphaf(); entryPaint.writable()->setAlphaf(paintAlpha * set[i].fAlpha); } this->drawImageQuadDirect( set[i].fImage.get(), set[i].fSrcRect, set[i].fDstRect, set[i].fHasClip ? dstClips + dstClipIndex : nullptr, static_cast(set[i].fAAFlags), set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex, sampling, *entryPaint, constraint); dstClipIndex += 4 * set[i].fHasClip; } return; } GrSamplerState::Filter filter = sampling.filter == SkFilterMode::kNearest ? GrSamplerState::Filter::kNearest : GrSamplerState::Filter::kLinear; SkBlendMode mode = paint.getBlendMode_or(SkBlendMode::kSrcOver); AutoTArray textures(count); // We accumulate compatible proxies until we find an an incompatible one or reach the end and // issue the accumulated 'n' draws starting at 'base'. 'p' represents the number of proxy // switches that occur within the 'n' entries. int base = 0, n = 0, p = 0; auto draw = [&](int nextBase) { if (n > 0) { auto textureXform = GrColorSpaceXform::Make(set[base].fImage->imageInfo().colorInfo(), fSurfaceDrawContext->colorInfo()); fSurfaceDrawContext->drawTextureSet(this->clip(), textures.get() + base, n, p, filter, GrSamplerState::MipmapMode::kNone, mode, constraint, this->localToDevice(), std::move(textureXform)); } base = nextBase; n = 0; p = 0; }; int dstClipIndex = 0; for (int i = 0; i < count; ++i) { SkASSERT(!set[i].fHasClip || dstClips); SkASSERT(set[i].fMatrixIndex < 0 || preViewMatrices); // Manage the dst clip pointer tracking before any continues are used so we don't lose // our place in the dstClips array. const SkPoint* clip = set[i].fHasClip ? dstClips + dstClipIndex : nullptr; dstClipIndex += 4 * set[i].fHasClip; // The default SkDevice implementation is based on drawImageRect which does not allow // non-sorted src rects. TODO: Decide this is OK or make sure we handle it. if (!set[i].fSrcRect.isSorted()) { draw(i + 1); continue; } GrSurfaceProxyView view; const SkImage_Base* image = as_IB(set[i].fImage.get()); // Extract view from image, but skip YUV images so they get processed through // drawImageQuad and the proper effect to dynamically sample their planes. if (!image->isYUVA()) { std::tie(view, std::ignore) = skgpu::ganesh::AsView(this->recordingContext(), image, skgpu::Mipmapped::kNo); if (image->isAlphaOnly()) { skgpu::Swizzle swizzle = skgpu::Swizzle::Concat(view.swizzle(), skgpu::Swizzle("aaaa")); view = {view.detachProxy(), view.origin(), swizzle}; } } if (!view) { // This image can't go through the texture op, send through general image pipeline // after flushing current batch. draw(i + 1); SkTCopyOnFirstWrite entryPaint(paint); if (set[i].fAlpha != 1.f) { auto paintAlpha = paint.getAlphaf(); entryPaint.writable()->setAlphaf(paintAlpha * set[i].fAlpha); } this->drawImageQuadDirect( image, set[i].fSrcRect, set[i].fDstRect, clip, static_cast(set[i].fAAFlags), set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex, sampling, *entryPaint, constraint); continue; } textures[i].fProxyView = std::move(view); textures[i].fSrcAlphaType = image->alphaType(); textures[i].fSrcRect = set[i].fSrcRect; textures[i].fDstRect = set[i].fDstRect; textures[i].fDstClipQuad = clip; textures[i].fPreViewMatrix = set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex; textures[i].fColor = texture_color(paint.getColor4f(), set[i].fAlpha, SkColorTypeToGrColorType(image->colorType()), fSurfaceDrawContext->colorInfo()); textures[i].fAAFlags = SkToGrQuadAAFlags(set[i].fAAFlags); if (n > 0 && (!GrTextureProxy::ProxiesAreCompatibleAsDynamicState( textures[i].fProxyView.proxy(), textures[base].fProxyView.proxy()) || textures[i].fProxyView.swizzle() != textures[base].fProxyView.swizzle() || set[i].fImage->alphaType() != set[base].fImage->alphaType() || !SkColorSpace::Equals(set[i].fImage->colorSpace(), set[base].fImage->colorSpace()))) { draw(i); } // Whether or not we submitted a draw in the above if(), this ith entry is in the current // set being accumulated so increment n, and increment p if proxies are different. ++n; if (n == 1 || textures[i - 1].fProxyView.proxy() != textures[i].fProxyView.proxy()) { // First proxy or a different proxy (that is compatible, otherwise we'd have drawn up // to i - 1). ++p; } } draw(count); } } // namespace skgpu::ganesh