aboutsummaryrefslogtreecommitdiff
path: root/gm/runtimeshader.cpp
blob: 94b3e0d4c2278a7bf9028a9bd257c3b2003321c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * Copyright 2019 Google LLC
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "gm/gm.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRRect.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "include/effects/SkGradientShader.h"
#include "include/effects/SkImageFilters.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/utils/SkRandom.h"
#include "src/core/SkColorSpacePriv.h"
#include "tools/Resources.h"

enum RT_Flags {
    kAnimate_RTFlag     = 0x1,
    kBench_RTFlag       = 0x2,
    kColorFilter_RTFlag = 0x4,
};

class RuntimeShaderGM : public skiagm::GM {
public:
    RuntimeShaderGM(const char* name, SkISize size, const char* sksl, uint32_t flags = 0)
            : fName(name), fSize(size), fFlags(flags), fSkSL(sksl) {}

    void onOnceBeforeDraw() override {
        auto [effect, error] = (fFlags & kColorFilter_RTFlag)
                                       ? SkRuntimeEffect::MakeForColorFilter(fSkSL)
                                       : SkRuntimeEffect::MakeForShader(fSkSL);
        if (!effect) {
            SkDebugf("RuntimeShader error: %s\n", error.c_str());
        }
        fEffect = std::move(effect);
    }

    bool runAsBench() const override { return SkToBool(fFlags & kBench_RTFlag); }
    SkString onShortName() override { return fName; }
    SkISize onISize() override { return fSize; }

    bool onAnimate(double nanos) override {
        fSecs = nanos / (1000 * 1000 * 1000);
        return SkToBool(fFlags & kAnimate_RTFlag);
    }

protected:
    SkString fName;
    SkISize  fSize;
    uint32_t fFlags;
    float    fSecs = 0.0f;

    SkString fSkSL;
    sk_sp<SkRuntimeEffect> fEffect;
};

class SimpleRT : public RuntimeShaderGM {
public:
    SimpleRT() : RuntimeShaderGM("runtime_shader", {512, 256}, R"(
        uniform half4 gColor;

        half4 main(float2 p) {
            return half4(p*(1.0/255), gColor.b, 1);
        }
    )", kBench_RTFlag) {}

    void onDraw(SkCanvas* canvas) override {
        SkRuntimeShaderBuilder builder(fEffect);

        SkMatrix localM;
        localM.setRotate(90, 128, 128);
        builder.uniform("gColor") = SkColor4f{1, 0, 0, 1};

        SkPaint p;
        p.setShader(builder.makeShader(&localM));
        canvas->drawRect({0, 0, 256, 256}, p);
    }
};
DEF_GM(return new SimpleRT;)

static sk_sp<SkShader> make_shader(sk_sp<SkImage> img, SkISize size) {
    SkMatrix scale = SkMatrix::Scale(size.width()  / (float)img->width(),
                                     size.height() / (float)img->height());
    return img->makeShader(SkSamplingOptions(), scale);
}

static sk_sp<SkShader> make_threshold(SkISize size) {
    auto info = SkImageInfo::Make(size.width(), size.height(), kAlpha_8_SkColorType,
                                  kPremul_SkAlphaType);
    auto surf = SkSurface::MakeRaster(info);
    auto canvas = surf->getCanvas();

    const SkScalar rad = 50;
    SkColor colors[] = {SK_ColorBLACK, 0};
    SkPaint paint;
    paint.setAntiAlias(true);
    paint.setShader(SkGradientShader::MakeRadial({0,0}, rad, colors, nullptr, 2, SkTileMode::kClamp));

    SkPaint layerPaint;
    const SkScalar sigma = 16.0f;
    layerPaint.setImageFilter(SkImageFilters::Blur(sigma, sigma, nullptr));
    canvas->saveLayer(nullptr, &layerPaint);

    SkRandom rand;
    for (int i = 0; i < 25; ++i) {
        SkScalar x = rand.nextF() * size.width();
        SkScalar y = rand.nextF() * size.height();
        canvas->save();
        canvas->translate(x, y);
        canvas->drawCircle(0, 0, rad, paint);
        canvas->restore();
    }

    canvas->restore();  // apply the blur

    return surf->makeImageSnapshot()->makeShader(SkSamplingOptions());
}

class ThresholdRT : public RuntimeShaderGM {
public:
    ThresholdRT() : RuntimeShaderGM("threshold_rt", {256, 256}, R"(
        uniform shader before_map;
        uniform shader after_map;
        uniform shader threshold_map;

        uniform float cutoff;
        uniform float slope;

        float smooth_cutoff(float x) {
            x = x * slope + (0.5 - slope * cutoff);
            return clamp(x, 0, 1);
        }

        half4 main(float2 xy) {
            half4 before = before_map.eval(xy);
            half4 after = after_map.eval(xy);

            float m = smooth_cutoff(threshold_map.eval(xy).a);
            return mix(before, after, m);
        }
    )", kAnimate_RTFlag | kBench_RTFlag) {}

    sk_sp<SkShader> fBefore, fAfter, fThreshold;

    void onOnceBeforeDraw() override {
        const SkISize size = {256, 256};
        fThreshold = make_threshold(size);
        fBefore = make_shader(GetResourceAsImage("images/mandrill_256.png"), size);
        fAfter = make_shader(GetResourceAsImage("images/dog.jpg"), size);

        this->RuntimeShaderGM::onOnceBeforeDraw();
    }

    void onDraw(SkCanvas* canvas) override {
        SkRuntimeShaderBuilder builder(fEffect);

        builder.uniform("cutoff") = sin(fSecs) * 0.55f + 0.5f;
        builder.uniform("slope")  = 10.0f;

        builder.child("before_map")    = fBefore;
        builder.child("after_map")     = fAfter;
        builder.child("threshold_map") = fThreshold;

        SkPaint paint;
        paint.setShader(builder.makeShader());
        canvas->drawRect({0, 0, 256, 256}, paint);

        auto draw = [&](SkScalar x, SkScalar y, sk_sp<SkShader> shader) {
            paint.setShader(shader);
            canvas->save();
            canvas->translate(x, y);
            canvas->drawRect({0, 0, 256, 256}, paint);
            canvas->restore();
        };
        draw(256,   0, fThreshold);
        draw(  0, 256, fBefore);
        draw(256, 256, fAfter);
    }
};
DEF_GM(return new ThresholdRT;)

class SpiralRT : public RuntimeShaderGM {
public:
    SpiralRT() : RuntimeShaderGM("spiral_rt", {512, 512}, R"(
        uniform float rad_scale;
        uniform float2 in_center;
        layout(color) uniform float4 in_colors0;
        layout(color) uniform float4 in_colors1;

        half4 main(float2 p) {
            float2 pp = p - in_center;
            float radius = length(pp);
            radius = sqrt(radius);
            float angle = atan(pp.y / pp.x);
            float t = (angle + 3.1415926/2) / (3.1415926);
            t += radius * rad_scale;
            t = fract(t);
            return in_colors0 * (1-t) + in_colors1 * t;
        }
    )", kAnimate_RTFlag | kBench_RTFlag) {}

    void onDraw(SkCanvas* canvas) override {
        SkRuntimeShaderBuilder builder(fEffect);

        builder.uniform("rad_scale")  = std::sin(fSecs * 0.5f + 2.0f) / 5;
        builder.uniform("in_center")  = SkV2{256, 256};
        builder.uniform("in_colors0") = SkColors::kRed;
        builder.uniform("in_colors1") = SkColors::kGreen;

        SkPaint paint;
        paint.setShader(builder.makeShader());
        canvas->drawRect({0, 0, 512, 512}, paint);
    }
};
DEF_GM(return new SpiralRT;)

// Test case for sampling with both unmodified input coordinates, and explicit coordinates.
// The first version of skbug.com/11869 suffered a bug where all samples of a child were treated
// as pass-through if *at least one* used the unmodified coordinates. This was detected & tracked
// in b/181092919. This GM is similar, and demonstrates the bug before the fix was applied.
class UnsharpRT : public RuntimeShaderGM {
public:
    UnsharpRT() : RuntimeShaderGM("unsharp_rt", {512, 256}, R"(
        uniform shader child;
        half4 main(float2 xy) {
            half4 c = child.eval(xy) * 5;
            c -= child.eval(xy + float2( 1,  0));
            c -= child.eval(xy + float2(-1,  0));
            c -= child.eval(xy + float2( 0,  1));
            c -= child.eval(xy + float2( 0, -1));
            return c;
        }
    )") {}

    sk_sp<SkImage> fMandrill;

    void onOnceBeforeDraw() override {
        fMandrill      = GetResourceAsImage("images/mandrill_256.png");
        this->RuntimeShaderGM::onOnceBeforeDraw();
    }

    void onDraw(SkCanvas* canvas) override {
        // First we draw the unmodified image
        canvas->drawImage(fMandrill,      0,   0);

        // Now draw the image with our unsharp mask applied
        SkRuntimeShaderBuilder builder(fEffect);
        const SkSamplingOptions sampling(SkFilterMode::kNearest);
        builder.child("child") = fMandrill->makeShader(sampling);

        SkPaint paint;
        paint.setShader(builder.makeShader());
        canvas->translate(256, 0);
        canvas->drawRect({ 0, 0, 256, 256 }, paint);
    }
};
DEF_GM(return new UnsharpRT;)

class ColorCubeRT : public RuntimeShaderGM {
public:
    ColorCubeRT() : RuntimeShaderGM("color_cube_rt", {512, 512}, R"(
        uniform shader child;
        uniform shader color_cube;

        uniform float rg_scale;
        uniform float rg_bias;
        uniform float b_scale;
        uniform float inv_size;

        half4 main(float2 xy) {
            float4 c = unpremul(child.eval(xy));

            // Map to cube coords:
            float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale);

            // Compute slice coordinate
            float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);
            float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);

            // Two bilinear fetches, plus a manual lerp for the third axis:
            half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2),
                              fract(cubeCoords.b));

            // Premul again
            color.rgb *= color.a;

            return color;
        }
    )") {}

    sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube;

    void onOnceBeforeDraw() override {
        fMandrill      = GetResourceAsImage("images/mandrill_256.png");
        fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png");
        fIdentityCube  = GetResourceAsImage("images/lut_identity.png");
        fSepiaCube     = GetResourceAsImage("images/lut_sepia.png");

        this->RuntimeShaderGM::onOnceBeforeDraw();
    }

    void onDraw(SkCanvas* canvas) override {
        SkRuntimeShaderBuilder builder(fEffect);

        // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop:
        canvas->drawImage(fMandrill,      0,   0);
        canvas->drawImage(fMandrillSepia, 0, 256);

        // LUT dimensions should be (kSize^2, kSize)
        constexpr float kSize = 16.0f;

        const SkSamplingOptions sampling(SkFilterMode::kLinear);

        builder.uniform("rg_scale")     = (kSize - 1) / kSize;
        builder.uniform("rg_bias")      = 0.5f / kSize;
        builder.uniform("b_scale")      = kSize - 1;
        builder.uniform("inv_size")     = 1.0f / kSize;

        builder.child("child")        = fMandrill->makeShader(sampling);

        SkPaint paint;

        // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically?
        SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize);

        // Now draw the image with an identity color cube - it should look like the original
        builder.child("color_cube") = fIdentityCube->makeShader(sampling, normalize);
        paint.setShader(builder.makeShader());
        canvas->translate(256, 0);
        canvas->drawRect({ 0, 0, 256, 256 }, paint);

        // ... and with a sepia-tone color cube. This should match the sepia-toned image.
        builder.child("color_cube") = fSepiaCube->makeShader(sampling, normalize);
        paint.setShader(builder.makeShader());
        canvas->translate(0, 256);
        canvas->drawRect({ 0, 0, 256, 256 }, paint);
    }
};
DEF_GM(return new ColorCubeRT;)

// Same as above, but demonstrating how to implement this as a runtime color filter (that samples
// a shader child for the LUT).
class ColorCubeColorFilterRT : public RuntimeShaderGM {
public:
    ColorCubeColorFilterRT() : RuntimeShaderGM("color_cube_cf_rt", {512, 512}, R"(
        uniform shader color_cube;

        uniform float rg_scale;
        uniform float rg_bias;
        uniform float b_scale;
        uniform float inv_size;

        half4 main(half4 inColor) {
            float4 c = unpremul(inColor);

            // Map to cube coords:
            float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale);

            // Compute slice coordinate
            float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);
            float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);

            // Two bilinear fetches, plus a manual lerp for the third axis:
            half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2),
                              fract(cubeCoords.b));

            // Premul again
            color.rgb *= color.a;

            return color;
        }
    )", kColorFilter_RTFlag) {}

    sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube;

    void onOnceBeforeDraw() override {
        fMandrill      = GetResourceAsImage("images/mandrill_256.png");
        fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png");
        fIdentityCube  = GetResourceAsImage("images/lut_identity.png");
        fSepiaCube     = GetResourceAsImage("images/lut_sepia.png");

        this->RuntimeShaderGM::onOnceBeforeDraw();
    }

    void onDraw(SkCanvas* canvas) override {
        // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop:
        canvas->drawImage(fMandrill,      0,   0);
        canvas->drawImage(fMandrillSepia, 0, 256);

        // LUT dimensions should be (kSize^2, kSize)
        constexpr float kSize = 16.0f;

        const SkSamplingOptions sampling(SkFilterMode::kLinear);

        float uniforms[] = {
                (kSize - 1) / kSize,  // rg_scale
                0.5f / kSize,         // rg_bias
                kSize - 1,            // b_scale
                1.0f / kSize,         // inv_size
        };

        SkPaint paint;

        // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically?
        SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize);

        // Now draw the image with an identity color cube - it should look like the original
        SkRuntimeEffect::ChildPtr children[] = {fIdentityCube->makeShader(sampling, normalize)};
        paint.setColorFilter(fEffect->makeColorFilter(
                SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children)));
        canvas->drawImage(fMandrill, 256, 0, sampling, &paint);

        // ... and with a sepia-tone color cube. This should match the sepia-toned image.
        children[0] = fSepiaCube->makeShader(sampling, normalize);
        paint.setColorFilter(fEffect->makeColorFilter(
                SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children)));
        canvas->drawImage(fMandrill, 256, 256, sampling, &paint);
    }
};
DEF_GM(return new ColorCubeColorFilterRT;)

class DefaultColorRT : public RuntimeShaderGM {
public:
    DefaultColorRT() : RuntimeShaderGM("default_color_rt", {512, 256}, R"(
        uniform shader child;
        half4 main(float2 xy) {
            return child.eval(xy);
        }
    )") {}

    sk_sp<SkImage> fMandrill;

    void onOnceBeforeDraw() override {
        fMandrill      = GetResourceAsImage("images/mandrill_256.png");
        this->RuntimeShaderGM::onOnceBeforeDraw();
    }

    void onDraw(SkCanvas* canvas) override {
        SkRuntimeShaderBuilder builder(fEffect);

        // First, we leave the child as null, so sampling it returns the default (paint) color
        SkPaint paint;
        paint.setColor4f({ 0.25f, 0.75f, 0.75f, 1.0f });
        paint.setShader(builder.makeShader());
        canvas->drawRect({ 0, 0, 256, 256 }, paint);

        // Now we bind an image shader as the child. This (by convention) scales by the paint alpha
        builder.child("child") = fMandrill->makeShader(SkSamplingOptions());
        paint.setColor4f({ 1.0f, 1.0f, 1.0f, 0.5f });
        paint.setShader(builder.makeShader());
        canvas->translate(256, 0);
        canvas->drawRect({ 0, 0, 256, 256 }, paint);

    }
};
DEF_GM(return new DefaultColorRT;)

// Emits coverage for a rounded rectangle whose corners are superellipses defined by the boundary:
//
//   x^n + y^n == 1
//
// Where x and y are normalized, clamped coordinates ranging from 0..1 inside the nearest corner's
// bounding box.
//
// See: https://en.wikipedia.org/wiki/Superellipse
class ClipSuperRRect : public RuntimeShaderGM {
public:
    ClipSuperRRect(const char* name, float power) : RuntimeShaderGM(name, {500, 500}, R"(
        uniform float power_minus1;
        uniform float2 stretch_factor;
        uniform float2x2 derivatives;
        half4 main(float2 xy) {
            xy = max(abs(xy) + stretch_factor, 0);
            float2 exp_minus1 = pow(xy, power_minus1.xx);  // If power == 3.5: xy * xy * sqrt(xy)
            float f = dot(exp_minus1, xy) - 1;  // f = x^n + y^n - 1
            float2 grad = exp_minus1 * derivatives;
            float fwidth = abs(grad.x) + abs(grad.y) + 1e-12;  // 1e-12 to avoid a divide by zero.
            return half4(saturate(.5 - f/fwidth)); // Approx coverage by riding the gradient to f=0.
        }
    )"), fPower(power) {}

    void drawSuperRRect(SkCanvas* canvas, const SkRect& superRRect, float radX, float radY,
                        SkColor color) {
        SkPaint paint;
        paint.setColor(color);

        if (fPower == 2) {
            // Draw a normal round rect for the sake of testing.
            SkRRect rrect = SkRRect::MakeRectXY(superRRect, radX, radY);
            paint.setAntiAlias(true);
            canvas->drawRRect(rrect, paint);
            return;
        }

        SkRuntimeShaderBuilder builder(fEffect);
        builder.uniform("power_minus1") = fPower - 1;

        // Size the corners such that the "apex" of our "super" rounded corner is in the same
        // location that the apex of a circular rounded corner would be with the given radii. We
        // define the apex as the point on the rounded corner that is 45 degrees between the
        // horizontal and vertical edges.
        float scale = (1 - SK_ScalarRoot2Over2) / (1 - exp2f(-1/fPower));
        float cornerWidth = radX * scale;
        float cornerHeight = radY * scale;
        cornerWidth = std::min(cornerWidth, superRRect.width() * .5f);
        cornerHeight = std::min(cornerHeight, superRRect.height() * .5f);
        // The stretch factor controls how long the flat edge should be between rounded corners.
        builder.uniform("stretch_factor") = SkV2{1 - superRRect.width()*.5f / cornerWidth,
                                                 1 - superRRect.height()*.5f / cornerHeight};

        // Calculate a 2x2 "derivatives" matrix that the shader will use to find the gradient.
        //
        //     f = s^n + t^n - 1   [s,t are "super" rounded corner coords in normalized 0..1 space]
        //
        //     gradient = [df/dx  df/dy] = [ns^(n-1)  nt^(n-1)] * |ds/dx  ds/dy|
        //                                                        |dt/dx  dt/dy|
        //
        //              = [s^(n-1)  t^(n-1)] * |n  0| * |ds/dx  ds/dy|
        //                                     |0  n|   |dt/dx  dt/dy|
        //
        //              = [s^(n-1)  t^(n-1)] * |2n/cornerWidth   0| * mat2x2(canvasMatrix)^-1
        //                                     |0  2n/cornerHeight|
        //
        //              = [s^(n-1)  t^(n-1)] * "derivatives"
        //
        const SkMatrix& M = canvas->getTotalMatrix();
        float a=M.getScaleX(), b=M.getSkewX(), c=M.getSkewY(), d=M.getScaleY();
        float determinant = a*d - b*c;
        float dx = fPower / (cornerWidth * determinant);
        float dy = fPower / (cornerHeight * determinant);
        builder.uniform("derivatives") = SkV4{d*dx, -c*dy, -b*dx, a*dy};

        // This matrix will be inverted by the effect system, giving a matrix that converts local
        // coordinates to (almost) coner coordinates. To get the rest of the way to the nearest
        // corner's space, the shader will have to take the absolute value, add the stretch_factor,
        // then clamp above zero.
        SkMatrix cornerToLocal;
        cornerToLocal.setScaleTranslate(cornerWidth, cornerHeight, superRRect.centerX(),
                                        superRRect.centerY());
        canvas->clipShader(builder.makeShader(&cornerToLocal));

        // Bloat the outer edges of the rect we will draw so it contains all the antialiased pixels.
        // Bloat by a full pixel instead of half in case Skia is in a mode that draws this rect with
        // unexpected AA of its own.
        float inverseDet = 1 / fabsf(determinant);
        float bloatX = (fabsf(d) + fabsf(c)) * inverseDet;
        float bloatY = (fabsf(b) + fabsf(a)) * inverseDet;
        canvas->drawRect(superRRect.makeOutset(bloatX, bloatY), paint);
    }

    void onDraw(SkCanvas* canvas) override {
        SkRandom rand(2);

        canvas->save();
        canvas->translate(canvas->imageInfo().width() / 2.f, canvas->imageInfo().height() / 2.f);

        canvas->save();
        canvas->rotate(21);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(-5, 25, 175, 100), 50, 30,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->save();
        canvas->rotate(94);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(95, 75, 125, 100), 30, 30,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->save();
        canvas->rotate(132);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(0, 75, 150, 100), 40, 30,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->save();
        canvas->rotate(282);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(15, -20, 100, 100), 20, 20,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->save();
        canvas->rotate(0);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(140, -50, 90, 110), 25, 25,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->save();
        canvas->rotate(-35);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(160, -60, 60, 90), 18, 18,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->save();
        canvas->rotate(65);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(220, -120, 60, 90), 18, 18,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->save();
        canvas->rotate(265);
        this->drawSuperRRect(canvas, SkRect::MakeXYWH(150, -129, 80, 160), 24, 39,
                             rand.nextU() | 0xff808080);
        canvas->restore();

        canvas->restore();
    }

private:
    const float fPower;
};
DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow2", 2);)
// DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3", 3);)
DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3.5", 3.5);)
// DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4", 4);)
// DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4.5", 4.5);)
// DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow5", 5);)

class LinearGradientRT : public RuntimeShaderGM {
public:
    LinearGradientRT() : RuntimeShaderGM("linear_gradient_rt", {256 + 10, 128 + 15}, R"(
        layout(color) uniform vec4 in_colors0;
        layout(color) uniform vec4 in_colors1;

        vec4 main(vec2 p) {
            float t = p.x / 256;
            if (p.y < 32) {
                return mix(in_colors0, in_colors1, t);
            } else {
                vec3 linColor0 = toLinearSrgb(in_colors0.rgb);
                vec3 linColor1 = toLinearSrgb(in_colors1.rgb);
                vec3 linColor = mix(linColor0, linColor1, t);
                return fromLinearSrgb(linColor).rgb1;
            }
        }
    )") {}

    void onDraw(SkCanvas* canvas) override {
        // Colors chosen to use values other than 0 and 1 - so that it's obvious if the conversion
        // intrinsics are doing anything. (Most transfer functions map 0 -> 0 and 1 -> 1).
        SkRuntimeShaderBuilder builder(fEffect);
        builder.uniform("in_colors0") = SkColor4f{0.75f, 0.25f, 0.0f, 1.0f};
        builder.uniform("in_colors1") = SkColor4f{0.0f, 0.75f, 0.25f, 1.0f};
        SkPaint paint;
        paint.setShader(builder.makeShader());

        canvas->save();
        canvas->clear(SK_ColorWHITE);
        canvas->translate(5, 5);

        // We draw everything twice. First to a surface with no color management, where the
        // intrinsics should do nothing (eg, the top bar should look the same in the top and bottom
        // halves). Then to an sRGB surface, where they should produce linearly interpolated
        // gradients (the bottom half of the second bar should be brighter than the top half).
        for (auto cs : {static_cast<SkColorSpace*>(nullptr), sk_srgb_singleton()}) {
            SkImageInfo info = SkImageInfo::Make(
                    256, 64, kN32_SkColorType, kPremul_SkAlphaType, sk_ref_sp(cs));
            auto surface = canvas->makeSurface(info);
            if (!surface) {
                surface = SkSurface::MakeRaster(info);
            }

            surface->getCanvas()->drawRect({0, 0, 256, 64}, paint);
            canvas->drawImage(surface->makeImageSnapshot(), 0, 0);
            canvas->translate(0, 64 + 5);
        }

        canvas->restore();
    }
};
DEF_GM(return new LinearGradientRT;)

DEF_SIMPLE_GM(child_sampling_rt, canvas, 256,256) {
    static constexpr char scale[] =
        "uniform shader child;"
        "half4 main(float2 xy) {"
        "    return child.eval(xy*0.1);"
        "}";

    SkPaint p;
    p.setColor(SK_ColorRED);
    p.setAntiAlias(true);
    p.setStyle(SkPaint::kStroke_Style);
    p.setStrokeWidth(1);

    auto surf = SkSurface::MakeRasterN32Premul(100,100);
    surf->getCanvas()->drawLine(0, 0, 100, 100, p);
    auto shader = surf->makeImageSnapshot()->makeShader(SkSamplingOptions(SkFilterMode::kLinear));

    SkRuntimeShaderBuilder builder(SkRuntimeEffect::MakeForShader(SkString(scale)).effect);
    builder.child("child") = shader;
    p.setShader(builder.makeShader());

    canvas->drawPaint(p);
}

static sk_sp<SkShader> normal_map_shader() {
    // Produces a hemispherical normal:
    static const char* kSrc = R"(
        half4 main(vec2 p) {
            p = (p / 256) * 2 - 1;
            float p2 = dot(p, p);
            vec3 v = (p2 > 1) ? vec3(0, 0, 1) : vec3(p, sqrt(1 - p2));
            return (v * 0.5 + 0.5).xyz1;
        }
    )";
    auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect;
    return effect->makeShader(nullptr, {});
}

static sk_sp<SkImage> normal_map_image() {
    // Above, baked into an image:
    auto info = SkImageInfo::Make(256, 256, kN32_SkColorType, kPremul_SkAlphaType);
    auto surface = SkSurface::MakeRaster(info);
    SkPaint p;
    p.setShader(normal_map_shader());
    surface->getCanvas()->drawPaint(p);
    return surface->makeImageSnapshot();
}

static sk_sp<SkShader> normal_map_image_shader() {
    return normal_map_image()->makeShader(SkSamplingOptions{});
}

static sk_sp<SkShader> normal_map_raw_image_shader() {
    return normal_map_image()->makeRawShader(SkSamplingOptions{});
}

static sk_sp<SkImage> normal_map_unpremul_image() {
    auto image = normal_map_image();
    SkPixmap pm;
    SkAssertResult(image->peekPixels(&pm));
    SkBitmap bmp;
    bmp.allocPixels(image->imageInfo().makeAlphaType(kUnpremul_SkAlphaType));
    // Copy all pixels over, but set alpha to 0
    for (int y = 0; y < pm.height(); y++) {
        for (int x = 0; x < pm.width(); x++) {
            *bmp.getAddr32(x, y) = *pm.addr32(x, y) & 0x00FFFFFF;
        }
    }
    return bmp.asImage();
}

static sk_sp<SkShader> normal_map_unpremul_image_shader() {
    return normal_map_unpremul_image()->makeShader(SkSamplingOptions{});
}

static sk_sp<SkShader> normal_map_raw_unpremul_image_shader() {
    return normal_map_unpremul_image()->makeRawShader(SkSamplingOptions{});
}

static sk_sp<SkShader> lit_shader(sk_sp<SkShader> normals) {
    // Simple N-dot-L against a fixed, directional light:
    static const char* kSrc = R"(
        uniform shader normals;
        half4 main(vec2 p) {
            vec3 n = normalize(normals.eval(p).xyz * 2 - 1);
            vec3 l = normalize(vec3(1, -1, 1));
            return saturate(dot(n, l)).xxx1;
        }
    )";
    auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect;
    return effect->makeShader(nullptr, &normals, 1);
}

static sk_sp<SkShader> lit_shader_linear(sk_sp<SkShader> normals) {
    // Simple N-dot-L against a fixed, directional light, done in linear space:
    static const char* kSrc = R"(
        uniform shader normals;
        half4 main(vec2 p) {
            vec3 n = normalize(normals.eval(p).xyz * 2 - 1);
            vec3 l = normalize(vec3(1, -1, 1));
            return fromLinearSrgb(saturate(dot(n, l)).xxx).xxx1;
        }
    )";
    auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect;
    return effect->makeShader(nullptr, &normals, 1);
}

DEF_SIMPLE_GM(paint_alpha_normals_rt, canvas, 512,512) {
    // Various draws, with non-opaque paint alpha. This demonstrates several issues around how
    // paint alpha is applied differently on CPU (globally, after all shaders) and GPU (per shader,
    // inconsistently). See: skbug.com/11942
    //
    // When this works, it will be a demo of applying paint alpha to fade out a complex effect.
    auto draw_shader = [=](int x, int y, sk_sp<SkShader> shader) {
        SkPaint p;
        p.setAlpha(164);
        p.setShader(shader);

        canvas->save();
        canvas->translate(x, y);
        canvas->clipRect({0, 0, 256, 256});
        canvas->drawPaint(p);
        canvas->restore();
    };

    draw_shader(0, 0, normal_map_shader());
    draw_shader(0, 256, normal_map_image_shader());

    draw_shader(256, 0, lit_shader(normal_map_shader()));
    draw_shader(256, 256, lit_shader(normal_map_image_shader()));
}

DEF_SIMPLE_GM(raw_image_shader_normals_rt, canvas, 768, 512) {
    // Demonstrates the utility of SkImage::makeRawShader, for non-color child shaders.

    // First, make an offscreen surface, so we can control the destination color space:
    auto surfInfo = SkImageInfo::Make(512, 512,
                                      kN32_SkColorType,
                                      kPremul_SkAlphaType,
                                      SkColorSpace::MakeSRGB()->makeColorSpin());
    auto surface = canvas->makeSurface(surfInfo);
    if (!surface) {
        surface = SkSurface::MakeRaster(surfInfo);
    }

    auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) {
        SkPaint p;
        p.setShader(shader);

        canvas->save();
        canvas->translate(x, y);
        canvas->clipRect({0, 0, 256, 256});
        canvas->drawPaint(p);
        canvas->restore();
    };

    sk_sp<SkShader> colorNormals = normal_map_image_shader(),
                    rawNormals = normal_map_raw_image_shader();

    // Draw our normal map as colors (will be color-rotated), and raw (untransformed)
    draw_shader(0, 0, colorNormals, surface->getCanvas());
    draw_shader(0, 256, rawNormals, surface->getCanvas());

    // Now draw our lighting shader using the normal and raw versions of the normals as children.
    // The top image will have the normals rotated (incorrectly), so the lighting is very dark.
    draw_shader(256, 0, lit_shader(colorNormals), surface->getCanvas());
    draw_shader(256, 256, lit_shader(rawNormals), surface->getCanvas());

    // Now draw the offscreen surface back to our original canvas. If we do this naively, the image
    // will be un-transformed back to the canvas' color space. That will have the effect of undoing
    // the color spin on the upper-left, and APPLYING a color-spin on the bottom left. To preserve
    // the intent of this GM (and make it draw consistently whether or not the original surface has
    // a color space attached), we reinterpret the offscreen image as being in sRGB:
    canvas->drawImage(
            surface->makeImageSnapshot()->reinterpretColorSpace(SkColorSpace::MakeSRGB()), 0, 0);

    // Finally, to demonstrate that raw unpremul image shaders don't premul, draw lighting two more
    // times, with an unpremul normal map (containing ZERO in the alpha channel). THe top will
    // premultiply the normals, resulting in totally dark lighting. The bottom will retain the RGB
    // encoded normals, even with zero alpha:
    draw_shader(512, 0, lit_shader(normal_map_unpremul_image_shader()), canvas);
    draw_shader(512, 256, lit_shader(normal_map_raw_unpremul_image_shader()), canvas);
}

DEF_SIMPLE_GM(lit_shader_linear_rt, canvas, 512, 256) {
    // First, make an offscreen surface, so we can control the destination color space:
    auto surfInfo = SkImageInfo::Make(512, 256,
                                      kN32_SkColorType,
                                      kPremul_SkAlphaType,
                                      SkColorSpace::MakeSRGB());
    auto surface = canvas->makeSurface(surfInfo);
    if (!surface) {
        surface = SkSurface::MakeRaster(surfInfo);
    }

    auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) {
        SkPaint p;
        p.setShader(shader);

        canvas->save();
        canvas->translate(x, y);
        canvas->clipRect({0, 0, 256, 256});
        canvas->drawPaint(p);
        canvas->restore();
    };

    // We draw two lit spheres - one does math in the working space (so gamma-encoded). The second
    // works in linear space, then converts to sRGB. This produces (more accurate) sharp falloff:
    draw_shader(0, 0, lit_shader(normal_map_shader()), surface->getCanvas());
    draw_shader(256, 0, lit_shader_linear(normal_map_shader()), surface->getCanvas());

    // Now draw the offscreen surface back to our original canvas:
    canvas->drawImage(surface->makeImageSnapshot(), 0, 0);
}